Properties

Label 57.6.a.f
Level 5757
Weight 66
Character orbit 57.a
Self dual yes
Analytic conductor 9.1429.142
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [57,6,Mod(1,57)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(57, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("57.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 57=319 57 = 3 \cdot 19
Weight: k k == 6 6
Character orbit: [χ][\chi] == 57.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 9.141877729349.14187772934
Analytic rank: 11
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x390x2+118x+1412 x^{4} - x^{3} - 90x^{2} + 118x + 1412 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q29q3+(β3β2β1+14)q4+(3β3+2β2+3)q59β1q6+(5β316β129)q7+(β3+7β2+36)q8++(1053β31296β2+14823)q99+O(q100) q + \beta_1 q^{2} - 9 q^{3} + (\beta_{3} - \beta_{2} - \beta_1 + 14) q^{4} + ( - 3 \beta_{3} + 2 \beta_{2} + \cdots - 3) q^{5} - 9 \beta_1 q^{6} + (5 \beta_{3} - 16 \beta_1 - 29) q^{7} + ( - \beta_{3} + 7 \beta_{2} + \cdots - 36) q^{8}+ \cdots + ( - 1053 \beta_{3} - 1296 \beta_{2} + \cdots - 14823) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+q236q3+53q48q59q6142q7147q8+324q9496q10714q11477q1274q132790q14+72q152839q163690q17+81q18+57834q99+O(q100) 4 q + q^{2} - 36 q^{3} + 53 q^{4} - 8 q^{5} - 9 q^{6} - 142 q^{7} - 147 q^{8} + 324 q^{9} - 496 q^{10} - 714 q^{11} - 477 q^{12} - 74 q^{13} - 2790 q^{14} + 72 q^{15} - 2839 q^{16} - 3690 q^{17} + 81 q^{18}+ \cdots - 57834 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x390x2+118x+1412 x^{4} - x^{3} - 90x^{2} + 118x + 1412 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+ν258ν10)/6 ( \nu^{3} + \nu^{2} - 58\nu - 10 ) / 6 Copy content Toggle raw display
β3\beta_{3}== (ν3+7ν252ν286)/6 ( \nu^{3} + 7\nu^{2} - 52\nu - 286 ) / 6 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3β2β1+46 \beta_{3} - \beta_{2} - \beta _1 + 46 Copy content Toggle raw display
ν3\nu^{3}== β3+7β2+59β136 -\beta_{3} + 7\beta_{2} + 59\beta _1 - 36 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−8.73296
−3.66552
5.82184
7.57664
−8.73296 −9.00000 44.2646 −34.5891 78.5966 140.686 −107.106 81.0000 302.065
1.2 −3.66552 −9.00000 −18.5639 85.2217 32.9897 −12.5103 185.343 81.0000 −312.382
1.3 5.82184 −9.00000 1.89382 23.6174 −52.3966 −250.612 −175.273 81.0000 137.497
1.4 7.57664 −9.00000 25.4055 −82.2501 −68.1898 −19.5642 −49.9639 81.0000 −623.180
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
1919 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 57.6.a.f 4
3.b odd 2 1 171.6.a.j 4
4.b odd 2 1 912.6.a.r 4
19.b odd 2 1 1083.6.a.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
57.6.a.f 4 1.a even 1 1 trivial
171.6.a.j 4 3.b odd 2 1
912.6.a.r 4 4.b odd 2 1
1083.6.a.g 4 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T24T2390T22+118T2+1412 T_{2}^{4} - T_{2}^{3} - 90T_{2}^{2} + 118T_{2} + 1412 acting on S6new(Γ0(57))S_{6}^{\mathrm{new}}(\Gamma_0(57)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T3++1412 T^{4} - T^{3} + \cdots + 1412 Copy content Toggle raw display
33 (T+9)4 (T + 9)^{4} Copy content Toggle raw display
55 T4+8T3++5726088 T^{4} + 8 T^{3} + \cdots + 5726088 Copy content Toggle raw display
77 T4+142T3+8629440 T^{4} + 142 T^{3} + \cdots - 8629440 Copy content Toggle raw display
1111 T4++8153412000 T^{4} + \cdots + 8153412000 Copy content Toggle raw display
1313 T4++158810973888 T^{4} + \cdots + 158810973888 Copy content Toggle raw display
1717 T4++322720049196 T^{4} + \cdots + 322720049196 Copy content Toggle raw display
1919 (T+361)4 (T + 361)^{4} Copy content Toggle raw display
2323 T4++18375207565952 T^{4} + \cdots + 18375207565952 Copy content Toggle raw display
2929 T4++112750314245840 T^{4} + \cdots + 112750314245840 Copy content Toggle raw display
3131 T4++126908512695648 T^{4} + \cdots + 126908512695648 Copy content Toggle raw display
3737 T4+905306584227840 T^{4} + \cdots - 905306584227840 Copy content Toggle raw display
4141 T4++20 ⁣ ⁣88 T^{4} + \cdots + 20\!\cdots\!88 Copy content Toggle raw display
4343 T4++364921961696464 T^{4} + \cdots + 364921961696464 Copy content Toggle raw display
4747 T4+81 ⁣ ⁣48 T^{4} + \cdots - 81\!\cdots\!48 Copy content Toggle raw display
5353 T4+50 ⁣ ⁣96 T^{4} + \cdots - 50\!\cdots\!96 Copy content Toggle raw display
5959 T4+83 ⁣ ⁣80 T^{4} + \cdots - 83\!\cdots\!80 Copy content Toggle raw display
6161 T4++67 ⁣ ⁣28 T^{4} + \cdots + 67\!\cdots\!28 Copy content Toggle raw display
6767 T4+12 ⁣ ⁣28 T^{4} + \cdots - 12\!\cdots\!28 Copy content Toggle raw display
7171 T4+14 ⁣ ⁣00 T^{4} + \cdots - 14\!\cdots\!00 Copy content Toggle raw display
7373 T4+25 ⁣ ⁣60 T^{4} + \cdots - 25\!\cdots\!60 Copy content Toggle raw display
7979 T4+29 ⁣ ⁣00 T^{4} + \cdots - 29\!\cdots\!00 Copy content Toggle raw display
8383 T4+30 ⁣ ⁣52 T^{4} + \cdots - 30\!\cdots\!52 Copy content Toggle raw display
8989 T4+66 ⁣ ⁣20 T^{4} + \cdots - 66\!\cdots\!20 Copy content Toggle raw display
9797 T4++61 ⁣ ⁣40 T^{4} + \cdots + 61\!\cdots\!40 Copy content Toggle raw display
show more
show less