Properties

Label 5712.2.a.bc.1.2
Level $5712$
Weight $2$
Character 5712.1
Self dual yes
Analytic conductor $45.611$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5712,2,Mod(1,5712)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5712, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5712.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5712.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.6105496346\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 357)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 5712.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -0.267949 q^{5} +1.00000 q^{7} +1.00000 q^{9} +5.00000 q^{11} -7.19615 q^{13} +0.267949 q^{15} +1.00000 q^{17} -3.19615 q^{19} -1.00000 q^{21} +3.00000 q^{23} -4.92820 q^{25} -1.00000 q^{27} +4.00000 q^{29} +1.26795 q^{31} -5.00000 q^{33} -0.267949 q^{35} +1.26795 q^{37} +7.19615 q^{39} -8.26795 q^{41} +11.3923 q^{43} -0.267949 q^{45} -1.26795 q^{47} +1.00000 q^{49} -1.00000 q^{51} +11.6603 q^{53} -1.33975 q^{55} +3.19615 q^{57} +8.19615 q^{59} -3.26795 q^{61} +1.00000 q^{63} +1.92820 q^{65} +4.53590 q^{67} -3.00000 q^{69} -3.46410 q^{71} +3.46410 q^{73} +4.92820 q^{75} +5.00000 q^{77} -10.1962 q^{79} +1.00000 q^{81} -0.928203 q^{83} -0.267949 q^{85} -4.00000 q^{87} +8.39230 q^{89} -7.19615 q^{91} -1.26795 q^{93} +0.856406 q^{95} -13.8564 q^{97} +5.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 4 q^{5} + 2 q^{7} + 2 q^{9} + 10 q^{11} - 4 q^{13} + 4 q^{15} + 2 q^{17} + 4 q^{19} - 2 q^{21} + 6 q^{23} + 4 q^{25} - 2 q^{27} + 8 q^{29} + 6 q^{31} - 10 q^{33} - 4 q^{35} + 6 q^{37} + 4 q^{39}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −0.267949 −0.119831 −0.0599153 0.998203i \(-0.519083\pi\)
−0.0599153 + 0.998203i \(0.519083\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) −7.19615 −1.99585 −0.997927 0.0643593i \(-0.979500\pi\)
−0.997927 + 0.0643593i \(0.979500\pi\)
\(14\) 0 0
\(15\) 0.267949 0.0691842
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −3.19615 −0.733248 −0.366624 0.930369i \(-0.619486\pi\)
−0.366624 + 0.930369i \(0.619486\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) 0 0
\(25\) −4.92820 −0.985641
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) 1.26795 0.227730 0.113865 0.993496i \(-0.463677\pi\)
0.113865 + 0.993496i \(0.463677\pi\)
\(32\) 0 0
\(33\) −5.00000 −0.870388
\(34\) 0 0
\(35\) −0.267949 −0.0452917
\(36\) 0 0
\(37\) 1.26795 0.208450 0.104225 0.994554i \(-0.466764\pi\)
0.104225 + 0.994554i \(0.466764\pi\)
\(38\) 0 0
\(39\) 7.19615 1.15231
\(40\) 0 0
\(41\) −8.26795 −1.29124 −0.645618 0.763660i \(-0.723400\pi\)
−0.645618 + 0.763660i \(0.723400\pi\)
\(42\) 0 0
\(43\) 11.3923 1.73731 0.868655 0.495417i \(-0.164985\pi\)
0.868655 + 0.495417i \(0.164985\pi\)
\(44\) 0 0
\(45\) −0.267949 −0.0399435
\(46\) 0 0
\(47\) −1.26795 −0.184949 −0.0924747 0.995715i \(-0.529478\pi\)
−0.0924747 + 0.995715i \(0.529478\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 0 0
\(53\) 11.6603 1.60166 0.800830 0.598892i \(-0.204392\pi\)
0.800830 + 0.598892i \(0.204392\pi\)
\(54\) 0 0
\(55\) −1.33975 −0.180651
\(56\) 0 0
\(57\) 3.19615 0.423341
\(58\) 0 0
\(59\) 8.19615 1.06705 0.533524 0.845785i \(-0.320867\pi\)
0.533524 + 0.845785i \(0.320867\pi\)
\(60\) 0 0
\(61\) −3.26795 −0.418418 −0.209209 0.977871i \(-0.567089\pi\)
−0.209209 + 0.977871i \(0.567089\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) 1.92820 0.239164
\(66\) 0 0
\(67\) 4.53590 0.554148 0.277074 0.960849i \(-0.410635\pi\)
0.277074 + 0.960849i \(0.410635\pi\)
\(68\) 0 0
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) −3.46410 −0.411113 −0.205557 0.978645i \(-0.565900\pi\)
−0.205557 + 0.978645i \(0.565900\pi\)
\(72\) 0 0
\(73\) 3.46410 0.405442 0.202721 0.979236i \(-0.435021\pi\)
0.202721 + 0.979236i \(0.435021\pi\)
\(74\) 0 0
\(75\) 4.92820 0.569060
\(76\) 0 0
\(77\) 5.00000 0.569803
\(78\) 0 0
\(79\) −10.1962 −1.14716 −0.573578 0.819151i \(-0.694445\pi\)
−0.573578 + 0.819151i \(0.694445\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −0.928203 −0.101884 −0.0509418 0.998702i \(-0.516222\pi\)
−0.0509418 + 0.998702i \(0.516222\pi\)
\(84\) 0 0
\(85\) −0.267949 −0.0290632
\(86\) 0 0
\(87\) −4.00000 −0.428845
\(88\) 0 0
\(89\) 8.39230 0.889583 0.444791 0.895634i \(-0.353278\pi\)
0.444791 + 0.895634i \(0.353278\pi\)
\(90\) 0 0
\(91\) −7.19615 −0.754362
\(92\) 0 0
\(93\) −1.26795 −0.131480
\(94\) 0 0
\(95\) 0.856406 0.0878654
\(96\) 0 0
\(97\) −13.8564 −1.40690 −0.703452 0.710742i \(-0.748359\pi\)
−0.703452 + 0.710742i \(0.748359\pi\)
\(98\) 0 0
\(99\) 5.00000 0.502519
\(100\) 0 0
\(101\) 0.732051 0.0728418 0.0364209 0.999337i \(-0.488404\pi\)
0.0364209 + 0.999337i \(0.488404\pi\)
\(102\) 0 0
\(103\) −7.19615 −0.709058 −0.354529 0.935045i \(-0.615359\pi\)
−0.354529 + 0.935045i \(0.615359\pi\)
\(104\) 0 0
\(105\) 0.267949 0.0261492
\(106\) 0 0
\(107\) 11.0000 1.06341 0.531705 0.846930i \(-0.321551\pi\)
0.531705 + 0.846930i \(0.321551\pi\)
\(108\) 0 0
\(109\) −5.66025 −0.542154 −0.271077 0.962558i \(-0.587380\pi\)
−0.271077 + 0.962558i \(0.587380\pi\)
\(110\) 0 0
\(111\) −1.26795 −0.120348
\(112\) 0 0
\(113\) −3.39230 −0.319121 −0.159561 0.987188i \(-0.551008\pi\)
−0.159561 + 0.987188i \(0.551008\pi\)
\(114\) 0 0
\(115\) −0.803848 −0.0749592
\(116\) 0 0
\(117\) −7.19615 −0.665285
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) 8.26795 0.745496
\(124\) 0 0
\(125\) 2.66025 0.237940
\(126\) 0 0
\(127\) 7.39230 0.655961 0.327980 0.944684i \(-0.393632\pi\)
0.327980 + 0.944684i \(0.393632\pi\)
\(128\) 0 0
\(129\) −11.3923 −1.00304
\(130\) 0 0
\(131\) 2.80385 0.244973 0.122487 0.992470i \(-0.460913\pi\)
0.122487 + 0.992470i \(0.460913\pi\)
\(132\) 0 0
\(133\) −3.19615 −0.277142
\(134\) 0 0
\(135\) 0.267949 0.0230614
\(136\) 0 0
\(137\) −2.19615 −0.187630 −0.0938150 0.995590i \(-0.529906\pi\)
−0.0938150 + 0.995590i \(0.529906\pi\)
\(138\) 0 0
\(139\) 15.4641 1.31165 0.655824 0.754914i \(-0.272321\pi\)
0.655824 + 0.754914i \(0.272321\pi\)
\(140\) 0 0
\(141\) 1.26795 0.106781
\(142\) 0 0
\(143\) −35.9808 −3.00886
\(144\) 0 0
\(145\) −1.07180 −0.0890079
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 0 0
\(149\) 3.46410 0.283790 0.141895 0.989882i \(-0.454680\pi\)
0.141895 + 0.989882i \(0.454680\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) 1.00000 0.0808452
\(154\) 0 0
\(155\) −0.339746 −0.0272891
\(156\) 0 0
\(157\) 19.5885 1.56333 0.781665 0.623699i \(-0.214371\pi\)
0.781665 + 0.623699i \(0.214371\pi\)
\(158\) 0 0
\(159\) −11.6603 −0.924718
\(160\) 0 0
\(161\) 3.00000 0.236433
\(162\) 0 0
\(163\) 7.07180 0.553906 0.276953 0.960883i \(-0.410675\pi\)
0.276953 + 0.960883i \(0.410675\pi\)
\(164\) 0 0
\(165\) 1.33975 0.104299
\(166\) 0 0
\(167\) −4.80385 −0.371733 −0.185866 0.982575i \(-0.559509\pi\)
−0.185866 + 0.982575i \(0.559509\pi\)
\(168\) 0 0
\(169\) 38.7846 2.98343
\(170\) 0 0
\(171\) −3.19615 −0.244416
\(172\) 0 0
\(173\) −3.19615 −0.242999 −0.121499 0.992591i \(-0.538770\pi\)
−0.121499 + 0.992591i \(0.538770\pi\)
\(174\) 0 0
\(175\) −4.92820 −0.372537
\(176\) 0 0
\(177\) −8.19615 −0.616061
\(178\) 0 0
\(179\) −11.4641 −0.856867 −0.428434 0.903573i \(-0.640934\pi\)
−0.428434 + 0.903573i \(0.640934\pi\)
\(180\) 0 0
\(181\) 9.32051 0.692788 0.346394 0.938089i \(-0.387406\pi\)
0.346394 + 0.938089i \(0.387406\pi\)
\(182\) 0 0
\(183\) 3.26795 0.241574
\(184\) 0 0
\(185\) −0.339746 −0.0249786
\(186\) 0 0
\(187\) 5.00000 0.365636
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −16.9282 −1.22488 −0.612441 0.790516i \(-0.709812\pi\)
−0.612441 + 0.790516i \(0.709812\pi\)
\(192\) 0 0
\(193\) 24.0526 1.73134 0.865671 0.500614i \(-0.166892\pi\)
0.865671 + 0.500614i \(0.166892\pi\)
\(194\) 0 0
\(195\) −1.92820 −0.138082
\(196\) 0 0
\(197\) −11.0000 −0.783718 −0.391859 0.920025i \(-0.628168\pi\)
−0.391859 + 0.920025i \(0.628168\pi\)
\(198\) 0 0
\(199\) 4.73205 0.335446 0.167723 0.985834i \(-0.446359\pi\)
0.167723 + 0.985834i \(0.446359\pi\)
\(200\) 0 0
\(201\) −4.53590 −0.319938
\(202\) 0 0
\(203\) 4.00000 0.280745
\(204\) 0 0
\(205\) 2.21539 0.154730
\(206\) 0 0
\(207\) 3.00000 0.208514
\(208\) 0 0
\(209\) −15.9808 −1.10541
\(210\) 0 0
\(211\) −22.5885 −1.55505 −0.777527 0.628850i \(-0.783526\pi\)
−0.777527 + 0.628850i \(0.783526\pi\)
\(212\) 0 0
\(213\) 3.46410 0.237356
\(214\) 0 0
\(215\) −3.05256 −0.208183
\(216\) 0 0
\(217\) 1.26795 0.0860740
\(218\) 0 0
\(219\) −3.46410 −0.234082
\(220\) 0 0
\(221\) −7.19615 −0.484066
\(222\) 0 0
\(223\) 14.1244 0.945837 0.472918 0.881106i \(-0.343201\pi\)
0.472918 + 0.881106i \(0.343201\pi\)
\(224\) 0 0
\(225\) −4.92820 −0.328547
\(226\) 0 0
\(227\) 19.0526 1.26456 0.632281 0.774739i \(-0.282119\pi\)
0.632281 + 0.774739i \(0.282119\pi\)
\(228\) 0 0
\(229\) −5.85641 −0.387002 −0.193501 0.981100i \(-0.561984\pi\)
−0.193501 + 0.981100i \(0.561984\pi\)
\(230\) 0 0
\(231\) −5.00000 −0.328976
\(232\) 0 0
\(233\) 15.9282 1.04349 0.521746 0.853101i \(-0.325281\pi\)
0.521746 + 0.853101i \(0.325281\pi\)
\(234\) 0 0
\(235\) 0.339746 0.0221626
\(236\) 0 0
\(237\) 10.1962 0.662311
\(238\) 0 0
\(239\) 19.5167 1.26243 0.631214 0.775609i \(-0.282557\pi\)
0.631214 + 0.775609i \(0.282557\pi\)
\(240\) 0 0
\(241\) 14.9282 0.961610 0.480805 0.876828i \(-0.340344\pi\)
0.480805 + 0.876828i \(0.340344\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −0.267949 −0.0171186
\(246\) 0 0
\(247\) 23.0000 1.46345
\(248\) 0 0
\(249\) 0.928203 0.0588225
\(250\) 0 0
\(251\) 29.1244 1.83831 0.919157 0.393893i \(-0.128872\pi\)
0.919157 + 0.393893i \(0.128872\pi\)
\(252\) 0 0
\(253\) 15.0000 0.943042
\(254\) 0 0
\(255\) 0.267949 0.0167796
\(256\) 0 0
\(257\) −3.66025 −0.228320 −0.114160 0.993462i \(-0.536418\pi\)
−0.114160 + 0.993462i \(0.536418\pi\)
\(258\) 0 0
\(259\) 1.26795 0.0787865
\(260\) 0 0
\(261\) 4.00000 0.247594
\(262\) 0 0
\(263\) −13.4641 −0.830232 −0.415116 0.909768i \(-0.636259\pi\)
−0.415116 + 0.909768i \(0.636259\pi\)
\(264\) 0 0
\(265\) −3.12436 −0.191928
\(266\) 0 0
\(267\) −8.39230 −0.513601
\(268\) 0 0
\(269\) −23.1962 −1.41429 −0.707147 0.707066i \(-0.750018\pi\)
−0.707147 + 0.707066i \(0.750018\pi\)
\(270\) 0 0
\(271\) 15.7321 0.955654 0.477827 0.878454i \(-0.341425\pi\)
0.477827 + 0.878454i \(0.341425\pi\)
\(272\) 0 0
\(273\) 7.19615 0.435531
\(274\) 0 0
\(275\) −24.6410 −1.48591
\(276\) 0 0
\(277\) −6.39230 −0.384076 −0.192038 0.981387i \(-0.561510\pi\)
−0.192038 + 0.981387i \(0.561510\pi\)
\(278\) 0 0
\(279\) 1.26795 0.0759101
\(280\) 0 0
\(281\) −11.6077 −0.692457 −0.346229 0.938150i \(-0.612538\pi\)
−0.346229 + 0.938150i \(0.612538\pi\)
\(282\) 0 0
\(283\) 30.7321 1.82683 0.913415 0.407029i \(-0.133435\pi\)
0.913415 + 0.407029i \(0.133435\pi\)
\(284\) 0 0
\(285\) −0.856406 −0.0507291
\(286\) 0 0
\(287\) −8.26795 −0.488042
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 13.8564 0.812277
\(292\) 0 0
\(293\) 14.9282 0.872115 0.436057 0.899919i \(-0.356374\pi\)
0.436057 + 0.899919i \(0.356374\pi\)
\(294\) 0 0
\(295\) −2.19615 −0.127865
\(296\) 0 0
\(297\) −5.00000 −0.290129
\(298\) 0 0
\(299\) −21.5885 −1.24849
\(300\) 0 0
\(301\) 11.3923 0.656642
\(302\) 0 0
\(303\) −0.732051 −0.0420552
\(304\) 0 0
\(305\) 0.875644 0.0501392
\(306\) 0 0
\(307\) −22.9282 −1.30858 −0.654291 0.756243i \(-0.727033\pi\)
−0.654291 + 0.756243i \(0.727033\pi\)
\(308\) 0 0
\(309\) 7.19615 0.409375
\(310\) 0 0
\(311\) 27.7128 1.57145 0.785725 0.618576i \(-0.212290\pi\)
0.785725 + 0.618576i \(0.212290\pi\)
\(312\) 0 0
\(313\) 5.12436 0.289646 0.144823 0.989458i \(-0.453739\pi\)
0.144823 + 0.989458i \(0.453739\pi\)
\(314\) 0 0
\(315\) −0.267949 −0.0150972
\(316\) 0 0
\(317\) 24.9282 1.40011 0.700054 0.714090i \(-0.253159\pi\)
0.700054 + 0.714090i \(0.253159\pi\)
\(318\) 0 0
\(319\) 20.0000 1.11979
\(320\) 0 0
\(321\) −11.0000 −0.613960
\(322\) 0 0
\(323\) −3.19615 −0.177839
\(324\) 0 0
\(325\) 35.4641 1.96719
\(326\) 0 0
\(327\) 5.66025 0.313013
\(328\) 0 0
\(329\) −1.26795 −0.0699043
\(330\) 0 0
\(331\) 1.92820 0.105984 0.0529918 0.998595i \(-0.483124\pi\)
0.0529918 + 0.998595i \(0.483124\pi\)
\(332\) 0 0
\(333\) 1.26795 0.0694832
\(334\) 0 0
\(335\) −1.21539 −0.0664039
\(336\) 0 0
\(337\) 13.8038 0.751943 0.375972 0.926631i \(-0.377309\pi\)
0.375972 + 0.926631i \(0.377309\pi\)
\(338\) 0 0
\(339\) 3.39230 0.184245
\(340\) 0 0
\(341\) 6.33975 0.343316
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0.803848 0.0432777
\(346\) 0 0
\(347\) 22.0000 1.18102 0.590511 0.807030i \(-0.298926\pi\)
0.590511 + 0.807030i \(0.298926\pi\)
\(348\) 0 0
\(349\) 4.80385 0.257144 0.128572 0.991700i \(-0.458961\pi\)
0.128572 + 0.991700i \(0.458961\pi\)
\(350\) 0 0
\(351\) 7.19615 0.384102
\(352\) 0 0
\(353\) −8.58846 −0.457117 −0.228559 0.973530i \(-0.573401\pi\)
−0.228559 + 0.973530i \(0.573401\pi\)
\(354\) 0 0
\(355\) 0.928203 0.0492639
\(356\) 0 0
\(357\) −1.00000 −0.0529256
\(358\) 0 0
\(359\) 16.5885 0.875505 0.437753 0.899095i \(-0.355775\pi\)
0.437753 + 0.899095i \(0.355775\pi\)
\(360\) 0 0
\(361\) −8.78461 −0.462348
\(362\) 0 0
\(363\) −14.0000 −0.734809
\(364\) 0 0
\(365\) −0.928203 −0.0485844
\(366\) 0 0
\(367\) 5.07180 0.264746 0.132373 0.991200i \(-0.457740\pi\)
0.132373 + 0.991200i \(0.457740\pi\)
\(368\) 0 0
\(369\) −8.26795 −0.430412
\(370\) 0 0
\(371\) 11.6603 0.605370
\(372\) 0 0
\(373\) 29.4641 1.52559 0.762797 0.646638i \(-0.223826\pi\)
0.762797 + 0.646638i \(0.223826\pi\)
\(374\) 0 0
\(375\) −2.66025 −0.137375
\(376\) 0 0
\(377\) −28.7846 −1.48248
\(378\) 0 0
\(379\) 5.07180 0.260521 0.130260 0.991480i \(-0.458419\pi\)
0.130260 + 0.991480i \(0.458419\pi\)
\(380\) 0 0
\(381\) −7.39230 −0.378719
\(382\) 0 0
\(383\) 14.1962 0.725390 0.362695 0.931908i \(-0.381857\pi\)
0.362695 + 0.931908i \(0.381857\pi\)
\(384\) 0 0
\(385\) −1.33975 −0.0682798
\(386\) 0 0
\(387\) 11.3923 0.579103
\(388\) 0 0
\(389\) −9.46410 −0.479849 −0.239924 0.970792i \(-0.577123\pi\)
−0.239924 + 0.970792i \(0.577123\pi\)
\(390\) 0 0
\(391\) 3.00000 0.151717
\(392\) 0 0
\(393\) −2.80385 −0.141435
\(394\) 0 0
\(395\) 2.73205 0.137464
\(396\) 0 0
\(397\) −21.1244 −1.06020 −0.530101 0.847935i \(-0.677846\pi\)
−0.530101 + 0.847935i \(0.677846\pi\)
\(398\) 0 0
\(399\) 3.19615 0.160008
\(400\) 0 0
\(401\) 33.9282 1.69429 0.847147 0.531359i \(-0.178318\pi\)
0.847147 + 0.531359i \(0.178318\pi\)
\(402\) 0 0
\(403\) −9.12436 −0.454517
\(404\) 0 0
\(405\) −0.267949 −0.0133145
\(406\) 0 0
\(407\) 6.33975 0.314250
\(408\) 0 0
\(409\) −4.80385 −0.237535 −0.118767 0.992922i \(-0.537894\pi\)
−0.118767 + 0.992922i \(0.537894\pi\)
\(410\) 0 0
\(411\) 2.19615 0.108328
\(412\) 0 0
\(413\) 8.19615 0.403306
\(414\) 0 0
\(415\) 0.248711 0.0122088
\(416\) 0 0
\(417\) −15.4641 −0.757280
\(418\) 0 0
\(419\) 29.3205 1.43240 0.716200 0.697895i \(-0.245880\pi\)
0.716200 + 0.697895i \(0.245880\pi\)
\(420\) 0 0
\(421\) −2.60770 −0.127091 −0.0635456 0.997979i \(-0.520241\pi\)
−0.0635456 + 0.997979i \(0.520241\pi\)
\(422\) 0 0
\(423\) −1.26795 −0.0616498
\(424\) 0 0
\(425\) −4.92820 −0.239053
\(426\) 0 0
\(427\) −3.26795 −0.158147
\(428\) 0 0
\(429\) 35.9808 1.73717
\(430\) 0 0
\(431\) −18.9282 −0.911739 −0.455870 0.890047i \(-0.650672\pi\)
−0.455870 + 0.890047i \(0.650672\pi\)
\(432\) 0 0
\(433\) 5.05256 0.242810 0.121405 0.992603i \(-0.461260\pi\)
0.121405 + 0.992603i \(0.461260\pi\)
\(434\) 0 0
\(435\) 1.07180 0.0513887
\(436\) 0 0
\(437\) −9.58846 −0.458678
\(438\) 0 0
\(439\) 22.9808 1.09681 0.548406 0.836212i \(-0.315235\pi\)
0.548406 + 0.836212i \(0.315235\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −2.19615 −0.104342 −0.0521712 0.998638i \(-0.516614\pi\)
−0.0521712 + 0.998638i \(0.516614\pi\)
\(444\) 0 0
\(445\) −2.24871 −0.106599
\(446\) 0 0
\(447\) −3.46410 −0.163846
\(448\) 0 0
\(449\) −40.3923 −1.90623 −0.953115 0.302607i \(-0.902143\pi\)
−0.953115 + 0.302607i \(0.902143\pi\)
\(450\) 0 0
\(451\) −41.3397 −1.94661
\(452\) 0 0
\(453\) 2.00000 0.0939682
\(454\) 0 0
\(455\) 1.92820 0.0903956
\(456\) 0 0
\(457\) 23.3923 1.09425 0.547123 0.837052i \(-0.315723\pi\)
0.547123 + 0.837052i \(0.315723\pi\)
\(458\) 0 0
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) −7.80385 −0.363461 −0.181731 0.983348i \(-0.558170\pi\)
−0.181731 + 0.983348i \(0.558170\pi\)
\(462\) 0 0
\(463\) 19.0718 0.886342 0.443171 0.896437i \(-0.353854\pi\)
0.443171 + 0.896437i \(0.353854\pi\)
\(464\) 0 0
\(465\) 0.339746 0.0157553
\(466\) 0 0
\(467\) 22.3923 1.03619 0.518096 0.855322i \(-0.326641\pi\)
0.518096 + 0.855322i \(0.326641\pi\)
\(468\) 0 0
\(469\) 4.53590 0.209448
\(470\) 0 0
\(471\) −19.5885 −0.902588
\(472\) 0 0
\(473\) 56.9615 2.61909
\(474\) 0 0
\(475\) 15.7513 0.722719
\(476\) 0 0
\(477\) 11.6603 0.533886
\(478\) 0 0
\(479\) −20.8038 −0.950552 −0.475276 0.879837i \(-0.657652\pi\)
−0.475276 + 0.879837i \(0.657652\pi\)
\(480\) 0 0
\(481\) −9.12436 −0.416035
\(482\) 0 0
\(483\) −3.00000 −0.136505
\(484\) 0 0
\(485\) 3.71281 0.168590
\(486\) 0 0
\(487\) −16.9282 −0.767090 −0.383545 0.923522i \(-0.625297\pi\)
−0.383545 + 0.923522i \(0.625297\pi\)
\(488\) 0 0
\(489\) −7.07180 −0.319798
\(490\) 0 0
\(491\) −3.85641 −0.174037 −0.0870186 0.996207i \(-0.527734\pi\)
−0.0870186 + 0.996207i \(0.527734\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) 0 0
\(495\) −1.33975 −0.0602171
\(496\) 0 0
\(497\) −3.46410 −0.155386
\(498\) 0 0
\(499\) 0.732051 0.0327711 0.0163855 0.999866i \(-0.494784\pi\)
0.0163855 + 0.999866i \(0.494784\pi\)
\(500\) 0 0
\(501\) 4.80385 0.214620
\(502\) 0 0
\(503\) 20.6603 0.921195 0.460598 0.887609i \(-0.347635\pi\)
0.460598 + 0.887609i \(0.347635\pi\)
\(504\) 0 0
\(505\) −0.196152 −0.00872867
\(506\) 0 0
\(507\) −38.7846 −1.72248
\(508\) 0 0
\(509\) −12.7846 −0.566668 −0.283334 0.959021i \(-0.591440\pi\)
−0.283334 + 0.959021i \(0.591440\pi\)
\(510\) 0 0
\(511\) 3.46410 0.153243
\(512\) 0 0
\(513\) 3.19615 0.141114
\(514\) 0 0
\(515\) 1.92820 0.0849668
\(516\) 0 0
\(517\) −6.33975 −0.278822
\(518\) 0 0
\(519\) 3.19615 0.140296
\(520\) 0 0
\(521\) −32.6603 −1.43087 −0.715436 0.698678i \(-0.753772\pi\)
−0.715436 + 0.698678i \(0.753772\pi\)
\(522\) 0 0
\(523\) 38.2487 1.67250 0.836250 0.548349i \(-0.184743\pi\)
0.836250 + 0.548349i \(0.184743\pi\)
\(524\) 0 0
\(525\) 4.92820 0.215084
\(526\) 0 0
\(527\) 1.26795 0.0552327
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) 0 0
\(531\) 8.19615 0.355683
\(532\) 0 0
\(533\) 59.4974 2.57712
\(534\) 0 0
\(535\) −2.94744 −0.127429
\(536\) 0 0
\(537\) 11.4641 0.494713
\(538\) 0 0
\(539\) 5.00000 0.215365
\(540\) 0 0
\(541\) −17.1769 −0.738493 −0.369247 0.929331i \(-0.620384\pi\)
−0.369247 + 0.929331i \(0.620384\pi\)
\(542\) 0 0
\(543\) −9.32051 −0.399981
\(544\) 0 0
\(545\) 1.51666 0.0649666
\(546\) 0 0
\(547\) 7.41154 0.316895 0.158447 0.987367i \(-0.449351\pi\)
0.158447 + 0.987367i \(0.449351\pi\)
\(548\) 0 0
\(549\) −3.26795 −0.139473
\(550\) 0 0
\(551\) −12.7846 −0.544643
\(552\) 0 0
\(553\) −10.1962 −0.433585
\(554\) 0 0
\(555\) 0.339746 0.0144214
\(556\) 0 0
\(557\) 3.66025 0.155090 0.0775450 0.996989i \(-0.475292\pi\)
0.0775450 + 0.996989i \(0.475292\pi\)
\(558\) 0 0
\(559\) −81.9808 −3.46742
\(560\) 0 0
\(561\) −5.00000 −0.211100
\(562\) 0 0
\(563\) −2.39230 −0.100824 −0.0504118 0.998729i \(-0.516053\pi\)
−0.0504118 + 0.998729i \(0.516053\pi\)
\(564\) 0 0
\(565\) 0.908965 0.0382405
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) −38.2487 −1.60347 −0.801735 0.597680i \(-0.796089\pi\)
−0.801735 + 0.597680i \(0.796089\pi\)
\(570\) 0 0
\(571\) −23.7128 −0.992350 −0.496175 0.868222i \(-0.665263\pi\)
−0.496175 + 0.868222i \(0.665263\pi\)
\(572\) 0 0
\(573\) 16.9282 0.707186
\(574\) 0 0
\(575\) −14.7846 −0.616561
\(576\) 0 0
\(577\) 22.1244 0.921049 0.460524 0.887647i \(-0.347661\pi\)
0.460524 + 0.887647i \(0.347661\pi\)
\(578\) 0 0
\(579\) −24.0526 −0.999590
\(580\) 0 0
\(581\) −0.928203 −0.0385084
\(582\) 0 0
\(583\) 58.3013 2.41459
\(584\) 0 0
\(585\) 1.92820 0.0797214
\(586\) 0 0
\(587\) −17.5167 −0.722990 −0.361495 0.932374i \(-0.617734\pi\)
−0.361495 + 0.932374i \(0.617734\pi\)
\(588\) 0 0
\(589\) −4.05256 −0.166983
\(590\) 0 0
\(591\) 11.0000 0.452480
\(592\) 0 0
\(593\) 20.8756 0.857260 0.428630 0.903480i \(-0.358996\pi\)
0.428630 + 0.903480i \(0.358996\pi\)
\(594\) 0 0
\(595\) −0.267949 −0.0109848
\(596\) 0 0
\(597\) −4.73205 −0.193670
\(598\) 0 0
\(599\) −40.6410 −1.66055 −0.830273 0.557356i \(-0.811816\pi\)
−0.830273 + 0.557356i \(0.811816\pi\)
\(600\) 0 0
\(601\) −26.4449 −1.07871 −0.539354 0.842079i \(-0.681332\pi\)
−0.539354 + 0.842079i \(0.681332\pi\)
\(602\) 0 0
\(603\) 4.53590 0.184716
\(604\) 0 0
\(605\) −3.75129 −0.152512
\(606\) 0 0
\(607\) −29.3731 −1.19222 −0.596108 0.802904i \(-0.703287\pi\)
−0.596108 + 0.802904i \(0.703287\pi\)
\(608\) 0 0
\(609\) −4.00000 −0.162088
\(610\) 0 0
\(611\) 9.12436 0.369132
\(612\) 0 0
\(613\) −10.0718 −0.406796 −0.203398 0.979096i \(-0.565199\pi\)
−0.203398 + 0.979096i \(0.565199\pi\)
\(614\) 0 0
\(615\) −2.21539 −0.0893332
\(616\) 0 0
\(617\) −18.9282 −0.762021 −0.381010 0.924571i \(-0.624424\pi\)
−0.381010 + 0.924571i \(0.624424\pi\)
\(618\) 0 0
\(619\) 31.9090 1.28253 0.641265 0.767320i \(-0.278410\pi\)
0.641265 + 0.767320i \(0.278410\pi\)
\(620\) 0 0
\(621\) −3.00000 −0.120386
\(622\) 0 0
\(623\) 8.39230 0.336231
\(624\) 0 0
\(625\) 23.9282 0.957128
\(626\) 0 0
\(627\) 15.9808 0.638210
\(628\) 0 0
\(629\) 1.26795 0.0505564
\(630\) 0 0
\(631\) −17.9282 −0.713711 −0.356855 0.934160i \(-0.616151\pi\)
−0.356855 + 0.934160i \(0.616151\pi\)
\(632\) 0 0
\(633\) 22.5885 0.897811
\(634\) 0 0
\(635\) −1.98076 −0.0786041
\(636\) 0 0
\(637\) −7.19615 −0.285122
\(638\) 0 0
\(639\) −3.46410 −0.137038
\(640\) 0 0
\(641\) −10.8564 −0.428802 −0.214401 0.976746i \(-0.568780\pi\)
−0.214401 + 0.976746i \(0.568780\pi\)
\(642\) 0 0
\(643\) 41.8564 1.65066 0.825328 0.564654i \(-0.190990\pi\)
0.825328 + 0.564654i \(0.190990\pi\)
\(644\) 0 0
\(645\) 3.05256 0.120194
\(646\) 0 0
\(647\) −30.3923 −1.19484 −0.597422 0.801927i \(-0.703808\pi\)
−0.597422 + 0.801927i \(0.703808\pi\)
\(648\) 0 0
\(649\) 40.9808 1.60864
\(650\) 0 0
\(651\) −1.26795 −0.0496948
\(652\) 0 0
\(653\) −13.3923 −0.524081 −0.262041 0.965057i \(-0.584395\pi\)
−0.262041 + 0.965057i \(0.584395\pi\)
\(654\) 0 0
\(655\) −0.751289 −0.0293553
\(656\) 0 0
\(657\) 3.46410 0.135147
\(658\) 0 0
\(659\) −4.73205 −0.184335 −0.0921673 0.995744i \(-0.529379\pi\)
−0.0921673 + 0.995744i \(0.529379\pi\)
\(660\) 0 0
\(661\) 17.9808 0.699371 0.349685 0.936867i \(-0.386289\pi\)
0.349685 + 0.936867i \(0.386289\pi\)
\(662\) 0 0
\(663\) 7.19615 0.279475
\(664\) 0 0
\(665\) 0.856406 0.0332100
\(666\) 0 0
\(667\) 12.0000 0.464642
\(668\) 0 0
\(669\) −14.1244 −0.546079
\(670\) 0 0
\(671\) −16.3397 −0.630789
\(672\) 0 0
\(673\) −8.92820 −0.344157 −0.172078 0.985083i \(-0.555048\pi\)
−0.172078 + 0.985083i \(0.555048\pi\)
\(674\) 0 0
\(675\) 4.92820 0.189687
\(676\) 0 0
\(677\) −11.8756 −0.456418 −0.228209 0.973612i \(-0.573287\pi\)
−0.228209 + 0.973612i \(0.573287\pi\)
\(678\) 0 0
\(679\) −13.8564 −0.531760
\(680\) 0 0
\(681\) −19.0526 −0.730096
\(682\) 0 0
\(683\) −9.00000 −0.344375 −0.172188 0.985064i \(-0.555084\pi\)
−0.172188 + 0.985064i \(0.555084\pi\)
\(684\) 0 0
\(685\) 0.588457 0.0224838
\(686\) 0 0
\(687\) 5.85641 0.223436
\(688\) 0 0
\(689\) −83.9090 −3.19668
\(690\) 0 0
\(691\) 39.6603 1.50875 0.754374 0.656445i \(-0.227941\pi\)
0.754374 + 0.656445i \(0.227941\pi\)
\(692\) 0 0
\(693\) 5.00000 0.189934
\(694\) 0 0
\(695\) −4.14359 −0.157175
\(696\) 0 0
\(697\) −8.26795 −0.313171
\(698\) 0 0
\(699\) −15.9282 −0.602460
\(700\) 0 0
\(701\) 7.60770 0.287339 0.143669 0.989626i \(-0.454110\pi\)
0.143669 + 0.989626i \(0.454110\pi\)
\(702\) 0 0
\(703\) −4.05256 −0.152845
\(704\) 0 0
\(705\) −0.339746 −0.0127956
\(706\) 0 0
\(707\) 0.732051 0.0275316
\(708\) 0 0
\(709\) −45.7128 −1.71678 −0.858390 0.512997i \(-0.828535\pi\)
−0.858390 + 0.512997i \(0.828535\pi\)
\(710\) 0 0
\(711\) −10.1962 −0.382386
\(712\) 0 0
\(713\) 3.80385 0.142455
\(714\) 0 0
\(715\) 9.64102 0.360554
\(716\) 0 0
\(717\) −19.5167 −0.728863
\(718\) 0 0
\(719\) 42.1244 1.57097 0.785487 0.618879i \(-0.212413\pi\)
0.785487 + 0.618879i \(0.212413\pi\)
\(720\) 0 0
\(721\) −7.19615 −0.267999
\(722\) 0 0
\(723\) −14.9282 −0.555186
\(724\) 0 0
\(725\) −19.7128 −0.732115
\(726\) 0 0
\(727\) −12.3923 −0.459605 −0.229803 0.973237i \(-0.573808\pi\)
−0.229803 + 0.973237i \(0.573808\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 11.3923 0.421360
\(732\) 0 0
\(733\) 43.1769 1.59478 0.797388 0.603467i \(-0.206215\pi\)
0.797388 + 0.603467i \(0.206215\pi\)
\(734\) 0 0
\(735\) 0.267949 0.00988345
\(736\) 0 0
\(737\) 22.6795 0.835410
\(738\) 0 0
\(739\) −31.3923 −1.15478 −0.577392 0.816467i \(-0.695930\pi\)
−0.577392 + 0.816467i \(0.695930\pi\)
\(740\) 0 0
\(741\) −23.0000 −0.844926
\(742\) 0 0
\(743\) 43.8564 1.60894 0.804468 0.593996i \(-0.202451\pi\)
0.804468 + 0.593996i \(0.202451\pi\)
\(744\) 0 0
\(745\) −0.928203 −0.0340067
\(746\) 0 0
\(747\) −0.928203 −0.0339612
\(748\) 0 0
\(749\) 11.0000 0.401931
\(750\) 0 0
\(751\) 22.1962 0.809949 0.404975 0.914328i \(-0.367280\pi\)
0.404975 + 0.914328i \(0.367280\pi\)
\(752\) 0 0
\(753\) −29.1244 −1.06135
\(754\) 0 0
\(755\) 0.535898 0.0195033
\(756\) 0 0
\(757\) −22.4641 −0.816472 −0.408236 0.912877i \(-0.633856\pi\)
−0.408236 + 0.912877i \(0.633856\pi\)
\(758\) 0 0
\(759\) −15.0000 −0.544466
\(760\) 0 0
\(761\) 48.9282 1.77365 0.886823 0.462109i \(-0.152907\pi\)
0.886823 + 0.462109i \(0.152907\pi\)
\(762\) 0 0
\(763\) −5.66025 −0.204915
\(764\) 0 0
\(765\) −0.267949 −0.00968772
\(766\) 0 0
\(767\) −58.9808 −2.12967
\(768\) 0 0
\(769\) 26.1244 0.942068 0.471034 0.882115i \(-0.343881\pi\)
0.471034 + 0.882115i \(0.343881\pi\)
\(770\) 0 0
\(771\) 3.66025 0.131821
\(772\) 0 0
\(773\) 10.1962 0.366730 0.183365 0.983045i \(-0.441301\pi\)
0.183365 + 0.983045i \(0.441301\pi\)
\(774\) 0 0
\(775\) −6.24871 −0.224460
\(776\) 0 0
\(777\) −1.26795 −0.0454874
\(778\) 0 0
\(779\) 26.4256 0.946796
\(780\) 0 0
\(781\) −17.3205 −0.619777
\(782\) 0 0
\(783\) −4.00000 −0.142948
\(784\) 0 0
\(785\) −5.24871 −0.187335
\(786\) 0 0
\(787\) −33.9090 −1.20872 −0.604362 0.796710i \(-0.706572\pi\)
−0.604362 + 0.796710i \(0.706572\pi\)
\(788\) 0 0
\(789\) 13.4641 0.479335
\(790\) 0 0
\(791\) −3.39230 −0.120616
\(792\) 0 0
\(793\) 23.5167 0.835101
\(794\) 0 0
\(795\) 3.12436 0.110809
\(796\) 0 0
\(797\) 5.85641 0.207445 0.103722 0.994606i \(-0.466925\pi\)
0.103722 + 0.994606i \(0.466925\pi\)
\(798\) 0 0
\(799\) −1.26795 −0.0448568
\(800\) 0 0
\(801\) 8.39230 0.296528
\(802\) 0 0
\(803\) 17.3205 0.611227
\(804\) 0 0
\(805\) −0.803848 −0.0283319
\(806\) 0 0
\(807\) 23.1962 0.816543
\(808\) 0 0
\(809\) 26.3205 0.925380 0.462690 0.886520i \(-0.346884\pi\)
0.462690 + 0.886520i \(0.346884\pi\)
\(810\) 0 0
\(811\) 44.6410 1.56756 0.783779 0.621040i \(-0.213289\pi\)
0.783779 + 0.621040i \(0.213289\pi\)
\(812\) 0 0
\(813\) −15.7321 −0.551747
\(814\) 0 0
\(815\) −1.89488 −0.0663748
\(816\) 0 0
\(817\) −36.4115 −1.27388
\(818\) 0 0
\(819\) −7.19615 −0.251454
\(820\) 0 0
\(821\) 34.3205 1.19779 0.598897 0.800826i \(-0.295606\pi\)
0.598897 + 0.800826i \(0.295606\pi\)
\(822\) 0 0
\(823\) −28.9808 −1.01021 −0.505103 0.863059i \(-0.668545\pi\)
−0.505103 + 0.863059i \(0.668545\pi\)
\(824\) 0 0
\(825\) 24.6410 0.857890
\(826\) 0 0
\(827\) 21.2487 0.738890 0.369445 0.929253i \(-0.379548\pi\)
0.369445 + 0.929253i \(0.379548\pi\)
\(828\) 0 0
\(829\) −51.5692 −1.79107 −0.895537 0.444988i \(-0.853208\pi\)
−0.895537 + 0.444988i \(0.853208\pi\)
\(830\) 0 0
\(831\) 6.39230 0.221747
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 1.28719 0.0445449
\(836\) 0 0
\(837\) −1.26795 −0.0438267
\(838\) 0 0
\(839\) −42.9090 −1.48138 −0.740691 0.671846i \(-0.765502\pi\)
−0.740691 + 0.671846i \(0.765502\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 0 0
\(843\) 11.6077 0.399790
\(844\) 0 0
\(845\) −10.3923 −0.357506
\(846\) 0 0
\(847\) 14.0000 0.481046
\(848\) 0 0
\(849\) −30.7321 −1.05472
\(850\) 0 0
\(851\) 3.80385 0.130394
\(852\) 0 0
\(853\) 8.58846 0.294063 0.147032 0.989132i \(-0.453028\pi\)
0.147032 + 0.989132i \(0.453028\pi\)
\(854\) 0 0
\(855\) 0.856406 0.0292885
\(856\) 0 0
\(857\) −37.3205 −1.27484 −0.637422 0.770515i \(-0.719999\pi\)
−0.637422 + 0.770515i \(0.719999\pi\)
\(858\) 0 0
\(859\) 22.2487 0.759116 0.379558 0.925168i \(-0.376076\pi\)
0.379558 + 0.925168i \(0.376076\pi\)
\(860\) 0 0
\(861\) 8.26795 0.281771
\(862\) 0 0
\(863\) −21.3731 −0.727548 −0.363774 0.931487i \(-0.618512\pi\)
−0.363774 + 0.931487i \(0.618512\pi\)
\(864\) 0 0
\(865\) 0.856406 0.0291187
\(866\) 0 0
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) −50.9808 −1.72940
\(870\) 0 0
\(871\) −32.6410 −1.10600
\(872\) 0 0
\(873\) −13.8564 −0.468968
\(874\) 0 0
\(875\) 2.66025 0.0899330
\(876\) 0 0
\(877\) −36.7321 −1.24035 −0.620177 0.784462i \(-0.712939\pi\)
−0.620177 + 0.784462i \(0.712939\pi\)
\(878\) 0 0
\(879\) −14.9282 −0.503516
\(880\) 0 0
\(881\) 10.3923 0.350126 0.175063 0.984557i \(-0.443987\pi\)
0.175063 + 0.984557i \(0.443987\pi\)
\(882\) 0 0
\(883\) −26.4641 −0.890588 −0.445294 0.895384i \(-0.646901\pi\)
−0.445294 + 0.895384i \(0.646901\pi\)
\(884\) 0 0
\(885\) 2.19615 0.0738229
\(886\) 0 0
\(887\) 28.1244 0.944323 0.472162 0.881512i \(-0.343474\pi\)
0.472162 + 0.881512i \(0.343474\pi\)
\(888\) 0 0
\(889\) 7.39230 0.247930
\(890\) 0 0
\(891\) 5.00000 0.167506
\(892\) 0 0
\(893\) 4.05256 0.135614
\(894\) 0 0
\(895\) 3.07180 0.102679
\(896\) 0 0
\(897\) 21.5885 0.720818
\(898\) 0 0
\(899\) 5.07180 0.169154
\(900\) 0 0
\(901\) 11.6603 0.388459
\(902\) 0 0
\(903\) −11.3923 −0.379112
\(904\) 0 0
\(905\) −2.49742 −0.0830171
\(906\) 0 0
\(907\) 37.0333 1.22967 0.614836 0.788655i \(-0.289222\pi\)
0.614836 + 0.788655i \(0.289222\pi\)
\(908\) 0 0
\(909\) 0.732051 0.0242806
\(910\) 0 0
\(911\) −9.24871 −0.306423 −0.153212 0.988193i \(-0.548962\pi\)
−0.153212 + 0.988193i \(0.548962\pi\)
\(912\) 0 0
\(913\) −4.64102 −0.153595
\(914\) 0 0
\(915\) −0.875644 −0.0289479
\(916\) 0 0
\(917\) 2.80385 0.0925912
\(918\) 0 0
\(919\) 13.6795 0.451245 0.225622 0.974215i \(-0.427558\pi\)
0.225622 + 0.974215i \(0.427558\pi\)
\(920\) 0 0
\(921\) 22.9282 0.755510
\(922\) 0 0
\(923\) 24.9282 0.820522
\(924\) 0 0
\(925\) −6.24871 −0.205456
\(926\) 0 0
\(927\) −7.19615 −0.236353
\(928\) 0 0
\(929\) 39.9808 1.31173 0.655863 0.754880i \(-0.272305\pi\)
0.655863 + 0.754880i \(0.272305\pi\)
\(930\) 0 0
\(931\) −3.19615 −0.104750
\(932\) 0 0
\(933\) −27.7128 −0.907277
\(934\) 0 0
\(935\) −1.33975 −0.0438144
\(936\) 0 0
\(937\) −3.21539 −0.105042 −0.0525211 0.998620i \(-0.516726\pi\)
−0.0525211 + 0.998620i \(0.516726\pi\)
\(938\) 0 0
\(939\) −5.12436 −0.167227
\(940\) 0 0
\(941\) 39.8564 1.29928 0.649641 0.760241i \(-0.274919\pi\)
0.649641 + 0.760241i \(0.274919\pi\)
\(942\) 0 0
\(943\) −24.8038 −0.807724
\(944\) 0 0
\(945\) 0.267949 0.00871639
\(946\) 0 0
\(947\) −12.1436 −0.394614 −0.197307 0.980342i \(-0.563220\pi\)
−0.197307 + 0.980342i \(0.563220\pi\)
\(948\) 0 0
\(949\) −24.9282 −0.809204
\(950\) 0 0
\(951\) −24.9282 −0.808352
\(952\) 0 0
\(953\) 18.7321 0.606791 0.303395 0.952865i \(-0.401880\pi\)
0.303395 + 0.952865i \(0.401880\pi\)
\(954\) 0 0
\(955\) 4.53590 0.146778
\(956\) 0 0
\(957\) −20.0000 −0.646508
\(958\) 0 0
\(959\) −2.19615 −0.0709175
\(960\) 0 0
\(961\) −29.3923 −0.948139
\(962\) 0 0
\(963\) 11.0000 0.354470
\(964\) 0 0
\(965\) −6.44486 −0.207468
\(966\) 0 0
\(967\) −3.78461 −0.121705 −0.0608524 0.998147i \(-0.519382\pi\)
−0.0608524 + 0.998147i \(0.519382\pi\)
\(968\) 0 0
\(969\) 3.19615 0.102675
\(970\) 0 0
\(971\) −23.0718 −0.740409 −0.370205 0.928950i \(-0.620712\pi\)
−0.370205 + 0.928950i \(0.620712\pi\)
\(972\) 0 0
\(973\) 15.4641 0.495756
\(974\) 0 0
\(975\) −35.4641 −1.13576
\(976\) 0 0
\(977\) 38.1051 1.21909 0.609545 0.792751i \(-0.291352\pi\)
0.609545 + 0.792751i \(0.291352\pi\)
\(978\) 0 0
\(979\) 41.9615 1.34110
\(980\) 0 0
\(981\) −5.66025 −0.180718
\(982\) 0 0
\(983\) −18.8038 −0.599750 −0.299875 0.953979i \(-0.596945\pi\)
−0.299875 + 0.953979i \(0.596945\pi\)
\(984\) 0 0
\(985\) 2.94744 0.0939133
\(986\) 0 0
\(987\) 1.26795 0.0403593
\(988\) 0 0
\(989\) 34.1769 1.08676
\(990\) 0 0
\(991\) −11.2154 −0.356269 −0.178134 0.984006i \(-0.557006\pi\)
−0.178134 + 0.984006i \(0.557006\pi\)
\(992\) 0 0
\(993\) −1.92820 −0.0611897
\(994\) 0 0
\(995\) −1.26795 −0.0401967
\(996\) 0 0
\(997\) −8.92820 −0.282759 −0.141380 0.989955i \(-0.545154\pi\)
−0.141380 + 0.989955i \(0.545154\pi\)
\(998\) 0 0
\(999\) −1.26795 −0.0401161
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5712.2.a.bc.1.2 2
4.3 odd 2 357.2.a.e.1.1 2
12.11 even 2 1071.2.a.f.1.2 2
20.19 odd 2 8925.2.a.bl.1.2 2
28.27 even 2 2499.2.a.n.1.1 2
68.67 odd 2 6069.2.a.f.1.1 2
84.83 odd 2 7497.2.a.y.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.a.e.1.1 2 4.3 odd 2
1071.2.a.f.1.2 2 12.11 even 2
2499.2.a.n.1.1 2 28.27 even 2
5712.2.a.bc.1.2 2 1.1 even 1 trivial
6069.2.a.f.1.1 2 68.67 odd 2
7497.2.a.y.1.2 2 84.83 odd 2
8925.2.a.bl.1.2 2 20.19 odd 2