Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [57,6,Mod(1,57)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(57, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("57.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 57.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−8.73296 | −9.00000 | 44.2646 | −34.5891 | 78.5966 | 140.686 | −107.106 | 81.0000 | 302.065 | ||||||||||||||||||||||||||||||
1.2 | −3.66552 | −9.00000 | −18.5639 | 85.2217 | 32.9897 | −12.5103 | 185.343 | 81.0000 | −312.382 | |||||||||||||||||||||||||||||||
1.3 | 5.82184 | −9.00000 | 1.89382 | 23.6174 | −52.3966 | −250.612 | −175.273 | 81.0000 | 137.497 | |||||||||||||||||||||||||||||||
1.4 | 7.57664 | −9.00000 | 25.4055 | −82.2501 | −68.1898 | −19.5642 | −49.9639 | 81.0000 | −623.180 | |||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 57.6.a.f | ✓ | 4 |
3.b | odd | 2 | 1 | 171.6.a.j | 4 | ||
4.b | odd | 2 | 1 | 912.6.a.r | 4 | ||
19.b | odd | 2 | 1 | 1083.6.a.g | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
57.6.a.f | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
171.6.a.j | 4 | 3.b | odd | 2 | 1 | ||
912.6.a.r | 4 | 4.b | odd | 2 | 1 | ||
1083.6.a.g | 4 | 19.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .