Properties

Label 57.6.a.f
Level $57$
Weight $6$
Character orbit 57.a
Self dual yes
Analytic conductor $9.142$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [57,6,Mod(1,57)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(57, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("57.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 57 = 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 57.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.14187772934\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 90x^{2} + 118x + 1412 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - 9 q^{3} + (\beta_{3} - \beta_{2} - \beta_1 + 14) q^{4} + ( - 3 \beta_{3} + 2 \beta_{2} + \cdots - 3) q^{5} - 9 \beta_1 q^{6} + (5 \beta_{3} - 16 \beta_1 - 29) q^{7} + ( - \beta_{3} + 7 \beta_{2} + \cdots - 36) q^{8}+ \cdots + ( - 1053 \beta_{3} - 1296 \beta_{2} + \cdots - 14823) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 36 q^{3} + 53 q^{4} - 8 q^{5} - 9 q^{6} - 142 q^{7} - 147 q^{8} + 324 q^{9} - 496 q^{10} - 714 q^{11} - 477 q^{12} - 74 q^{13} - 2790 q^{14} + 72 q^{15} - 2839 q^{16} - 3690 q^{17} + 81 q^{18}+ \cdots - 57834 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 90x^{2} + 118x + 1412 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + \nu^{2} - 58\nu - 10 ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 7\nu^{2} - 52\nu - 286 ) / 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - \beta_{2} - \beta _1 + 46 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{3} + 7\beta_{2} + 59\beta _1 - 36 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.73296
−3.66552
5.82184
7.57664
−8.73296 −9.00000 44.2646 −34.5891 78.5966 140.686 −107.106 81.0000 302.065
1.2 −3.66552 −9.00000 −18.5639 85.2217 32.9897 −12.5103 185.343 81.0000 −312.382
1.3 5.82184 −9.00000 1.89382 23.6174 −52.3966 −250.612 −175.273 81.0000 137.497
1.4 7.57664 −9.00000 25.4055 −82.2501 −68.1898 −19.5642 −49.9639 81.0000 −623.180
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 57.6.a.f 4
3.b odd 2 1 171.6.a.j 4
4.b odd 2 1 912.6.a.r 4
19.b odd 2 1 1083.6.a.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
57.6.a.f 4 1.a even 1 1 trivial
171.6.a.j 4 3.b odd 2 1
912.6.a.r 4 4.b odd 2 1
1083.6.a.g 4 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - T_{2}^{3} - 90T_{2}^{2} + 118T_{2} + 1412 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(57))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{3} + \cdots + 1412 \) Copy content Toggle raw display
$3$ \( (T + 9)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 8 T^{3} + \cdots + 5726088 \) Copy content Toggle raw display
$7$ \( T^{4} + 142 T^{3} + \cdots - 8629440 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 8153412000 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 158810973888 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 322720049196 \) Copy content Toggle raw display
$19$ \( (T + 361)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 18375207565952 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 112750314245840 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 126908512695648 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 905306584227840 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 20\!\cdots\!88 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 364921961696464 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 81\!\cdots\!48 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 50\!\cdots\!96 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 83\!\cdots\!80 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 67\!\cdots\!28 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 12\!\cdots\!28 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 25\!\cdots\!60 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 29\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 30\!\cdots\!52 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 66\!\cdots\!20 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 61\!\cdots\!40 \) Copy content Toggle raw display
show more
show less