Properties

Label 57.6.a.b.1.1
Level $57$
Weight $6$
Character 57.1
Self dual yes
Analytic conductor $9.142$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [57,6,Mod(1,57)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(57, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("57.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 57 = 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 57.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.14187772934\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 57.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+11.0000 q^{2} +9.00000 q^{3} +89.0000 q^{4} +6.00000 q^{5} +99.0000 q^{6} -176.000 q^{7} +627.000 q^{8} +81.0000 q^{9} +66.0000 q^{10} -496.000 q^{11} +801.000 q^{12} -178.000 q^{13} -1936.00 q^{14} +54.0000 q^{15} +4049.00 q^{16} +202.000 q^{17} +891.000 q^{18} -361.000 q^{19} +534.000 q^{20} -1584.00 q^{21} -5456.00 q^{22} +4396.00 q^{23} +5643.00 q^{24} -3089.00 q^{25} -1958.00 q^{26} +729.000 q^{27} -15664.0 q^{28} -5902.00 q^{29} +594.000 q^{30} +5760.00 q^{31} +24475.0 q^{32} -4464.00 q^{33} +2222.00 q^{34} -1056.00 q^{35} +7209.00 q^{36} -3906.00 q^{37} -3971.00 q^{38} -1602.00 q^{39} +3762.00 q^{40} +15774.0 q^{41} -17424.0 q^{42} -7492.00 q^{43} -44144.0 q^{44} +486.000 q^{45} +48356.0 q^{46} -7452.00 q^{47} +36441.0 q^{48} +14169.0 q^{49} -33979.0 q^{50} +1818.00 q^{51} -15842.0 q^{52} -29014.0 q^{53} +8019.00 q^{54} -2976.00 q^{55} -110352. q^{56} -3249.00 q^{57} -64922.0 q^{58} +13604.0 q^{59} +4806.00 q^{60} -12466.0 q^{61} +63360.0 q^{62} -14256.0 q^{63} +139657. q^{64} -1068.00 q^{65} -49104.0 q^{66} +43436.0 q^{67} +17978.0 q^{68} +39564.0 q^{69} -11616.0 q^{70} +28800.0 q^{71} +50787.0 q^{72} +80746.0 q^{73} -42966.0 q^{74} -27801.0 q^{75} -32129.0 q^{76} +87296.0 q^{77} -17622.0 q^{78} +76456.0 q^{79} +24294.0 q^{80} +6561.00 q^{81} +173514. q^{82} -56880.0 q^{83} -140976. q^{84} +1212.00 q^{85} -82412.0 q^{86} -53118.0 q^{87} -310992. q^{88} -103266. q^{89} +5346.00 q^{90} +31328.0 q^{91} +391244. q^{92} +51840.0 q^{93} -81972.0 q^{94} -2166.00 q^{95} +220275. q^{96} +82490.0 q^{97} +155859. q^{98} -40176.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 11.0000 1.94454 0.972272 0.233854i \(-0.0751336\pi\)
0.972272 + 0.233854i \(0.0751336\pi\)
\(3\) 9.00000 0.577350
\(4\) 89.0000 2.78125
\(5\) 6.00000 0.107331 0.0536656 0.998559i \(-0.482909\pi\)
0.0536656 + 0.998559i \(0.482909\pi\)
\(6\) 99.0000 1.12268
\(7\) −176.000 −1.35759 −0.678793 0.734329i \(-0.737497\pi\)
−0.678793 + 0.734329i \(0.737497\pi\)
\(8\) 627.000 3.46372
\(9\) 81.0000 0.333333
\(10\) 66.0000 0.208710
\(11\) −496.000 −1.23595 −0.617974 0.786199i \(-0.712046\pi\)
−0.617974 + 0.786199i \(0.712046\pi\)
\(12\) 801.000 1.60576
\(13\) −178.000 −0.292120 −0.146060 0.989276i \(-0.546659\pi\)
−0.146060 + 0.989276i \(0.546659\pi\)
\(14\) −1936.00 −2.63989
\(15\) 54.0000 0.0619677
\(16\) 4049.00 3.95410
\(17\) 202.000 0.169523 0.0847616 0.996401i \(-0.472987\pi\)
0.0847616 + 0.996401i \(0.472987\pi\)
\(18\) 891.000 0.648181
\(19\) −361.000 −0.229416
\(20\) 534.000 0.298515
\(21\) −1584.00 −0.783803
\(22\) −5456.00 −2.40335
\(23\) 4396.00 1.73276 0.866379 0.499386i \(-0.166441\pi\)
0.866379 + 0.499386i \(0.166441\pi\)
\(24\) 5643.00 1.99978
\(25\) −3089.00 −0.988480
\(26\) −1958.00 −0.568041
\(27\) 729.000 0.192450
\(28\) −15664.0 −3.77579
\(29\) −5902.00 −1.30318 −0.651590 0.758572i \(-0.725898\pi\)
−0.651590 + 0.758572i \(0.725898\pi\)
\(30\) 594.000 0.120499
\(31\) 5760.00 1.07651 0.538255 0.842782i \(-0.319084\pi\)
0.538255 + 0.842782i \(0.319084\pi\)
\(32\) 24475.0 4.22520
\(33\) −4464.00 −0.713575
\(34\) 2222.00 0.329645
\(35\) −1056.00 −0.145711
\(36\) 7209.00 0.927083
\(37\) −3906.00 −0.469059 −0.234530 0.972109i \(-0.575355\pi\)
−0.234530 + 0.972109i \(0.575355\pi\)
\(38\) −3971.00 −0.446109
\(39\) −1602.00 −0.168656
\(40\) 3762.00 0.371765
\(41\) 15774.0 1.46549 0.732744 0.680505i \(-0.238239\pi\)
0.732744 + 0.680505i \(0.238239\pi\)
\(42\) −17424.0 −1.52414
\(43\) −7492.00 −0.617912 −0.308956 0.951076i \(-0.599980\pi\)
−0.308956 + 0.951076i \(0.599980\pi\)
\(44\) −44144.0 −3.43748
\(45\) 486.000 0.0357771
\(46\) 48356.0 3.36942
\(47\) −7452.00 −0.492071 −0.246036 0.969261i \(-0.579128\pi\)
−0.246036 + 0.969261i \(0.579128\pi\)
\(48\) 36441.0 2.28290
\(49\) 14169.0 0.843042
\(50\) −33979.0 −1.92214
\(51\) 1818.00 0.0978742
\(52\) −15842.0 −0.812459
\(53\) −29014.0 −1.41879 −0.709395 0.704811i \(-0.751032\pi\)
−0.709395 + 0.704811i \(0.751032\pi\)
\(54\) 8019.00 0.374228
\(55\) −2976.00 −0.132656
\(56\) −110352. −4.70230
\(57\) −3249.00 −0.132453
\(58\) −64922.0 −2.53409
\(59\) 13604.0 0.508788 0.254394 0.967101i \(-0.418124\pi\)
0.254394 + 0.967101i \(0.418124\pi\)
\(60\) 4806.00 0.172348
\(61\) −12466.0 −0.428946 −0.214473 0.976730i \(-0.568803\pi\)
−0.214473 + 0.976730i \(0.568803\pi\)
\(62\) 63360.0 2.09332
\(63\) −14256.0 −0.452529
\(64\) 139657. 4.26199
\(65\) −1068.00 −0.0313536
\(66\) −49104.0 −1.38758
\(67\) 43436.0 1.18212 0.591062 0.806626i \(-0.298709\pi\)
0.591062 + 0.806626i \(0.298709\pi\)
\(68\) 17978.0 0.471486
\(69\) 39564.0 1.00041
\(70\) −11616.0 −0.283342
\(71\) 28800.0 0.678026 0.339013 0.940782i \(-0.389907\pi\)
0.339013 + 0.940782i \(0.389907\pi\)
\(72\) 50787.0 1.15457
\(73\) 80746.0 1.77343 0.886715 0.462317i \(-0.152982\pi\)
0.886715 + 0.462317i \(0.152982\pi\)
\(74\) −42966.0 −0.912107
\(75\) −27801.0 −0.570699
\(76\) −32129.0 −0.638063
\(77\) 87296.0 1.67791
\(78\) −17622.0 −0.327958
\(79\) 76456.0 1.37830 0.689150 0.724619i \(-0.257984\pi\)
0.689150 + 0.724619i \(0.257984\pi\)
\(80\) 24294.0 0.424399
\(81\) 6561.00 0.111111
\(82\) 173514. 2.84970
\(83\) −56880.0 −0.906284 −0.453142 0.891438i \(-0.649697\pi\)
−0.453142 + 0.891438i \(0.649697\pi\)
\(84\) −140976. −2.17995
\(85\) 1212.00 0.0181951
\(86\) −82412.0 −1.20156
\(87\) −53118.0 −0.752391
\(88\) −310992. −4.28097
\(89\) −103266. −1.38192 −0.690959 0.722894i \(-0.742812\pi\)
−0.690959 + 0.722894i \(0.742812\pi\)
\(90\) 5346.00 0.0695701
\(91\) 31328.0 0.396579
\(92\) 391244. 4.81924
\(93\) 51840.0 0.621524
\(94\) −81972.0 −0.956854
\(95\) −2166.00 −0.0246235
\(96\) 220275. 2.43942
\(97\) 82490.0 0.890168 0.445084 0.895489i \(-0.353174\pi\)
0.445084 + 0.895489i \(0.353174\pi\)
\(98\) 155859. 1.63933
\(99\) −40176.0 −0.411982
\(100\) −274921. −2.74921
\(101\) 47230.0 0.460696 0.230348 0.973108i \(-0.426014\pi\)
0.230348 + 0.973108i \(0.426014\pi\)
\(102\) 19998.0 0.190321
\(103\) 157456. 1.46240 0.731200 0.682163i \(-0.238961\pi\)
0.731200 + 0.682163i \(0.238961\pi\)
\(104\) −111606. −1.01182
\(105\) −9504.00 −0.0841266
\(106\) −319154. −2.75890
\(107\) −62988.0 −0.531861 −0.265931 0.963992i \(-0.585679\pi\)
−0.265931 + 0.963992i \(0.585679\pi\)
\(108\) 64881.0 0.535252
\(109\) 38158.0 0.307623 0.153812 0.988100i \(-0.450845\pi\)
0.153812 + 0.988100i \(0.450845\pi\)
\(110\) −32736.0 −0.257955
\(111\) −35154.0 −0.270812
\(112\) −712624. −5.36804
\(113\) 9190.00 0.0677048 0.0338524 0.999427i \(-0.489222\pi\)
0.0338524 + 0.999427i \(0.489222\pi\)
\(114\) −35739.0 −0.257561
\(115\) 26376.0 0.185979
\(116\) −525278. −3.62447
\(117\) −14418.0 −0.0973734
\(118\) 149644. 0.989360
\(119\) −35552.0 −0.230142
\(120\) 33858.0 0.214639
\(121\) 84965.0 0.527566
\(122\) −137126. −0.834104
\(123\) 141966. 0.846100
\(124\) 512640. 2.99404
\(125\) −37284.0 −0.213426
\(126\) −156816. −0.879962
\(127\) −70448.0 −0.387578 −0.193789 0.981043i \(-0.562078\pi\)
−0.193789 + 0.981043i \(0.562078\pi\)
\(128\) 753027. 4.06243
\(129\) −67428.0 −0.356752
\(130\) −11748.0 −0.0609685
\(131\) 101864. 0.518612 0.259306 0.965795i \(-0.416506\pi\)
0.259306 + 0.965795i \(0.416506\pi\)
\(132\) −397296. −1.98463
\(133\) 63536.0 0.311452
\(134\) 477796. 2.29869
\(135\) 4374.00 0.0206559
\(136\) 126654. 0.587181
\(137\) −432126. −1.96702 −0.983510 0.180851i \(-0.942115\pi\)
−0.983510 + 0.180851i \(0.942115\pi\)
\(138\) 435204. 1.94534
\(139\) −376684. −1.65364 −0.826818 0.562469i \(-0.809852\pi\)
−0.826818 + 0.562469i \(0.809852\pi\)
\(140\) −93984.0 −0.405260
\(141\) −67068.0 −0.284098
\(142\) 316800. 1.31845
\(143\) 88288.0 0.361045
\(144\) 327969. 1.31803
\(145\) −35412.0 −0.139872
\(146\) 888206. 3.44851
\(147\) 127521. 0.486730
\(148\) −347634. −1.30457
\(149\) −283554. −1.04633 −0.523167 0.852230i \(-0.675249\pi\)
−0.523167 + 0.852230i \(0.675249\pi\)
\(150\) −305811. −1.10975
\(151\) −79200.0 −0.282672 −0.141336 0.989962i \(-0.545140\pi\)
−0.141336 + 0.989962i \(0.545140\pi\)
\(152\) −226347. −0.794631
\(153\) 16362.0 0.0565077
\(154\) 960256. 3.26276
\(155\) 34560.0 0.115543
\(156\) −142578. −0.469074
\(157\) −129858. −0.420455 −0.210228 0.977652i \(-0.567420\pi\)
−0.210228 + 0.977652i \(0.567420\pi\)
\(158\) 841016. 2.68017
\(159\) −261126. −0.819138
\(160\) 146850. 0.453497
\(161\) −773696. −2.35237
\(162\) 72171.0 0.216060
\(163\) 57420.0 0.169276 0.0846378 0.996412i \(-0.473027\pi\)
0.0846378 + 0.996412i \(0.473027\pi\)
\(164\) 1.40389e6 4.07589
\(165\) −26784.0 −0.0765889
\(166\) −625680. −1.76231
\(167\) −254008. −0.704784 −0.352392 0.935852i \(-0.614632\pi\)
−0.352392 + 0.935852i \(0.614632\pi\)
\(168\) −993168. −2.71487
\(169\) −339609. −0.914666
\(170\) 13332.0 0.0353812
\(171\) −29241.0 −0.0764719
\(172\) −666788. −1.71857
\(173\) −177366. −0.450563 −0.225281 0.974294i \(-0.572330\pi\)
−0.225281 + 0.974294i \(0.572330\pi\)
\(174\) −584298. −1.46306
\(175\) 543664. 1.34195
\(176\) −2.00830e6 −4.88706
\(177\) 122436. 0.293749
\(178\) −1.13593e6 −2.68720
\(179\) −25188.0 −0.0587572 −0.0293786 0.999568i \(-0.509353\pi\)
−0.0293786 + 0.999568i \(0.509353\pi\)
\(180\) 43254.0 0.0995050
\(181\) 729382. 1.65485 0.827425 0.561576i \(-0.189805\pi\)
0.827425 + 0.561576i \(0.189805\pi\)
\(182\) 344608. 0.771164
\(183\) −112194. −0.247652
\(184\) 2.75629e6 6.00179
\(185\) −23436.0 −0.0503447
\(186\) 570240. 1.20858
\(187\) −100192. −0.209522
\(188\) −663228. −1.36857
\(189\) −128304. −0.261268
\(190\) −23826.0 −0.0478814
\(191\) −285060. −0.565396 −0.282698 0.959209i \(-0.591229\pi\)
−0.282698 + 0.959209i \(0.591229\pi\)
\(192\) 1.25691e6 2.46066
\(193\) −457598. −0.884282 −0.442141 0.896946i \(-0.645781\pi\)
−0.442141 + 0.896946i \(0.645781\pi\)
\(194\) 907390. 1.73097
\(195\) −9612.00 −0.0181020
\(196\) 1.26104e6 2.34471
\(197\) −291178. −0.534556 −0.267278 0.963620i \(-0.586124\pi\)
−0.267278 + 0.963620i \(0.586124\pi\)
\(198\) −441936. −0.801118
\(199\) 364680. 0.652799 0.326399 0.945232i \(-0.394165\pi\)
0.326399 + 0.945232i \(0.394165\pi\)
\(200\) −1.93680e6 −3.42382
\(201\) 390924. 0.682499
\(202\) 519530. 0.895844
\(203\) 1.03875e6 1.76918
\(204\) 161802. 0.272213
\(205\) 94644.0 0.157293
\(206\) 1.73202e6 2.84370
\(207\) 356076. 0.577586
\(208\) −720722. −1.15507
\(209\) 179056. 0.283546
\(210\) −104544. −0.163588
\(211\) −452388. −0.699528 −0.349764 0.936838i \(-0.613738\pi\)
−0.349764 + 0.936838i \(0.613738\pi\)
\(212\) −2.58225e6 −3.94601
\(213\) 259200. 0.391459
\(214\) −692868. −1.03423
\(215\) −44952.0 −0.0663213
\(216\) 457083. 0.666593
\(217\) −1.01376e6 −1.46146
\(218\) 419738. 0.598187
\(219\) 726714. 1.02389
\(220\) −264864. −0.368949
\(221\) −35956.0 −0.0495211
\(222\) −386694. −0.526605
\(223\) 940296. 1.26620 0.633100 0.774070i \(-0.281782\pi\)
0.633100 + 0.774070i \(0.281782\pi\)
\(224\) −4.30760e6 −5.73608
\(225\) −250209. −0.329493
\(226\) 101090. 0.131655
\(227\) 796308. 1.02569 0.512845 0.858481i \(-0.328591\pi\)
0.512845 + 0.858481i \(0.328591\pi\)
\(228\) −289161. −0.368386
\(229\) 153334. 0.193219 0.0966095 0.995322i \(-0.469200\pi\)
0.0966095 + 0.995322i \(0.469200\pi\)
\(230\) 290136. 0.361645
\(231\) 785664. 0.968739
\(232\) −3.70055e6 −4.51385
\(233\) 246858. 0.297891 0.148946 0.988845i \(-0.452412\pi\)
0.148946 + 0.988845i \(0.452412\pi\)
\(234\) −158598. −0.189347
\(235\) −44712.0 −0.0528147
\(236\) 1.21076e6 1.41507
\(237\) 688104. 0.795762
\(238\) −391072. −0.447522
\(239\) 105516. 0.119488 0.0597439 0.998214i \(-0.480972\pi\)
0.0597439 + 0.998214i \(0.480972\pi\)
\(240\) 218646. 0.245027
\(241\) 41738.0 0.0462902 0.0231451 0.999732i \(-0.492632\pi\)
0.0231451 + 0.999732i \(0.492632\pi\)
\(242\) 934615. 1.02587
\(243\) 59049.0 0.0641500
\(244\) −1.10947e6 −1.19301
\(245\) 85014.0 0.0904847
\(246\) 1.56163e6 1.64528
\(247\) 64258.0 0.0670170
\(248\) 3.61152e6 3.72873
\(249\) −511920. −0.523243
\(250\) −410124. −0.415016
\(251\) −362392. −0.363073 −0.181537 0.983384i \(-0.558107\pi\)
−0.181537 + 0.983384i \(0.558107\pi\)
\(252\) −1.26878e6 −1.25860
\(253\) −2.18042e6 −2.14160
\(254\) −774928. −0.753663
\(255\) 10908.0 0.0105050
\(256\) 3.81427e6 3.63757
\(257\) −1.16120e6 −1.09667 −0.548334 0.836260i \(-0.684738\pi\)
−0.548334 + 0.836260i \(0.684738\pi\)
\(258\) −741708. −0.693719
\(259\) 687456. 0.636789
\(260\) −95052.0 −0.0872023
\(261\) −478062. −0.434393
\(262\) 1.12050e6 1.00846
\(263\) 1.35860e6 1.21116 0.605579 0.795785i \(-0.292941\pi\)
0.605579 + 0.795785i \(0.292941\pi\)
\(264\) −2.79893e6 −2.47162
\(265\) −174084. −0.152280
\(266\) 698896. 0.605632
\(267\) −929394. −0.797851
\(268\) 3.86580e6 3.28778
\(269\) 2.19871e6 1.85263 0.926314 0.376753i \(-0.122960\pi\)
0.926314 + 0.376753i \(0.122960\pi\)
\(270\) 48114.0 0.0401663
\(271\) −512016. −0.423507 −0.211753 0.977323i \(-0.567917\pi\)
−0.211753 + 0.977323i \(0.567917\pi\)
\(272\) 817898. 0.670312
\(273\) 281952. 0.228965
\(274\) −4.75339e6 −3.82496
\(275\) 1.53214e6 1.22171
\(276\) 3.52120e6 2.78239
\(277\) 857542. 0.671515 0.335758 0.941948i \(-0.391008\pi\)
0.335758 + 0.941948i \(0.391008\pi\)
\(278\) −4.14352e6 −3.21557
\(279\) 466560. 0.358837
\(280\) −662112. −0.504704
\(281\) −375370. −0.283592 −0.141796 0.989896i \(-0.545288\pi\)
−0.141796 + 0.989896i \(0.545288\pi\)
\(282\) −737748. −0.552440
\(283\) 2204.00 0.00163586 0.000817929 1.00000i \(-0.499740\pi\)
0.000817929 1.00000i \(0.499740\pi\)
\(284\) 2.56320e6 1.88576
\(285\) −19494.0 −0.0142164
\(286\) 971168. 0.702068
\(287\) −2.77622e6 −1.98953
\(288\) 1.98248e6 1.40840
\(289\) −1.37905e6 −0.971262
\(290\) −389532. −0.271987
\(291\) 742410. 0.513939
\(292\) 7.18639e6 4.93235
\(293\) −605198. −0.411840 −0.205920 0.978569i \(-0.566019\pi\)
−0.205920 + 0.978569i \(0.566019\pi\)
\(294\) 1.40273e6 0.946468
\(295\) 81624.0 0.0546088
\(296\) −2.44906e6 −1.62469
\(297\) −361584. −0.237858
\(298\) −3.11909e6 −2.03464
\(299\) −782488. −0.506174
\(300\) −2.47429e6 −1.58726
\(301\) 1.31859e6 0.838869
\(302\) −871200. −0.549668
\(303\) 425070. 0.265983
\(304\) −1.46169e6 −0.907133
\(305\) −74796.0 −0.0460393
\(306\) 179982. 0.109882
\(307\) −1.25593e6 −0.760537 −0.380268 0.924876i \(-0.624168\pi\)
−0.380268 + 0.924876i \(0.624168\pi\)
\(308\) 7.76934e6 4.66668
\(309\) 1.41710e6 0.844317
\(310\) 380160. 0.224679
\(311\) −824580. −0.483428 −0.241714 0.970348i \(-0.577710\pi\)
−0.241714 + 0.970348i \(0.577710\pi\)
\(312\) −1.00445e6 −0.584176
\(313\) −1.23455e6 −0.712275 −0.356138 0.934434i \(-0.615907\pi\)
−0.356138 + 0.934434i \(0.615907\pi\)
\(314\) −1.42844e6 −0.817593
\(315\) −85536.0 −0.0485705
\(316\) 6.80458e6 3.83340
\(317\) −1.19428e6 −0.667509 −0.333755 0.942660i \(-0.608316\pi\)
−0.333755 + 0.942660i \(0.608316\pi\)
\(318\) −2.87239e6 −1.59285
\(319\) 2.92739e6 1.61066
\(320\) 837942. 0.457445
\(321\) −566892. −0.307070
\(322\) −8.51066e6 −4.57429
\(323\) −72922.0 −0.0388913
\(324\) 583929. 0.309028
\(325\) 549842. 0.288755
\(326\) 631620. 0.329164
\(327\) 343422. 0.177606
\(328\) 9.89030e6 5.07604
\(329\) 1.31155e6 0.668030
\(330\) −294624. −0.148930
\(331\) 1.99113e6 0.998919 0.499459 0.866337i \(-0.333532\pi\)
0.499459 + 0.866337i \(0.333532\pi\)
\(332\) −5.06232e6 −2.52060
\(333\) −316386. −0.156353
\(334\) −2.79409e6 −1.37048
\(335\) 260616. 0.126879
\(336\) −6.41362e6 −3.09924
\(337\) 6442.00 0.00308991 0.00154496 0.999999i \(-0.499508\pi\)
0.00154496 + 0.999999i \(0.499508\pi\)
\(338\) −3.73570e6 −1.77861
\(339\) 82710.0 0.0390894
\(340\) 107868. 0.0506052
\(341\) −2.85696e6 −1.33051
\(342\) −321651. −0.148703
\(343\) 464288. 0.213085
\(344\) −4.69748e6 −2.14027
\(345\) 237384. 0.107375
\(346\) −1.95103e6 −0.876139
\(347\) −1.66693e6 −0.743179 −0.371589 0.928397i \(-0.621187\pi\)
−0.371589 + 0.928397i \(0.621187\pi\)
\(348\) −4.72750e6 −2.09259
\(349\) −3.89805e6 −1.71310 −0.856552 0.516060i \(-0.827398\pi\)
−0.856552 + 0.516060i \(0.827398\pi\)
\(350\) 5.98030e6 2.60948
\(351\) −129762. −0.0562186
\(352\) −1.21396e7 −5.22213
\(353\) 407306. 0.173974 0.0869869 0.996209i \(-0.472276\pi\)
0.0869869 + 0.996209i \(0.472276\pi\)
\(354\) 1.34680e6 0.571207
\(355\) 172800. 0.0727734
\(356\) −9.19067e6 −3.84346
\(357\) −319968. −0.132873
\(358\) −277068. −0.114256
\(359\) 2.59413e6 1.06232 0.531161 0.847271i \(-0.321756\pi\)
0.531161 + 0.847271i \(0.321756\pi\)
\(360\) 304722. 0.123922
\(361\) 130321. 0.0526316
\(362\) 8.02320e6 3.21793
\(363\) 764685. 0.304590
\(364\) 2.78819e6 1.10298
\(365\) 484476. 0.190344
\(366\) −1.23413e6 −0.481570
\(367\) −761840. −0.295256 −0.147628 0.989043i \(-0.547164\pi\)
−0.147628 + 0.989043i \(0.547164\pi\)
\(368\) 1.77994e7 6.85150
\(369\) 1.27769e6 0.488496
\(370\) −257796. −0.0978976
\(371\) 5.10646e6 1.92613
\(372\) 4.61376e6 1.72861
\(373\) −837506. −0.311685 −0.155842 0.987782i \(-0.549809\pi\)
−0.155842 + 0.987782i \(0.549809\pi\)
\(374\) −1.10211e6 −0.407424
\(375\) −335556. −0.123222
\(376\) −4.67240e6 −1.70440
\(377\) 1.05056e6 0.380685
\(378\) −1.41134e6 −0.508046
\(379\) −623876. −0.223100 −0.111550 0.993759i \(-0.535582\pi\)
−0.111550 + 0.993759i \(0.535582\pi\)
\(380\) −192774. −0.0684841
\(381\) −634032. −0.223768
\(382\) −3.13566e6 −1.09944
\(383\) 97672.0 0.0340230 0.0170115 0.999855i \(-0.494585\pi\)
0.0170115 + 0.999855i \(0.494585\pi\)
\(384\) 6.77724e6 2.34544
\(385\) 523776. 0.180092
\(386\) −5.03358e6 −1.71953
\(387\) −606852. −0.205971
\(388\) 7.34161e6 2.47578
\(389\) −2.23487e6 −0.748823 −0.374411 0.927263i \(-0.622155\pi\)
−0.374411 + 0.927263i \(0.622155\pi\)
\(390\) −105732. −0.0352002
\(391\) 887992. 0.293743
\(392\) 8.88396e6 2.92006
\(393\) 916776. 0.299421
\(394\) −3.20296e6 −1.03947
\(395\) 458736. 0.147935
\(396\) −3.57566e6 −1.14583
\(397\) 4.93416e6 1.57122 0.785610 0.618723i \(-0.212349\pi\)
0.785610 + 0.618723i \(0.212349\pi\)
\(398\) 4.01148e6 1.26940
\(399\) 571824. 0.179817
\(400\) −1.25074e7 −3.90855
\(401\) −3.73411e6 −1.15965 −0.579823 0.814742i \(-0.696878\pi\)
−0.579823 + 0.814742i \(0.696878\pi\)
\(402\) 4.30016e6 1.32715
\(403\) −1.02528e6 −0.314470
\(404\) 4.20347e6 1.28131
\(405\) 39366.0 0.0119257
\(406\) 1.14263e7 3.44025
\(407\) 1.93738e6 0.579733
\(408\) 1.13989e6 0.339009
\(409\) −2.46083e6 −0.727400 −0.363700 0.931516i \(-0.618487\pi\)
−0.363700 + 0.931516i \(0.618487\pi\)
\(410\) 1.04108e6 0.305862
\(411\) −3.88913e6 −1.13566
\(412\) 1.40136e7 4.06730
\(413\) −2.39430e6 −0.690723
\(414\) 3.91684e6 1.12314
\(415\) −341280. −0.0972726
\(416\) −4.35655e6 −1.23427
\(417\) −3.39016e6 −0.954728
\(418\) 1.96962e6 0.551367
\(419\) −437512. −0.121746 −0.0608730 0.998146i \(-0.519388\pi\)
−0.0608730 + 0.998146i \(0.519388\pi\)
\(420\) −845856. −0.233977
\(421\) 2.91013e6 0.800217 0.400108 0.916468i \(-0.368972\pi\)
0.400108 + 0.916468i \(0.368972\pi\)
\(422\) −4.97627e6 −1.36026
\(423\) −603612. −0.164024
\(424\) −1.81918e7 −4.91429
\(425\) −623978. −0.167570
\(426\) 2.85120e6 0.761209
\(427\) 2.19402e6 0.582331
\(428\) −5.60593e6 −1.47924
\(429\) 794592. 0.208450
\(430\) −494472. −0.128965
\(431\) −4.64881e6 −1.20545 −0.602724 0.797950i \(-0.705918\pi\)
−0.602724 + 0.797950i \(0.705918\pi\)
\(432\) 2.95172e6 0.760967
\(433\) 6.90871e6 1.77083 0.885415 0.464801i \(-0.153874\pi\)
0.885415 + 0.464801i \(0.153874\pi\)
\(434\) −1.11514e7 −2.84187
\(435\) −318708. −0.0807551
\(436\) 3.39606e6 0.855578
\(437\) −1.58696e6 −0.397522
\(438\) 7.99385e6 1.99100
\(439\) 6.25621e6 1.54935 0.774676 0.632359i \(-0.217913\pi\)
0.774676 + 0.632359i \(0.217913\pi\)
\(440\) −1.86595e6 −0.459482
\(441\) 1.14769e6 0.281014
\(442\) −395516. −0.0962960
\(443\) 2.14088e6 0.518302 0.259151 0.965837i \(-0.416557\pi\)
0.259151 + 0.965837i \(0.416557\pi\)
\(444\) −3.12871e6 −0.753195
\(445\) −619596. −0.148323
\(446\) 1.03433e7 2.46218
\(447\) −2.55199e6 −0.604101
\(448\) −2.45796e7 −5.78603
\(449\) 4.92089e6 1.15194 0.575968 0.817472i \(-0.304625\pi\)
0.575968 + 0.817472i \(0.304625\pi\)
\(450\) −2.75230e6 −0.640714
\(451\) −7.82390e6 −1.81127
\(452\) 817910. 0.188304
\(453\) −712800. −0.163201
\(454\) 8.75939e6 1.99450
\(455\) 187968. 0.0425653
\(456\) −2.03712e6 −0.458781
\(457\) 3.94009e6 0.882502 0.441251 0.897384i \(-0.354535\pi\)
0.441251 + 0.897384i \(0.354535\pi\)
\(458\) 1.68667e6 0.375723
\(459\) 147258. 0.0326247
\(460\) 2.34746e6 0.517255
\(461\) −2.25945e6 −0.495166 −0.247583 0.968867i \(-0.579636\pi\)
−0.247583 + 0.968867i \(0.579636\pi\)
\(462\) 8.64230e6 1.88376
\(463\) −3.31806e6 −0.719337 −0.359668 0.933080i \(-0.617110\pi\)
−0.359668 + 0.933080i \(0.617110\pi\)
\(464\) −2.38972e7 −5.15290
\(465\) 311040. 0.0667089
\(466\) 2.71544e6 0.579262
\(467\) 3.63171e6 0.770583 0.385291 0.922795i \(-0.374101\pi\)
0.385291 + 0.922795i \(0.374101\pi\)
\(468\) −1.28320e6 −0.270820
\(469\) −7.64474e6 −1.60483
\(470\) −491832. −0.102700
\(471\) −1.16872e6 −0.242750
\(472\) 8.52971e6 1.76230
\(473\) 3.71603e6 0.763707
\(474\) 7.56914e6 1.54739
\(475\) 1.11513e6 0.226773
\(476\) −3.16413e6 −0.640084
\(477\) −2.35013e6 −0.472930
\(478\) 1.16068e6 0.232349
\(479\) −1.45764e6 −0.290275 −0.145138 0.989411i \(-0.546363\pi\)
−0.145138 + 0.989411i \(0.546363\pi\)
\(480\) 1.32165e6 0.261826
\(481\) 695268. 0.137022
\(482\) 459118. 0.0900133
\(483\) −6.96326e6 −1.35814
\(484\) 7.56188e6 1.46729
\(485\) 494940. 0.0955429
\(486\) 649539. 0.124743
\(487\) 6.73825e6 1.28743 0.643716 0.765264i \(-0.277392\pi\)
0.643716 + 0.765264i \(0.277392\pi\)
\(488\) −7.81618e6 −1.48575
\(489\) 516780. 0.0977313
\(490\) 935154. 0.175951
\(491\) 3.47875e6 0.651208 0.325604 0.945506i \(-0.394432\pi\)
0.325604 + 0.945506i \(0.394432\pi\)
\(492\) 1.26350e7 2.35321
\(493\) −1.19220e6 −0.220919
\(494\) 706838. 0.130317
\(495\) −241056. −0.0442186
\(496\) 2.33222e7 4.25663
\(497\) −5.06880e6 −0.920480
\(498\) −5.63112e6 −1.01747
\(499\) −9.39514e6 −1.68909 −0.844543 0.535487i \(-0.820128\pi\)
−0.844543 + 0.535487i \(0.820128\pi\)
\(500\) −3.31828e6 −0.593591
\(501\) −2.28607e6 −0.406907
\(502\) −3.98631e6 −0.706012
\(503\) 9.43514e6 1.66276 0.831378 0.555708i \(-0.187553\pi\)
0.831378 + 0.555708i \(0.187553\pi\)
\(504\) −8.93851e6 −1.56743
\(505\) 283380. 0.0494471
\(506\) −2.39846e7 −4.16443
\(507\) −3.05648e6 −0.528083
\(508\) −6.26987e6 −1.07795
\(509\) 6.92644e6 1.18499 0.592496 0.805573i \(-0.298142\pi\)
0.592496 + 0.805573i \(0.298142\pi\)
\(510\) 119988. 0.0204274
\(511\) −1.42113e7 −2.40758
\(512\) 1.78601e7 3.01099
\(513\) −263169. −0.0441511
\(514\) −1.27732e7 −2.13252
\(515\) 944736. 0.156961
\(516\) −6.00109e6 −0.992216
\(517\) 3.69619e6 0.608174
\(518\) 7.56202e6 1.23826
\(519\) −1.59629e6 −0.260132
\(520\) −669636. −0.108600
\(521\) −6.53061e6 −1.05405 −0.527023 0.849851i \(-0.676692\pi\)
−0.527023 + 0.849851i \(0.676692\pi\)
\(522\) −5.25868e6 −0.844696
\(523\) −1.80276e6 −0.288194 −0.144097 0.989564i \(-0.546028\pi\)
−0.144097 + 0.989564i \(0.546028\pi\)
\(524\) 9.06590e6 1.44239
\(525\) 4.89298e6 0.774774
\(526\) 1.49446e7 2.35515
\(527\) 1.16352e6 0.182493
\(528\) −1.80747e7 −2.82155
\(529\) 1.28885e7 2.00245
\(530\) −1.91492e6 −0.296116
\(531\) 1.10192e6 0.169596
\(532\) 5.65470e6 0.866225
\(533\) −2.80777e6 −0.428099
\(534\) −1.02233e7 −1.55146
\(535\) −377928. −0.0570853
\(536\) 2.72344e7 4.09454
\(537\) −226692. −0.0339235
\(538\) 2.41859e7 3.60251
\(539\) −7.02782e6 −1.04196
\(540\) 389286. 0.0574493
\(541\) 1.03740e7 1.52389 0.761946 0.647640i \(-0.224244\pi\)
0.761946 + 0.647640i \(0.224244\pi\)
\(542\) −5.63218e6 −0.823527
\(543\) 6.56444e6 0.955428
\(544\) 4.94395e6 0.716270
\(545\) 228948. 0.0330176
\(546\) 3.10147e6 0.445232
\(547\) −8.14488e6 −1.16390 −0.581951 0.813224i \(-0.697710\pi\)
−0.581951 + 0.813224i \(0.697710\pi\)
\(548\) −3.84592e7 −5.47078
\(549\) −1.00975e6 −0.142982
\(550\) 1.68536e7 2.37567
\(551\) 2.13062e6 0.298970
\(552\) 2.48066e7 3.46513
\(553\) −1.34563e7 −1.87116
\(554\) 9.43296e6 1.30579
\(555\) −210924. −0.0290666
\(556\) −3.35249e7 −4.59918
\(557\) −5.47163e6 −0.747271 −0.373636 0.927576i \(-0.621889\pi\)
−0.373636 + 0.927576i \(0.621889\pi\)
\(558\) 5.13216e6 0.697774
\(559\) 1.33358e6 0.180505
\(560\) −4.27574e6 −0.576158
\(561\) −901728. −0.120967
\(562\) −4.12907e6 −0.551457
\(563\) 6.41428e6 0.852858 0.426429 0.904521i \(-0.359771\pi\)
0.426429 + 0.904521i \(0.359771\pi\)
\(564\) −5.96905e6 −0.790146
\(565\) 55140.0 0.00726684
\(566\) 24244.0 0.00318100
\(567\) −1.15474e6 −0.150843
\(568\) 1.80576e7 2.34849
\(569\) −1.25705e7 −1.62769 −0.813847 0.581080i \(-0.802631\pi\)
−0.813847 + 0.581080i \(0.802631\pi\)
\(570\) −214434. −0.0276444
\(571\) −7.51477e6 −0.964552 −0.482276 0.876019i \(-0.660190\pi\)
−0.482276 + 0.876019i \(0.660190\pi\)
\(572\) 7.85763e6 1.00416
\(573\) −2.56554e6 −0.326432
\(574\) −3.05385e7 −3.86872
\(575\) −1.35792e7 −1.71280
\(576\) 1.13122e7 1.42066
\(577\) 1.96226e6 0.245367 0.122684 0.992446i \(-0.460850\pi\)
0.122684 + 0.992446i \(0.460850\pi\)
\(578\) −1.51696e7 −1.88866
\(579\) −4.11838e6 −0.510541
\(580\) −3.15167e6 −0.389019
\(581\) 1.00109e7 1.23036
\(582\) 8.16651e6 0.999376
\(583\) 1.43909e7 1.75355
\(584\) 5.06277e7 6.14266
\(585\) −86508.0 −0.0104512
\(586\) −6.65718e6 −0.800841
\(587\) 7.03206e6 0.842339 0.421170 0.906982i \(-0.361620\pi\)
0.421170 + 0.906982i \(0.361620\pi\)
\(588\) 1.13494e7 1.35372
\(589\) −2.07936e6 −0.246968
\(590\) 897864. 0.106189
\(591\) −2.62060e6 −0.308626
\(592\) −1.58154e7 −1.85471
\(593\) −4.68493e6 −0.547099 −0.273550 0.961858i \(-0.588198\pi\)
−0.273550 + 0.961858i \(0.588198\pi\)
\(594\) −3.97742e6 −0.462526
\(595\) −213312. −0.0247015
\(596\) −2.52363e7 −2.91011
\(597\) 3.28212e6 0.376893
\(598\) −8.60737e6 −0.984277
\(599\) 5.00460e6 0.569905 0.284952 0.958542i \(-0.408022\pi\)
0.284952 + 0.958542i \(0.408022\pi\)
\(600\) −1.74312e7 −1.97674
\(601\) −1.20527e7 −1.36112 −0.680561 0.732692i \(-0.738264\pi\)
−0.680561 + 0.732692i \(0.738264\pi\)
\(602\) 1.45045e7 1.63122
\(603\) 3.51832e6 0.394041
\(604\) −7.04880e6 −0.786182
\(605\) 509790. 0.0566243
\(606\) 4.67577e6 0.517216
\(607\) −9.62474e6 −1.06027 −0.530136 0.847913i \(-0.677859\pi\)
−0.530136 + 0.847913i \(0.677859\pi\)
\(608\) −8.83548e6 −0.969328
\(609\) 9.34877e6 1.02144
\(610\) −822756. −0.0895254
\(611\) 1.32646e6 0.143744
\(612\) 1.45622e6 0.157162
\(613\) 2.45060e6 0.263403 0.131702 0.991289i \(-0.457956\pi\)
0.131702 + 0.991289i \(0.457956\pi\)
\(614\) −1.38153e7 −1.47890
\(615\) 851796. 0.0908130
\(616\) 5.47346e7 5.81179
\(617\) 4.17808e6 0.441839 0.220920 0.975292i \(-0.429094\pi\)
0.220920 + 0.975292i \(0.429094\pi\)
\(618\) 1.55881e7 1.64181
\(619\) 1.80615e7 1.89465 0.947323 0.320279i \(-0.103777\pi\)
0.947323 + 0.320279i \(0.103777\pi\)
\(620\) 3.07584e6 0.321355
\(621\) 3.20468e6 0.333470
\(622\) −9.07038e6 −0.940047
\(623\) 1.81748e7 1.87607
\(624\) −6.48650e6 −0.666882
\(625\) 9.42942e6 0.965573
\(626\) −1.35800e7 −1.38505
\(627\) 1.61150e6 0.163705
\(628\) −1.15574e7 −1.16939
\(629\) −789012. −0.0795165
\(630\) −940896. −0.0944475
\(631\) 1.35029e7 1.35006 0.675030 0.737790i \(-0.264131\pi\)
0.675030 + 0.737790i \(0.264131\pi\)
\(632\) 4.79379e7 4.77404
\(633\) −4.07149e6 −0.403873
\(634\) −1.31371e7 −1.29800
\(635\) −422688. −0.0415993
\(636\) −2.32402e7 −2.27823
\(637\) −2.52208e6 −0.246269
\(638\) 3.22013e7 3.13200
\(639\) 2.33280e6 0.226009
\(640\) 4.51816e6 0.436025
\(641\) −8.29497e6 −0.797388 −0.398694 0.917084i \(-0.630536\pi\)
−0.398694 + 0.917084i \(0.630536\pi\)
\(642\) −6.23581e6 −0.597112
\(643\) −7.22854e6 −0.689482 −0.344741 0.938698i \(-0.612033\pi\)
−0.344741 + 0.938698i \(0.612033\pi\)
\(644\) −6.88589e7 −6.54253
\(645\) −404568. −0.0382906
\(646\) −802142. −0.0756258
\(647\) 6.59915e6 0.619765 0.309883 0.950775i \(-0.399710\pi\)
0.309883 + 0.950775i \(0.399710\pi\)
\(648\) 4.11375e6 0.384858
\(649\) −6.74758e6 −0.628835
\(650\) 6.04826e6 0.561497
\(651\) −9.12384e6 −0.843772
\(652\) 5.11038e6 0.470798
\(653\) 1.68576e7 1.54708 0.773540 0.633747i \(-0.218484\pi\)
0.773540 + 0.633747i \(0.218484\pi\)
\(654\) 3.77764e6 0.345363
\(655\) 611184. 0.0556633
\(656\) 6.38689e7 5.79469
\(657\) 6.54043e6 0.591143
\(658\) 1.44271e7 1.29901
\(659\) −2.13425e6 −0.191440 −0.0957199 0.995408i \(-0.530515\pi\)
−0.0957199 + 0.995408i \(0.530515\pi\)
\(660\) −2.38378e6 −0.213013
\(661\) 1.65547e7 1.47373 0.736865 0.676040i \(-0.236305\pi\)
0.736865 + 0.676040i \(0.236305\pi\)
\(662\) 2.19025e7 1.94244
\(663\) −323604. −0.0285910
\(664\) −3.56638e7 −3.13911
\(665\) 381216. 0.0334285
\(666\) −3.48025e6 −0.304036
\(667\) −2.59452e7 −2.25810
\(668\) −2.26067e7 −1.96018
\(669\) 8.46266e6 0.731041
\(670\) 2.86678e6 0.246721
\(671\) 6.18314e6 0.530155
\(672\) −3.87684e7 −3.31173
\(673\) −704670. −0.0599719 −0.0299860 0.999550i \(-0.509546\pi\)
−0.0299860 + 0.999550i \(0.509546\pi\)
\(674\) 70862.0 0.00600847
\(675\) −2.25188e6 −0.190233
\(676\) −3.02252e7 −2.54391
\(677\) 6.83619e6 0.573248 0.286624 0.958043i \(-0.407467\pi\)
0.286624 + 0.958043i \(0.407467\pi\)
\(678\) 909810. 0.0760110
\(679\) −1.45182e7 −1.20848
\(680\) 759924. 0.0630228
\(681\) 7.16677e6 0.592183
\(682\) −3.14266e7 −2.58724
\(683\) 1.24211e7 1.01884 0.509422 0.860517i \(-0.329859\pi\)
0.509422 + 0.860517i \(0.329859\pi\)
\(684\) −2.60245e6 −0.212688
\(685\) −2.59276e6 −0.211123
\(686\) 5.10717e6 0.414352
\(687\) 1.38001e6 0.111555
\(688\) −3.03351e7 −2.44329
\(689\) 5.16449e6 0.414457
\(690\) 2.61122e6 0.208796
\(691\) −8.00772e6 −0.637990 −0.318995 0.947756i \(-0.603345\pi\)
−0.318995 + 0.947756i \(0.603345\pi\)
\(692\) −1.57856e7 −1.25313
\(693\) 7.07098e6 0.559302
\(694\) −1.83362e7 −1.44514
\(695\) −2.26010e6 −0.177487
\(696\) −3.33050e7 −2.60607
\(697\) 3.18635e6 0.248434
\(698\) −4.28786e7 −3.33121
\(699\) 2.22172e6 0.171987
\(700\) 4.83861e7 3.73229
\(701\) −1.18657e7 −0.912005 −0.456003 0.889978i \(-0.650719\pi\)
−0.456003 + 0.889978i \(0.650719\pi\)
\(702\) −1.42738e6 −0.109319
\(703\) 1.41007e6 0.107610
\(704\) −6.92699e7 −5.26760
\(705\) −402408. −0.0304926
\(706\) 4.48037e6 0.338300
\(707\) −8.31248e6 −0.625435
\(708\) 1.08968e7 0.816989
\(709\) 8.30329e6 0.620347 0.310173 0.950680i \(-0.399613\pi\)
0.310173 + 0.950680i \(0.399613\pi\)
\(710\) 1.90080e6 0.141511
\(711\) 6.19294e6 0.459433
\(712\) −6.47478e7 −4.78658
\(713\) 2.53210e7 1.86533
\(714\) −3.51965e6 −0.258377
\(715\) 529728. 0.0387514
\(716\) −2.24173e6 −0.163418
\(717\) 949644. 0.0689863
\(718\) 2.85355e7 2.06573
\(719\) −1.18495e7 −0.854828 −0.427414 0.904056i \(-0.640575\pi\)
−0.427414 + 0.904056i \(0.640575\pi\)
\(720\) 1.96781e6 0.141466
\(721\) −2.77123e7 −1.98533
\(722\) 1.43353e6 0.102344
\(723\) 375642. 0.0267257
\(724\) 6.49150e7 4.60255
\(725\) 1.82313e7 1.28817
\(726\) 8.41154e6 0.592289
\(727\) 4.81482e6 0.337866 0.168933 0.985628i \(-0.445968\pi\)
0.168933 + 0.985628i \(0.445968\pi\)
\(728\) 1.96427e7 1.37364
\(729\) 531441. 0.0370370
\(730\) 5.32924e6 0.370133
\(731\) −1.51338e6 −0.104750
\(732\) −9.98527e6 −0.688782
\(733\) 1.10193e6 0.0757523 0.0378761 0.999282i \(-0.487941\pi\)
0.0378761 + 0.999282i \(0.487941\pi\)
\(734\) −8.38024e6 −0.574138
\(735\) 765126. 0.0522414
\(736\) 1.07592e8 7.32126
\(737\) −2.15443e7 −1.46104
\(738\) 1.40546e7 0.949902
\(739\) 2.45211e7 1.65169 0.825845 0.563898i \(-0.190699\pi\)
0.825845 + 0.563898i \(0.190699\pi\)
\(740\) −2.08580e6 −0.140021
\(741\) 578322. 0.0386923
\(742\) 5.61711e7 3.74544
\(743\) −8.14072e6 −0.540992 −0.270496 0.962721i \(-0.587188\pi\)
−0.270496 + 0.962721i \(0.587188\pi\)
\(744\) 3.25037e7 2.15278
\(745\) −1.70132e6 −0.112304
\(746\) −9.21257e6 −0.606085
\(747\) −4.60728e6 −0.302095
\(748\) −8.91709e6 −0.582732
\(749\) 1.10859e7 0.722048
\(750\) −3.69112e6 −0.239610
\(751\) 1.07734e6 0.0697030 0.0348515 0.999393i \(-0.488904\pi\)
0.0348515 + 0.999393i \(0.488904\pi\)
\(752\) −3.01731e7 −1.94570
\(753\) −3.26153e6 −0.209620
\(754\) 1.15561e7 0.740259
\(755\) −475200. −0.0303395
\(756\) −1.14191e7 −0.726651
\(757\) 1.90412e7 1.20769 0.603843 0.797103i \(-0.293635\pi\)
0.603843 + 0.797103i \(0.293635\pi\)
\(758\) −6.86264e6 −0.433828
\(759\) −1.96237e7 −1.23645
\(760\) −1.35808e6 −0.0852888
\(761\) 2.74948e7 1.72103 0.860515 0.509426i \(-0.170142\pi\)
0.860515 + 0.509426i \(0.170142\pi\)
\(762\) −6.97435e6 −0.435127
\(763\) −6.71581e6 −0.417625
\(764\) −2.53703e7 −1.57251
\(765\) 98172.0 0.00606505
\(766\) 1.07439e6 0.0661593
\(767\) −2.42151e6 −0.148627
\(768\) 3.43285e7 2.10015
\(769\) 2.51266e7 1.53221 0.766105 0.642716i \(-0.222192\pi\)
0.766105 + 0.642716i \(0.222192\pi\)
\(770\) 5.76154e6 0.350196
\(771\) −1.04508e7 −0.633161
\(772\) −4.07262e7 −2.45941
\(773\) −1.50927e7 −0.908483 −0.454242 0.890879i \(-0.650090\pi\)
−0.454242 + 0.890879i \(0.650090\pi\)
\(774\) −6.67537e6 −0.400519
\(775\) −1.77926e7 −1.06411
\(776\) 5.17212e7 3.08329
\(777\) 6.18710e6 0.367650
\(778\) −2.45836e7 −1.45612
\(779\) −5.69441e6 −0.336206
\(780\) −855468. −0.0503463
\(781\) −1.42848e7 −0.838005
\(782\) 9.76791e6 0.571196
\(783\) −4.30256e6 −0.250797
\(784\) 5.73703e7 3.33347
\(785\) −779148. −0.0451280
\(786\) 1.00845e7 0.582237
\(787\) −2.71612e7 −1.56319 −0.781596 0.623785i \(-0.785594\pi\)
−0.781596 + 0.623785i \(0.785594\pi\)
\(788\) −2.59148e7 −1.48673
\(789\) 1.22274e7 0.699263
\(790\) 5.04610e6 0.287666
\(791\) −1.61744e6 −0.0919151
\(792\) −2.51904e7 −1.42699
\(793\) 2.21895e6 0.125304
\(794\) 5.42757e7 3.05530
\(795\) −1.56676e6 −0.0879192
\(796\) 3.24565e7 1.81560
\(797\) −2.12149e7 −1.18303 −0.591515 0.806294i \(-0.701470\pi\)
−0.591515 + 0.806294i \(0.701470\pi\)
\(798\) 6.29006e6 0.349662
\(799\) −1.50530e6 −0.0834175
\(800\) −7.56033e7 −4.17653
\(801\) −8.36455e6 −0.460639
\(802\) −4.10752e7 −2.25498
\(803\) −4.00500e7 −2.19187
\(804\) 3.47922e7 1.89820
\(805\) −4.64218e6 −0.252483
\(806\) −1.12781e7 −0.611502
\(807\) 1.97884e7 1.06961
\(808\) 2.96132e7 1.59572
\(809\) −6.93973e6 −0.372796 −0.186398 0.982474i \(-0.559681\pi\)
−0.186398 + 0.982474i \(0.559681\pi\)
\(810\) 433026. 0.0231900
\(811\) 2.52867e6 0.135002 0.0675009 0.997719i \(-0.478497\pi\)
0.0675009 + 0.997719i \(0.478497\pi\)
\(812\) 9.24489e7 4.92053
\(813\) −4.60814e6 −0.244512
\(814\) 2.13111e7 1.12732
\(815\) 344520. 0.0181686
\(816\) 7.36108e6 0.387005
\(817\) 2.70461e6 0.141759
\(818\) −2.70691e7 −1.41446
\(819\) 2.53757e6 0.132193
\(820\) 8.42332e6 0.437470
\(821\) −2.31034e7 −1.19624 −0.598120 0.801406i \(-0.704085\pi\)
−0.598120 + 0.801406i \(0.704085\pi\)
\(822\) −4.27805e7 −2.20834
\(823\) 103360. 0.00531928 0.00265964 0.999996i \(-0.499153\pi\)
0.00265964 + 0.999996i \(0.499153\pi\)
\(824\) 9.87249e7 5.06534
\(825\) 1.37893e7 0.705354
\(826\) −2.63373e7 −1.34314
\(827\) 3.23111e6 0.164281 0.0821406 0.996621i \(-0.473824\pi\)
0.0821406 + 0.996621i \(0.473824\pi\)
\(828\) 3.16908e7 1.60641
\(829\) −1.24466e7 −0.629022 −0.314511 0.949254i \(-0.601841\pi\)
−0.314511 + 0.949254i \(0.601841\pi\)
\(830\) −3.75408e6 −0.189151
\(831\) 7.71788e6 0.387700
\(832\) −2.48589e7 −1.24501
\(833\) 2.86214e6 0.142915
\(834\) −3.72917e7 −1.85651
\(835\) −1.52405e6 −0.0756454
\(836\) 1.59360e7 0.788612
\(837\) 4.19904e6 0.207175
\(838\) −4.81263e6 −0.236741
\(839\) 1.20780e7 0.592366 0.296183 0.955131i \(-0.404286\pi\)
0.296183 + 0.955131i \(0.404286\pi\)
\(840\) −5.95901e6 −0.291391
\(841\) 1.43225e7 0.698277
\(842\) 3.20115e7 1.55606
\(843\) −3.37833e6 −0.163732
\(844\) −4.02625e7 −1.94556
\(845\) −2.03765e6 −0.0981722
\(846\) −6.63973e6 −0.318951
\(847\) −1.49538e7 −0.716216
\(848\) −1.17478e8 −5.61004
\(849\) 19836.0 0.000944463 0
\(850\) −6.86376e6 −0.325848
\(851\) −1.71708e7 −0.812767
\(852\) 2.30688e7 1.08874
\(853\) −7.24764e6 −0.341055 −0.170527 0.985353i \(-0.554547\pi\)
−0.170527 + 0.985353i \(0.554547\pi\)
\(854\) 2.41342e7 1.13237
\(855\) −175446. −0.00820783
\(856\) −3.94935e7 −1.84222
\(857\) 2.29801e6 0.106881 0.0534405 0.998571i \(-0.482981\pi\)
0.0534405 + 0.998571i \(0.482981\pi\)
\(858\) 8.74051e6 0.405339
\(859\) −1.60848e7 −0.743758 −0.371879 0.928281i \(-0.621286\pi\)
−0.371879 + 0.928281i \(0.621286\pi\)
\(860\) −4.00073e6 −0.184456
\(861\) −2.49860e7 −1.14865
\(862\) −5.11369e7 −2.34405
\(863\) 6.42193e6 0.293521 0.146760 0.989172i \(-0.453115\pi\)
0.146760 + 0.989172i \(0.453115\pi\)
\(864\) 1.78423e7 0.813141
\(865\) −1.06420e6 −0.0483595
\(866\) 7.59958e7 3.44346
\(867\) −1.24115e7 −0.560758
\(868\) −9.02246e7 −4.06468
\(869\) −3.79222e7 −1.70351
\(870\) −3.50579e6 −0.157032
\(871\) −7.73161e6 −0.345322
\(872\) 2.39251e7 1.06552
\(873\) 6.68169e6 0.296723
\(874\) −1.74565e7 −0.772999
\(875\) 6.56198e6 0.289744
\(876\) 6.46775e7 2.84769
\(877\) 2.82068e7 1.23838 0.619192 0.785240i \(-0.287460\pi\)
0.619192 + 0.785240i \(0.287460\pi\)
\(878\) 6.88183e7 3.01278
\(879\) −5.44678e6 −0.237776
\(880\) −1.20498e7 −0.524534
\(881\) −3.93965e7 −1.71009 −0.855043 0.518557i \(-0.826470\pi\)
−0.855043 + 0.518557i \(0.826470\pi\)
\(882\) 1.26246e7 0.546444
\(883\) 3.38638e7 1.46162 0.730809 0.682582i \(-0.239143\pi\)
0.730809 + 0.682582i \(0.239143\pi\)
\(884\) −3.20008e6 −0.137731
\(885\) 734616. 0.0315284
\(886\) 2.35497e7 1.00786
\(887\) 2.08861e7 0.891351 0.445675 0.895195i \(-0.352964\pi\)
0.445675 + 0.895195i \(0.352964\pi\)
\(888\) −2.20416e7 −0.938015
\(889\) 1.23988e7 0.526171
\(890\) −6.81556e6 −0.288421
\(891\) −3.25426e6 −0.137327
\(892\) 8.36863e7 3.52162
\(893\) 2.69017e6 0.112889
\(894\) −2.80718e7 −1.17470
\(895\) −151128. −0.00630648
\(896\) −1.32533e8 −5.51510
\(897\) −7.04239e6 −0.292240
\(898\) 5.41298e7 2.23999
\(899\) −3.39955e7 −1.40289
\(900\) −2.22686e7 −0.916403
\(901\) −5.86083e6 −0.240518
\(902\) −8.60629e7 −3.52209
\(903\) 1.18673e7 0.484321
\(904\) 5.76213e6 0.234510
\(905\) 4.37629e6 0.177617
\(906\) −7.84080e6 −0.317351
\(907\) −3.63949e7 −1.46900 −0.734501 0.678608i \(-0.762584\pi\)
−0.734501 + 0.678608i \(0.762584\pi\)
\(908\) 7.08714e7 2.85270
\(909\) 3.82563e6 0.153565
\(910\) 2.06765e6 0.0827700
\(911\) 1.83331e6 0.0731881 0.0365940 0.999330i \(-0.488349\pi\)
0.0365940 + 0.999330i \(0.488349\pi\)
\(912\) −1.31552e7 −0.523734
\(913\) 2.82125e7 1.12012
\(914\) 4.33410e7 1.71606
\(915\) −673164. −0.0265808
\(916\) 1.36467e7 0.537390
\(917\) −1.79281e7 −0.704061
\(918\) 1.61984e6 0.0634402
\(919\) −1.62178e7 −0.633436 −0.316718 0.948520i \(-0.602581\pi\)
−0.316718 + 0.948520i \(0.602581\pi\)
\(920\) 1.65378e7 0.644180
\(921\) −1.13034e7 −0.439096
\(922\) −2.48540e7 −0.962871
\(923\) −5.12640e6 −0.198065
\(924\) 6.99241e7 2.69431
\(925\) 1.20656e7 0.463656
\(926\) −3.64987e7 −1.39878
\(927\) 1.27539e7 0.487467
\(928\) −1.44451e8 −5.50620
\(929\) 2.06857e7 0.786379 0.393189 0.919457i \(-0.371372\pi\)
0.393189 + 0.919457i \(0.371372\pi\)
\(930\) 3.42144e6 0.129718
\(931\) −5.11501e6 −0.193407
\(932\) 2.19704e7 0.828509
\(933\) −7.42122e6 −0.279107
\(934\) 3.99488e7 1.49843
\(935\) −601152. −0.0224882
\(936\) −9.04009e6 −0.337274
\(937\) 7.79438e6 0.290023 0.145012 0.989430i \(-0.453678\pi\)
0.145012 + 0.989430i \(0.453678\pi\)
\(938\) −8.40921e7 −3.12067
\(939\) −1.11110e7 −0.411232
\(940\) −3.97937e6 −0.146891
\(941\) −2.20151e7 −0.810487 −0.405243 0.914209i \(-0.632813\pi\)
−0.405243 + 0.914209i \(0.632813\pi\)
\(942\) −1.28559e7 −0.472038
\(943\) 6.93425e7 2.53934
\(944\) 5.50826e7 2.01180
\(945\) −769824. −0.0280422
\(946\) 4.08764e7 1.48506
\(947\) 3.67660e6 0.133221 0.0666103 0.997779i \(-0.478782\pi\)
0.0666103 + 0.997779i \(0.478782\pi\)
\(948\) 6.12413e7 2.21321
\(949\) −1.43728e7 −0.518055
\(950\) 1.22664e7 0.440970
\(951\) −1.07485e7 −0.385387
\(952\) −2.22911e7 −0.797148
\(953\) −6.27011e6 −0.223636 −0.111818 0.993729i \(-0.535667\pi\)
−0.111818 + 0.993729i \(0.535667\pi\)
\(954\) −2.58515e7 −0.919633
\(955\) −1.71036e6 −0.0606847
\(956\) 9.39092e6 0.332325
\(957\) 2.63465e7 0.929916
\(958\) −1.60340e7 −0.564453
\(959\) 7.60542e7 2.67040
\(960\) 7.54148e6 0.264106
\(961\) 4.54845e6 0.158875
\(962\) 7.64795e6 0.266445
\(963\) −5.10203e6 −0.177287
\(964\) 3.71468e6 0.128745
\(965\) −2.74559e6 −0.0949111
\(966\) −7.65959e7 −2.64097
\(967\) 3.19646e7 1.09927 0.549633 0.835406i \(-0.314768\pi\)
0.549633 + 0.835406i \(0.314768\pi\)
\(968\) 5.32731e7 1.82734
\(969\) −656298. −0.0224539
\(970\) 5.44434e6 0.185787
\(971\) −3.00150e7 −1.02162 −0.510811 0.859693i \(-0.670655\pi\)
−0.510811 + 0.859693i \(0.670655\pi\)
\(972\) 5.25536e6 0.178417
\(973\) 6.62964e7 2.24496
\(974\) 7.41207e7 2.50347
\(975\) 4.94858e6 0.166713
\(976\) −5.04748e7 −1.69610
\(977\) 2.19294e7 0.735006 0.367503 0.930022i \(-0.380213\pi\)
0.367503 + 0.930022i \(0.380213\pi\)
\(978\) 5.68458e6 0.190043
\(979\) 5.12199e7 1.70798
\(980\) 7.56625e6 0.251661
\(981\) 3.09080e6 0.102541
\(982\) 3.82663e7 1.26630
\(983\) 3.32485e7 1.09746 0.548730 0.836000i \(-0.315112\pi\)
0.548730 + 0.836000i \(0.315112\pi\)
\(984\) 8.90127e7 2.93065
\(985\) −1.74707e6 −0.0573745
\(986\) −1.31142e7 −0.429587
\(987\) 1.18040e7 0.385687
\(988\) 5.71896e6 0.186391
\(989\) −3.29348e7 −1.07069
\(990\) −2.65162e6 −0.0859850
\(991\) −5.46424e7 −1.76744 −0.883722 0.468012i \(-0.844970\pi\)
−0.883722 + 0.468012i \(0.844970\pi\)
\(992\) 1.40976e8 4.54848
\(993\) 1.79202e7 0.576726
\(994\) −5.57568e7 −1.78991
\(995\) 2.18808e6 0.0700657
\(996\) −4.55609e7 −1.45527
\(997\) −2.89095e7 −0.921090 −0.460545 0.887636i \(-0.652346\pi\)
−0.460545 + 0.887636i \(0.652346\pi\)
\(998\) −1.03347e8 −3.28450
\(999\) −2.84747e6 −0.0902705
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 57.6.a.b.1.1 1
3.2 odd 2 171.6.a.a.1.1 1
4.3 odd 2 912.6.a.d.1.1 1
19.18 odd 2 1083.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.6.a.b.1.1 1 1.1 even 1 trivial
171.6.a.a.1.1 1 3.2 odd 2
912.6.a.d.1.1 1 4.3 odd 2
1083.6.a.a.1.1 1 19.18 odd 2