Properties

Label 5712.2.a.bw.1.1
Level $5712$
Weight $2$
Character 5712.1
Self dual yes
Analytic conductor $45.611$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5712,2,Mod(1,5712)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5712, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5712.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5712.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.6105496346\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.4764.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 12x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1428)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.19852\) of defining polynomial
Character \(\chi\) \(=\) 5712.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -3.19852 q^{5} -1.00000 q^{7} +1.00000 q^{9} +2.23055 q^{11} -3.19852 q^{13} -3.19852 q^{15} +1.00000 q^{17} +3.19852 q^{19} -1.00000 q^{21} -2.23055 q^{23} +5.23055 q^{25} +1.00000 q^{27} -7.42907 q^{31} +2.23055 q^{33} +3.19852 q^{35} +4.96797 q^{37} -3.19852 q^{39} -3.19852 q^{41} -4.16650 q^{43} -3.19852 q^{45} +7.42907 q^{47} +1.00000 q^{49} +1.00000 q^{51} -1.42907 q^{53} -7.13447 q^{55} +3.19852 q^{57} -3.42907 q^{59} +5.03203 q^{61} -1.00000 q^{63} +10.2306 q^{65} -14.3970 q^{67} -2.23055 q^{69} -6.39705 q^{71} +14.3970 q^{73} +5.23055 q^{75} -2.23055 q^{77} -5.03203 q^{79} +1.00000 q^{81} +16.3330 q^{83} -3.19852 q^{85} +8.39705 q^{89} +3.19852 q^{91} -7.42907 q^{93} -10.2306 q^{95} +8.00000 q^{97} +2.23055 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + 2 q^{5} - 3 q^{7} + 3 q^{9} + 2 q^{11} + 2 q^{13} + 2 q^{15} + 3 q^{17} - 2 q^{19} - 3 q^{21} - 2 q^{23} + 11 q^{25} + 3 q^{27} - 6 q^{31} + 2 q^{33} - 2 q^{35} + 8 q^{37} + 2 q^{39} + 2 q^{41}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −3.19852 −1.43042 −0.715212 0.698908i \(-0.753670\pi\)
−0.715212 + 0.698908i \(0.753670\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.23055 0.672536 0.336268 0.941766i \(-0.390835\pi\)
0.336268 + 0.941766i \(0.390835\pi\)
\(12\) 0 0
\(13\) −3.19852 −0.887111 −0.443555 0.896247i \(-0.646283\pi\)
−0.443555 + 0.896247i \(0.646283\pi\)
\(14\) 0 0
\(15\) −3.19852 −0.825855
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 3.19852 0.733792 0.366896 0.930262i \(-0.380421\pi\)
0.366896 + 0.930262i \(0.380421\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −2.23055 −0.465102 −0.232551 0.972584i \(-0.574707\pi\)
−0.232551 + 0.972584i \(0.574707\pi\)
\(24\) 0 0
\(25\) 5.23055 1.04611
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −7.42907 −1.33430 −0.667151 0.744923i \(-0.732486\pi\)
−0.667151 + 0.744923i \(0.732486\pi\)
\(32\) 0 0
\(33\) 2.23055 0.388289
\(34\) 0 0
\(35\) 3.19852 0.540649
\(36\) 0 0
\(37\) 4.96797 0.816730 0.408365 0.912819i \(-0.366099\pi\)
0.408365 + 0.912819i \(0.366099\pi\)
\(38\) 0 0
\(39\) −3.19852 −0.512174
\(40\) 0 0
\(41\) −3.19852 −0.499525 −0.249763 0.968307i \(-0.580353\pi\)
−0.249763 + 0.968307i \(0.580353\pi\)
\(42\) 0 0
\(43\) −4.16650 −0.635385 −0.317692 0.948194i \(-0.602908\pi\)
−0.317692 + 0.948194i \(0.602908\pi\)
\(44\) 0 0
\(45\) −3.19852 −0.476808
\(46\) 0 0
\(47\) 7.42907 1.08364 0.541821 0.840494i \(-0.317735\pi\)
0.541821 + 0.840494i \(0.317735\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 0 0
\(53\) −1.42907 −0.196298 −0.0981492 0.995172i \(-0.531292\pi\)
−0.0981492 + 0.995172i \(0.531292\pi\)
\(54\) 0 0
\(55\) −7.13447 −0.962011
\(56\) 0 0
\(57\) 3.19852 0.423655
\(58\) 0 0
\(59\) −3.42907 −0.446427 −0.223214 0.974770i \(-0.571655\pi\)
−0.223214 + 0.974770i \(0.571655\pi\)
\(60\) 0 0
\(61\) 5.03203 0.644285 0.322143 0.946691i \(-0.395597\pi\)
0.322143 + 0.946691i \(0.395597\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) 10.2306 1.26894
\(66\) 0 0
\(67\) −14.3970 −1.75888 −0.879440 0.476011i \(-0.842082\pi\)
−0.879440 + 0.476011i \(0.842082\pi\)
\(68\) 0 0
\(69\) −2.23055 −0.268527
\(70\) 0 0
\(71\) −6.39705 −0.759190 −0.379595 0.925153i \(-0.623937\pi\)
−0.379595 + 0.925153i \(0.623937\pi\)
\(72\) 0 0
\(73\) 14.3970 1.68505 0.842523 0.538660i \(-0.181069\pi\)
0.842523 + 0.538660i \(0.181069\pi\)
\(74\) 0 0
\(75\) 5.23055 0.603972
\(76\) 0 0
\(77\) −2.23055 −0.254195
\(78\) 0 0
\(79\) −5.03203 −0.566147 −0.283074 0.959098i \(-0.591354\pi\)
−0.283074 + 0.959098i \(0.591354\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.3330 1.79278 0.896389 0.443268i \(-0.146181\pi\)
0.896389 + 0.443268i \(0.146181\pi\)
\(84\) 0 0
\(85\) −3.19852 −0.346929
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.39705 0.890085 0.445043 0.895509i \(-0.353189\pi\)
0.445043 + 0.895509i \(0.353189\pi\)
\(90\) 0 0
\(91\) 3.19852 0.335296
\(92\) 0 0
\(93\) −7.42907 −0.770359
\(94\) 0 0
\(95\) −10.2306 −1.04963
\(96\) 0 0
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) 0 0
\(99\) 2.23055 0.224179
\(100\) 0 0
\(101\) 11.3650 1.13086 0.565431 0.824796i \(-0.308710\pi\)
0.565431 + 0.824796i \(0.308710\pi\)
\(102\) 0 0
\(103\) −0.801477 −0.0789719 −0.0394859 0.999220i \(-0.512572\pi\)
−0.0394859 + 0.999220i \(0.512572\pi\)
\(104\) 0 0
\(105\) 3.19852 0.312144
\(106\) 0 0
\(107\) −6.23055 −0.602330 −0.301165 0.953572i \(-0.597376\pi\)
−0.301165 + 0.953572i \(0.597376\pi\)
\(108\) 0 0
\(109\) 8.96797 0.858976 0.429488 0.903073i \(-0.358694\pi\)
0.429488 + 0.903073i \(0.358694\pi\)
\(110\) 0 0
\(111\) 4.96797 0.471539
\(112\) 0 0
\(113\) 8.62760 0.811616 0.405808 0.913958i \(-0.366990\pi\)
0.405808 + 0.913958i \(0.366990\pi\)
\(114\) 0 0
\(115\) 7.13447 0.665293
\(116\) 0 0
\(117\) −3.19852 −0.295704
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −6.02464 −0.547695
\(122\) 0 0
\(123\) −3.19852 −0.288401
\(124\) 0 0
\(125\) −0.737422 −0.0659570
\(126\) 0 0
\(127\) −0.166496 −0.0147741 −0.00738705 0.999973i \(-0.502351\pi\)
−0.00738705 + 0.999973i \(0.502351\pi\)
\(128\) 0 0
\(129\) −4.16650 −0.366839
\(130\) 0 0
\(131\) 13.1985 1.15316 0.576580 0.817041i \(-0.304387\pi\)
0.576580 + 0.817041i \(0.304387\pi\)
\(132\) 0 0
\(133\) −3.19852 −0.277347
\(134\) 0 0
\(135\) −3.19852 −0.275285
\(136\) 0 0
\(137\) 6.57093 0.561392 0.280696 0.959797i \(-0.409435\pi\)
0.280696 + 0.959797i \(0.409435\pi\)
\(138\) 0 0
\(139\) 14.3970 1.22114 0.610571 0.791962i \(-0.290940\pi\)
0.610571 + 0.791962i \(0.290940\pi\)
\(140\) 0 0
\(141\) 7.42907 0.625641
\(142\) 0 0
\(143\) −7.13447 −0.596614
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.00000 0.0824786
\(148\) 0 0
\(149\) −0.0640550 −0.00524759 −0.00262380 0.999997i \(-0.500835\pi\)
−0.00262380 + 0.999997i \(0.500835\pi\)
\(150\) 0 0
\(151\) −8.46110 −0.688555 −0.344277 0.938868i \(-0.611876\pi\)
−0.344277 + 0.938868i \(0.611876\pi\)
\(152\) 0 0
\(153\) 1.00000 0.0808452
\(154\) 0 0
\(155\) 23.7621 1.90862
\(156\) 0 0
\(157\) −3.65962 −0.292070 −0.146035 0.989279i \(-0.546651\pi\)
−0.146035 + 0.989279i \(0.546651\pi\)
\(158\) 0 0
\(159\) −1.42907 −0.113333
\(160\) 0 0
\(161\) 2.23055 0.175792
\(162\) 0 0
\(163\) 13.2552 1.03823 0.519113 0.854705i \(-0.326262\pi\)
0.519113 + 0.854705i \(0.326262\pi\)
\(164\) 0 0
\(165\) −7.13447 −0.555418
\(166\) 0 0
\(167\) 3.26258 0.252466 0.126233 0.992001i \(-0.459711\pi\)
0.126233 + 0.992001i \(0.459711\pi\)
\(168\) 0 0
\(169\) −2.76945 −0.213035
\(170\) 0 0
\(171\) 3.19852 0.244597
\(172\) 0 0
\(173\) −2.40443 −0.182805 −0.0914027 0.995814i \(-0.529135\pi\)
−0.0914027 + 0.995814i \(0.529135\pi\)
\(174\) 0 0
\(175\) −5.23055 −0.395392
\(176\) 0 0
\(177\) −3.42907 −0.257745
\(178\) 0 0
\(179\) 7.93594 0.593160 0.296580 0.955008i \(-0.404154\pi\)
0.296580 + 0.955008i \(0.404154\pi\)
\(180\) 0 0
\(181\) 19.3192 1.43599 0.717994 0.696049i \(-0.245060\pi\)
0.717994 + 0.696049i \(0.245060\pi\)
\(182\) 0 0
\(183\) 5.03203 0.371978
\(184\) 0 0
\(185\) −15.8902 −1.16827
\(186\) 0 0
\(187\) 2.23055 0.163114
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 0 0
\(193\) −12.2872 −0.884454 −0.442227 0.896903i \(-0.645811\pi\)
−0.442227 + 0.896903i \(0.645811\pi\)
\(194\) 0 0
\(195\) 10.2306 0.732625
\(196\) 0 0
\(197\) 14.5635 1.03761 0.518805 0.854893i \(-0.326377\pi\)
0.518805 + 0.854893i \(0.326377\pi\)
\(198\) 0 0
\(199\) 15.8902 1.12642 0.563212 0.826312i \(-0.309565\pi\)
0.563212 + 0.826312i \(0.309565\pi\)
\(200\) 0 0
\(201\) −14.3970 −1.01549
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 10.2306 0.714533
\(206\) 0 0
\(207\) −2.23055 −0.155034
\(208\) 0 0
\(209\) 7.13447 0.493501
\(210\) 0 0
\(211\) −7.89018 −0.543182 −0.271591 0.962413i \(-0.587550\pi\)
−0.271591 + 0.962413i \(0.587550\pi\)
\(212\) 0 0
\(213\) −6.39705 −0.438318
\(214\) 0 0
\(215\) 13.3266 0.908869
\(216\) 0 0
\(217\) 7.42907 0.504318
\(218\) 0 0
\(219\) 14.3970 0.972862
\(220\) 0 0
\(221\) −3.19852 −0.215156
\(222\) 0 0
\(223\) 13.5956 0.910427 0.455213 0.890382i \(-0.349563\pi\)
0.455213 + 0.890382i \(0.349563\pi\)
\(224\) 0 0
\(225\) 5.23055 0.348703
\(226\) 0 0
\(227\) −9.99262 −0.663233 −0.331617 0.943414i \(-0.607594\pi\)
−0.331617 + 0.943414i \(0.607594\pi\)
\(228\) 0 0
\(229\) −22.3330 −1.47581 −0.737903 0.674907i \(-0.764184\pi\)
−0.737903 + 0.674907i \(0.764184\pi\)
\(230\) 0 0
\(231\) −2.23055 −0.146759
\(232\) 0 0
\(233\) 10.6917 0.700433 0.350217 0.936669i \(-0.386108\pi\)
0.350217 + 0.936669i \(0.386108\pi\)
\(234\) 0 0
\(235\) −23.7621 −1.55007
\(236\) 0 0
\(237\) −5.03203 −0.326865
\(238\) 0 0
\(239\) 25.7621 1.66641 0.833205 0.552965i \(-0.186504\pi\)
0.833205 + 0.552965i \(0.186504\pi\)
\(240\) 0 0
\(241\) 4.79409 0.308815 0.154407 0.988007i \(-0.450653\pi\)
0.154407 + 0.988007i \(0.450653\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −3.19852 −0.204346
\(246\) 0 0
\(247\) −10.2306 −0.650954
\(248\) 0 0
\(249\) 16.3330 1.03506
\(250\) 0 0
\(251\) 25.8261 1.63013 0.815065 0.579369i \(-0.196701\pi\)
0.815065 + 0.579369i \(0.196701\pi\)
\(252\) 0 0
\(253\) −4.97536 −0.312798
\(254\) 0 0
\(255\) −3.19852 −0.200299
\(256\) 0 0
\(257\) −2.57093 −0.160370 −0.0801850 0.996780i \(-0.525551\pi\)
−0.0801850 + 0.996780i \(0.525551\pi\)
\(258\) 0 0
\(259\) −4.96797 −0.308695
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −17.1911 −1.06005 −0.530026 0.847982i \(-0.677818\pi\)
−0.530026 + 0.847982i \(0.677818\pi\)
\(264\) 0 0
\(265\) 4.57093 0.280790
\(266\) 0 0
\(267\) 8.39705 0.513891
\(268\) 0 0
\(269\) 30.3897 1.85289 0.926445 0.376430i \(-0.122848\pi\)
0.926445 + 0.376430i \(0.122848\pi\)
\(270\) 0 0
\(271\) −26.3897 −1.60306 −0.801529 0.597956i \(-0.795980\pi\)
−0.801529 + 0.597956i \(0.795980\pi\)
\(272\) 0 0
\(273\) 3.19852 0.193583
\(274\) 0 0
\(275\) 11.6670 0.703547
\(276\) 0 0
\(277\) 24.8581 1.49358 0.746791 0.665059i \(-0.231594\pi\)
0.746791 + 0.665059i \(0.231594\pi\)
\(278\) 0 0
\(279\) −7.42907 −0.444767
\(280\) 0 0
\(281\) −12.3970 −0.739546 −0.369773 0.929122i \(-0.620565\pi\)
−0.369773 + 0.929122i \(0.620565\pi\)
\(282\) 0 0
\(283\) 16.2232 0.964367 0.482184 0.876070i \(-0.339844\pi\)
0.482184 + 0.876070i \(0.339844\pi\)
\(284\) 0 0
\(285\) −10.2306 −0.606006
\(286\) 0 0
\(287\) 3.19852 0.188803
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 8.00000 0.468968
\(292\) 0 0
\(293\) 11.2552 0.657535 0.328768 0.944411i \(-0.393367\pi\)
0.328768 + 0.944411i \(0.393367\pi\)
\(294\) 0 0
\(295\) 10.9680 0.638580
\(296\) 0 0
\(297\) 2.23055 0.129430
\(298\) 0 0
\(299\) 7.13447 0.412597
\(300\) 0 0
\(301\) 4.16650 0.240153
\(302\) 0 0
\(303\) 11.3650 0.652903
\(304\) 0 0
\(305\) −16.0951 −0.921600
\(306\) 0 0
\(307\) −19.2552 −1.09895 −0.549476 0.835510i \(-0.685173\pi\)
−0.549476 + 0.835510i \(0.685173\pi\)
\(308\) 0 0
\(309\) −0.801477 −0.0455944
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −9.03203 −0.510520 −0.255260 0.966872i \(-0.582161\pi\)
−0.255260 + 0.966872i \(0.582161\pi\)
\(314\) 0 0
\(315\) 3.19852 0.180216
\(316\) 0 0
\(317\) 34.1774 1.91959 0.959797 0.280695i \(-0.0905650\pi\)
0.959797 + 0.280695i \(0.0905650\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −6.23055 −0.347755
\(322\) 0 0
\(323\) 3.19852 0.177971
\(324\) 0 0
\(325\) −16.7300 −0.928016
\(326\) 0 0
\(327\) 8.96797 0.495930
\(328\) 0 0
\(329\) −7.42907 −0.409578
\(330\) 0 0
\(331\) −6.10244 −0.335420 −0.167710 0.985836i \(-0.553637\pi\)
−0.167710 + 0.985836i \(0.553637\pi\)
\(332\) 0 0
\(333\) 4.96797 0.272243
\(334\) 0 0
\(335\) 46.0493 2.51594
\(336\) 0 0
\(337\) −26.2232 −1.42847 −0.714233 0.699908i \(-0.753225\pi\)
−0.714233 + 0.699908i \(0.753225\pi\)
\(338\) 0 0
\(339\) 8.62760 0.468587
\(340\) 0 0
\(341\) −16.5709 −0.897366
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 7.13447 0.384107
\(346\) 0 0
\(347\) −8.46110 −0.454216 −0.227108 0.973870i \(-0.572927\pi\)
−0.227108 + 0.973870i \(0.572927\pi\)
\(348\) 0 0
\(349\) 8.67337 0.464275 0.232137 0.972683i \(-0.425428\pi\)
0.232137 + 0.972683i \(0.425428\pi\)
\(350\) 0 0
\(351\) −3.19852 −0.170725
\(352\) 0 0
\(353\) 34.6843 1.84606 0.923029 0.384731i \(-0.125706\pi\)
0.923029 + 0.384731i \(0.125706\pi\)
\(354\) 0 0
\(355\) 20.4611 1.08596
\(356\) 0 0
\(357\) −1.00000 −0.0529256
\(358\) 0 0
\(359\) −2.90392 −0.153263 −0.0766315 0.997059i \(-0.524416\pi\)
−0.0766315 + 0.997059i \(0.524416\pi\)
\(360\) 0 0
\(361\) −8.76945 −0.461550
\(362\) 0 0
\(363\) −6.02464 −0.316212
\(364\) 0 0
\(365\) −46.0493 −2.41033
\(366\) 0 0
\(367\) 17.5882 0.918096 0.459048 0.888412i \(-0.348191\pi\)
0.459048 + 0.888412i \(0.348191\pi\)
\(368\) 0 0
\(369\) −3.19852 −0.166508
\(370\) 0 0
\(371\) 1.42907 0.0741938
\(372\) 0 0
\(373\) 16.2689 0.842374 0.421187 0.906974i \(-0.361614\pi\)
0.421187 + 0.906974i \(0.361614\pi\)
\(374\) 0 0
\(375\) −0.737422 −0.0380803
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 4.92220 0.252837 0.126418 0.991977i \(-0.459652\pi\)
0.126418 + 0.991977i \(0.459652\pi\)
\(380\) 0 0
\(381\) −0.166496 −0.00852983
\(382\) 0 0
\(383\) 25.6980 1.31311 0.656553 0.754279i \(-0.272014\pi\)
0.656553 + 0.754279i \(0.272014\pi\)
\(384\) 0 0
\(385\) 7.13447 0.363606
\(386\) 0 0
\(387\) −4.16650 −0.211795
\(388\) 0 0
\(389\) −17.3192 −0.878121 −0.439060 0.898458i \(-0.644689\pi\)
−0.439060 + 0.898458i \(0.644689\pi\)
\(390\) 0 0
\(391\) −2.23055 −0.112804
\(392\) 0 0
\(393\) 13.1985 0.665777
\(394\) 0 0
\(395\) 16.0951 0.809830
\(396\) 0 0
\(397\) −20.6843 −1.03811 −0.519057 0.854740i \(-0.673717\pi\)
−0.519057 + 0.854740i \(0.673717\pi\)
\(398\) 0 0
\(399\) −3.19852 −0.160126
\(400\) 0 0
\(401\) 5.30835 0.265086 0.132543 0.991177i \(-0.457686\pi\)
0.132543 + 0.991177i \(0.457686\pi\)
\(402\) 0 0
\(403\) 23.7621 1.18367
\(404\) 0 0
\(405\) −3.19852 −0.158936
\(406\) 0 0
\(407\) 11.0813 0.549280
\(408\) 0 0
\(409\) −0.673367 −0.0332958 −0.0166479 0.999861i \(-0.505299\pi\)
−0.0166479 + 0.999861i \(0.505299\pi\)
\(410\) 0 0
\(411\) 6.57093 0.324120
\(412\) 0 0
\(413\) 3.42907 0.168734
\(414\) 0 0
\(415\) −52.2415 −2.56443
\(416\) 0 0
\(417\) 14.3970 0.705026
\(418\) 0 0
\(419\) 17.6030 0.859961 0.429980 0.902838i \(-0.358521\pi\)
0.429980 + 0.902838i \(0.358521\pi\)
\(420\) 0 0
\(421\) −30.6276 −1.49270 −0.746349 0.665555i \(-0.768195\pi\)
−0.746349 + 0.665555i \(0.768195\pi\)
\(422\) 0 0
\(423\) 7.42907 0.361214
\(424\) 0 0
\(425\) 5.23055 0.253719
\(426\) 0 0
\(427\) −5.03203 −0.243517
\(428\) 0 0
\(429\) −7.13447 −0.344455
\(430\) 0 0
\(431\) −3.87189 −0.186502 −0.0932512 0.995643i \(-0.529726\pi\)
−0.0932512 + 0.995643i \(0.529726\pi\)
\(432\) 0 0
\(433\) 20.7867 0.998945 0.499473 0.866330i \(-0.333527\pi\)
0.499473 + 0.866330i \(0.333527\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.13447 −0.341288
\(438\) 0 0
\(439\) −32.6843 −1.55994 −0.779968 0.625820i \(-0.784764\pi\)
−0.779968 + 0.625820i \(0.784764\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −2.44282 −0.116062 −0.0580308 0.998315i \(-0.518482\pi\)
−0.0580308 + 0.998315i \(0.518482\pi\)
\(444\) 0 0
\(445\) −26.8581 −1.27320
\(446\) 0 0
\(447\) −0.0640550 −0.00302970
\(448\) 0 0
\(449\) −2.85815 −0.134884 −0.0674422 0.997723i \(-0.521484\pi\)
−0.0674422 + 0.997723i \(0.521484\pi\)
\(450\) 0 0
\(451\) −7.13447 −0.335949
\(452\) 0 0
\(453\) −8.46110 −0.397537
\(454\) 0 0
\(455\) −10.2306 −0.479616
\(456\) 0 0
\(457\) 2.75571 0.128907 0.0644533 0.997921i \(-0.479470\pi\)
0.0644533 + 0.997921i \(0.479470\pi\)
\(458\) 0 0
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) 34.6843 1.61541 0.807704 0.589589i \(-0.200710\pi\)
0.807704 + 0.589589i \(0.200710\pi\)
\(462\) 0 0
\(463\) −17.2552 −0.801917 −0.400958 0.916096i \(-0.631323\pi\)
−0.400958 + 0.916096i \(0.631323\pi\)
\(464\) 0 0
\(465\) 23.7621 1.10194
\(466\) 0 0
\(467\) −7.19114 −0.332766 −0.166383 0.986061i \(-0.553209\pi\)
−0.166383 + 0.986061i \(0.553209\pi\)
\(468\) 0 0
\(469\) 14.3970 0.664794
\(470\) 0 0
\(471\) −3.65962 −0.168627
\(472\) 0 0
\(473\) −9.29358 −0.427319
\(474\) 0 0
\(475\) 16.7300 0.767627
\(476\) 0 0
\(477\) −1.42907 −0.0654328
\(478\) 0 0
\(479\) −22.5818 −1.03179 −0.515895 0.856652i \(-0.672541\pi\)
−0.515895 + 0.856652i \(0.672541\pi\)
\(480\) 0 0
\(481\) −15.8902 −0.724530
\(482\) 0 0
\(483\) 2.23055 0.101494
\(484\) 0 0
\(485\) −25.5882 −1.16190
\(486\) 0 0
\(487\) −11.5389 −0.522877 −0.261439 0.965220i \(-0.584197\pi\)
−0.261439 + 0.965220i \(0.584197\pi\)
\(488\) 0 0
\(489\) 13.2552 0.599421
\(490\) 0 0
\(491\) 30.7941 1.38972 0.694859 0.719146i \(-0.255467\pi\)
0.694859 + 0.719146i \(0.255467\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −7.13447 −0.320670
\(496\) 0 0
\(497\) 6.39705 0.286947
\(498\) 0 0
\(499\) −9.95423 −0.445613 −0.222806 0.974863i \(-0.571522\pi\)
−0.222806 + 0.974863i \(0.571522\pi\)
\(500\) 0 0
\(501\) 3.26258 0.145761
\(502\) 0 0
\(503\) −27.5956 −1.23043 −0.615213 0.788361i \(-0.710930\pi\)
−0.615213 + 0.788361i \(0.710930\pi\)
\(504\) 0 0
\(505\) −36.3513 −1.61761
\(506\) 0 0
\(507\) −2.76945 −0.122996
\(508\) 0 0
\(509\) 20.0493 0.888669 0.444335 0.895861i \(-0.353440\pi\)
0.444335 + 0.895861i \(0.353440\pi\)
\(510\) 0 0
\(511\) −14.3970 −0.636888
\(512\) 0 0
\(513\) 3.19852 0.141218
\(514\) 0 0
\(515\) 2.56354 0.112963
\(516\) 0 0
\(517\) 16.5709 0.728788
\(518\) 0 0
\(519\) −2.40443 −0.105543
\(520\) 0 0
\(521\) −30.9789 −1.35721 −0.678605 0.734504i \(-0.737415\pi\)
−0.678605 + 0.734504i \(0.737415\pi\)
\(522\) 0 0
\(523\) −5.31925 −0.232595 −0.116297 0.993214i \(-0.537103\pi\)
−0.116297 + 0.993214i \(0.537103\pi\)
\(524\) 0 0
\(525\) −5.23055 −0.228280
\(526\) 0 0
\(527\) −7.42907 −0.323616
\(528\) 0 0
\(529\) −18.0246 −0.783680
\(530\) 0 0
\(531\) −3.42907 −0.148809
\(532\) 0 0
\(533\) 10.2306 0.443134
\(534\) 0 0
\(535\) 19.9286 0.861587
\(536\) 0 0
\(537\) 7.93594 0.342461
\(538\) 0 0
\(539\) 2.23055 0.0960766
\(540\) 0 0
\(541\) 17.1911 0.739105 0.369552 0.929210i \(-0.379511\pi\)
0.369552 + 0.929210i \(0.379511\pi\)
\(542\) 0 0
\(543\) 19.3192 0.829068
\(544\) 0 0
\(545\) −28.6843 −1.22870
\(546\) 0 0
\(547\) 17.3650 0.742475 0.371237 0.928538i \(-0.378934\pi\)
0.371237 + 0.928538i \(0.378934\pi\)
\(548\) 0 0
\(549\) 5.03203 0.214762
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 5.03203 0.213984
\(554\) 0 0
\(555\) −15.8902 −0.674500
\(556\) 0 0
\(557\) 14.5709 0.617390 0.308695 0.951161i \(-0.400108\pi\)
0.308695 + 0.951161i \(0.400108\pi\)
\(558\) 0 0
\(559\) 13.3266 0.563657
\(560\) 0 0
\(561\) 2.23055 0.0941739
\(562\) 0 0
\(563\) −23.9852 −1.01086 −0.505429 0.862868i \(-0.668666\pi\)
−0.505429 + 0.862868i \(0.668666\pi\)
\(564\) 0 0
\(565\) −27.5956 −1.16095
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) −38.9074 −1.63108 −0.815542 0.578698i \(-0.803561\pi\)
−0.815542 + 0.578698i \(0.803561\pi\)
\(570\) 0 0
\(571\) −15.8719 −0.664218 −0.332109 0.943241i \(-0.607760\pi\)
−0.332109 + 0.943241i \(0.607760\pi\)
\(572\) 0 0
\(573\) 6.00000 0.250654
\(574\) 0 0
\(575\) −11.6670 −0.486548
\(576\) 0 0
\(577\) 41.7089 1.73636 0.868182 0.496245i \(-0.165288\pi\)
0.868182 + 0.496245i \(0.165288\pi\)
\(578\) 0 0
\(579\) −12.2872 −0.510640
\(580\) 0 0
\(581\) −16.3330 −0.677607
\(582\) 0 0
\(583\) −3.18762 −0.132018
\(584\) 0 0
\(585\) 10.2306 0.422981
\(586\) 0 0
\(587\) −23.7621 −0.980765 −0.490383 0.871507i \(-0.663143\pi\)
−0.490383 + 0.871507i \(0.663143\pi\)
\(588\) 0 0
\(589\) −23.7621 −0.979099
\(590\) 0 0
\(591\) 14.5635 0.599064
\(592\) 0 0
\(593\) −20.9680 −0.861051 −0.430526 0.902578i \(-0.641672\pi\)
−0.430526 + 0.902578i \(0.641672\pi\)
\(594\) 0 0
\(595\) 3.19852 0.131127
\(596\) 0 0
\(597\) 15.8902 0.650342
\(598\) 0 0
\(599\) −23.5882 −0.963787 −0.481894 0.876230i \(-0.660051\pi\)
−0.481894 + 0.876230i \(0.660051\pi\)
\(600\) 0 0
\(601\) −6.28722 −0.256461 −0.128231 0.991744i \(-0.540930\pi\)
−0.128231 + 0.991744i \(0.540930\pi\)
\(602\) 0 0
\(603\) −14.3970 −0.586293
\(604\) 0 0
\(605\) 19.2700 0.783435
\(606\) 0 0
\(607\) −44.0951 −1.78976 −0.894882 0.446304i \(-0.852740\pi\)
−0.894882 + 0.446304i \(0.852740\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −23.7621 −0.961310
\(612\) 0 0
\(613\) 5.61385 0.226741 0.113371 0.993553i \(-0.463835\pi\)
0.113371 + 0.993553i \(0.463835\pi\)
\(614\) 0 0
\(615\) 10.2306 0.412536
\(616\) 0 0
\(617\) 36.7941 1.48127 0.740637 0.671905i \(-0.234524\pi\)
0.740637 + 0.671905i \(0.234524\pi\)
\(618\) 0 0
\(619\) −27.3010 −1.09732 −0.548659 0.836046i \(-0.684862\pi\)
−0.548659 + 0.836046i \(0.684862\pi\)
\(620\) 0 0
\(621\) −2.23055 −0.0895089
\(622\) 0 0
\(623\) −8.39705 −0.336421
\(624\) 0 0
\(625\) −23.7941 −0.951764
\(626\) 0 0
\(627\) 7.13447 0.284923
\(628\) 0 0
\(629\) 4.96797 0.198086
\(630\) 0 0
\(631\) 30.1024 1.19836 0.599180 0.800615i \(-0.295494\pi\)
0.599180 + 0.800615i \(0.295494\pi\)
\(632\) 0 0
\(633\) −7.89018 −0.313606
\(634\) 0 0
\(635\) 0.532540 0.0211332
\(636\) 0 0
\(637\) −3.19852 −0.126730
\(638\) 0 0
\(639\) −6.39705 −0.253063
\(640\) 0 0
\(641\) −1.89756 −0.0749491 −0.0374745 0.999298i \(-0.511931\pi\)
−0.0374745 + 0.999298i \(0.511931\pi\)
\(642\) 0 0
\(643\) −17.7163 −0.698662 −0.349331 0.936999i \(-0.613591\pi\)
−0.349331 + 0.936999i \(0.613591\pi\)
\(644\) 0 0
\(645\) 13.3266 0.524736
\(646\) 0 0
\(647\) −9.60295 −0.377531 −0.188766 0.982022i \(-0.560449\pi\)
−0.188766 + 0.982022i \(0.560449\pi\)
\(648\) 0 0
\(649\) −7.64872 −0.300239
\(650\) 0 0
\(651\) 7.42907 0.291168
\(652\) 0 0
\(653\) 8.16650 0.319580 0.159790 0.987151i \(-0.448918\pi\)
0.159790 + 0.987151i \(0.448918\pi\)
\(654\) 0 0
\(655\) −42.2158 −1.64951
\(656\) 0 0
\(657\) 14.3970 0.561682
\(658\) 0 0
\(659\) −43.1454 −1.68070 −0.840352 0.542040i \(-0.817652\pi\)
−0.840352 + 0.542040i \(0.817652\pi\)
\(660\) 0 0
\(661\) −21.2626 −0.827018 −0.413509 0.910500i \(-0.635697\pi\)
−0.413509 + 0.910500i \(0.635697\pi\)
\(662\) 0 0
\(663\) −3.19852 −0.124220
\(664\) 0 0
\(665\) 10.2306 0.396724
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 13.5956 0.525635
\(670\) 0 0
\(671\) 11.2242 0.433305
\(672\) 0 0
\(673\) 24.5104 0.944806 0.472403 0.881383i \(-0.343387\pi\)
0.472403 + 0.881383i \(0.343387\pi\)
\(674\) 0 0
\(675\) 5.23055 0.201324
\(676\) 0 0
\(677\) −22.9789 −0.883150 −0.441575 0.897224i \(-0.645580\pi\)
−0.441575 + 0.897224i \(0.645580\pi\)
\(678\) 0 0
\(679\) −8.00000 −0.307012
\(680\) 0 0
\(681\) −9.99262 −0.382918
\(682\) 0 0
\(683\) 9.76945 0.373818 0.186909 0.982377i \(-0.440153\pi\)
0.186909 + 0.982377i \(0.440153\pi\)
\(684\) 0 0
\(685\) −21.0173 −0.803028
\(686\) 0 0
\(687\) −22.3330 −0.852057
\(688\) 0 0
\(689\) 4.57093 0.174138
\(690\) 0 0
\(691\) 32.6843 1.24337 0.621684 0.783268i \(-0.286449\pi\)
0.621684 + 0.783268i \(0.286449\pi\)
\(692\) 0 0
\(693\) −2.23055 −0.0847316
\(694\) 0 0
\(695\) −46.0493 −1.74675
\(696\) 0 0
\(697\) −3.19852 −0.121153
\(698\) 0 0
\(699\) 10.6917 0.404395
\(700\) 0 0
\(701\) 20.2689 0.765547 0.382774 0.923842i \(-0.374969\pi\)
0.382774 + 0.923842i \(0.374969\pi\)
\(702\) 0 0
\(703\) 15.8902 0.599309
\(704\) 0 0
\(705\) −23.7621 −0.894931
\(706\) 0 0
\(707\) −11.3650 −0.427426
\(708\) 0 0
\(709\) 15.5882 0.585427 0.292713 0.956200i \(-0.405442\pi\)
0.292713 + 0.956200i \(0.405442\pi\)
\(710\) 0 0
\(711\) −5.03203 −0.188716
\(712\) 0 0
\(713\) 16.5709 0.620586
\(714\) 0 0
\(715\) 22.8198 0.853411
\(716\) 0 0
\(717\) 25.7621 0.962102
\(718\) 0 0
\(719\) −30.5818 −1.14051 −0.570255 0.821468i \(-0.693156\pi\)
−0.570255 + 0.821468i \(0.693156\pi\)
\(720\) 0 0
\(721\) 0.801477 0.0298486
\(722\) 0 0
\(723\) 4.79409 0.178294
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 34.9074 1.29465 0.647323 0.762216i \(-0.275889\pi\)
0.647323 + 0.762216i \(0.275889\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −4.16650 −0.154103
\(732\) 0 0
\(733\) 8.06406 0.297853 0.148926 0.988848i \(-0.452418\pi\)
0.148926 + 0.988848i \(0.452418\pi\)
\(734\) 0 0
\(735\) −3.19852 −0.117979
\(736\) 0 0
\(737\) −32.1133 −1.18291
\(738\) 0 0
\(739\) 8.16650 0.300409 0.150205 0.988655i \(-0.452007\pi\)
0.150205 + 0.988655i \(0.452007\pi\)
\(740\) 0 0
\(741\) −10.2306 −0.375829
\(742\) 0 0
\(743\) 2.61670 0.0959973 0.0479986 0.998847i \(-0.484716\pi\)
0.0479986 + 0.998847i \(0.484716\pi\)
\(744\) 0 0
\(745\) 0.204881 0.00750627
\(746\) 0 0
\(747\) 16.3330 0.597593
\(748\) 0 0
\(749\) 6.23055 0.227659
\(750\) 0 0
\(751\) 43.4143 1.58421 0.792105 0.610385i \(-0.208985\pi\)
0.792105 + 0.610385i \(0.208985\pi\)
\(752\) 0 0
\(753\) 25.8261 0.941156
\(754\) 0 0
\(755\) 27.0630 0.984924
\(756\) 0 0
\(757\) 32.3439 1.17556 0.587779 0.809021i \(-0.300002\pi\)
0.587779 + 0.809021i \(0.300002\pi\)
\(758\) 0 0
\(759\) −4.97536 −0.180594
\(760\) 0 0
\(761\) −5.07780 −0.184070 −0.0920350 0.995756i \(-0.529337\pi\)
−0.0920350 + 0.995756i \(0.529337\pi\)
\(762\) 0 0
\(763\) −8.96797 −0.324662
\(764\) 0 0
\(765\) −3.19852 −0.115643
\(766\) 0 0
\(767\) 10.9680 0.396031
\(768\) 0 0
\(769\) 17.0429 0.614584 0.307292 0.951615i \(-0.400577\pi\)
0.307292 + 0.951615i \(0.400577\pi\)
\(770\) 0 0
\(771\) −2.57093 −0.0925896
\(772\) 0 0
\(773\) −28.1591 −1.01281 −0.506406 0.862295i \(-0.669026\pi\)
−0.506406 + 0.862295i \(0.669026\pi\)
\(774\) 0 0
\(775\) −38.8581 −1.39583
\(776\) 0 0
\(777\) −4.96797 −0.178225
\(778\) 0 0
\(779\) −10.2306 −0.366548
\(780\) 0 0
\(781\) −14.2689 −0.510583
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.7054 0.417783
\(786\) 0 0
\(787\) 6.83986 0.243815 0.121907 0.992541i \(-0.461099\pi\)
0.121907 + 0.992541i \(0.461099\pi\)
\(788\) 0 0
\(789\) −17.1911 −0.612021
\(790\) 0 0
\(791\) −8.62760 −0.306762
\(792\) 0 0
\(793\) −16.0951 −0.571552
\(794\) 0 0
\(795\) 4.57093 0.162114
\(796\) 0 0
\(797\) 28.1774 0.998095 0.499047 0.866575i \(-0.333683\pi\)
0.499047 + 0.866575i \(0.333683\pi\)
\(798\) 0 0
\(799\) 7.42907 0.262822
\(800\) 0 0
\(801\) 8.39705 0.296695
\(802\) 0 0
\(803\) 32.1133 1.13326
\(804\) 0 0
\(805\) −7.13447 −0.251457
\(806\) 0 0
\(807\) 30.3897 1.06977
\(808\) 0 0
\(809\) 49.0887 1.72587 0.862933 0.505318i \(-0.168625\pi\)
0.862933 + 0.505318i \(0.168625\pi\)
\(810\) 0 0
\(811\) −9.38330 −0.329492 −0.164746 0.986336i \(-0.552681\pi\)
−0.164746 + 0.986336i \(0.552681\pi\)
\(812\) 0 0
\(813\) −26.3897 −0.925526
\(814\) 0 0
\(815\) −42.3970 −1.48510
\(816\) 0 0
\(817\) −13.3266 −0.466240
\(818\) 0 0
\(819\) 3.19852 0.111765
\(820\) 0 0
\(821\) 12.1665 0.424614 0.212307 0.977203i \(-0.431902\pi\)
0.212307 + 0.977203i \(0.431902\pi\)
\(822\) 0 0
\(823\) 33.9395 1.18306 0.591528 0.806285i \(-0.298525\pi\)
0.591528 + 0.806285i \(0.298525\pi\)
\(824\) 0 0
\(825\) 11.6670 0.406193
\(826\) 0 0
\(827\) −29.0887 −1.01151 −0.505757 0.862676i \(-0.668787\pi\)
−0.505757 + 0.862676i \(0.668787\pi\)
\(828\) 0 0
\(829\) −6.92220 −0.240418 −0.120209 0.992749i \(-0.538356\pi\)
−0.120209 + 0.992749i \(0.538356\pi\)
\(830\) 0 0
\(831\) 24.8581 0.862320
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) −10.4354 −0.361133
\(836\) 0 0
\(837\) −7.42907 −0.256786
\(838\) 0 0
\(839\) −4.18478 −0.144475 −0.0722373 0.997387i \(-0.523014\pi\)
−0.0722373 + 0.997387i \(0.523014\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) −12.3970 −0.426977
\(844\) 0 0
\(845\) 8.85815 0.304730
\(846\) 0 0
\(847\) 6.02464 0.207009
\(848\) 0 0
\(849\) 16.2232 0.556778
\(850\) 0 0
\(851\) −11.0813 −0.379863
\(852\) 0 0
\(853\) −49.9395 −1.70989 −0.854947 0.518715i \(-0.826411\pi\)
−0.854947 + 0.518715i \(0.826411\pi\)
\(854\) 0 0
\(855\) −10.2306 −0.349877
\(856\) 0 0
\(857\) 44.8581 1.53233 0.766163 0.642647i \(-0.222164\pi\)
0.766163 + 0.642647i \(0.222164\pi\)
\(858\) 0 0
\(859\) −48.3970 −1.65129 −0.825643 0.564193i \(-0.809187\pi\)
−0.825643 + 0.564193i \(0.809187\pi\)
\(860\) 0 0
\(861\) 3.19852 0.109005
\(862\) 0 0
\(863\) −3.37979 −0.115049 −0.0575246 0.998344i \(-0.518321\pi\)
−0.0575246 + 0.998344i \(0.518321\pi\)
\(864\) 0 0
\(865\) 7.69063 0.261489
\(866\) 0 0
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) −11.2242 −0.380755
\(870\) 0 0
\(871\) 46.0493 1.56032
\(872\) 0 0
\(873\) 8.00000 0.270759
\(874\) 0 0
\(875\) 0.737422 0.0249294
\(876\) 0 0
\(877\) 20.6350 0.696794 0.348397 0.937347i \(-0.386726\pi\)
0.348397 + 0.937347i \(0.386726\pi\)
\(878\) 0 0
\(879\) 11.2552 0.379628
\(880\) 0 0
\(881\) −8.73004 −0.294122 −0.147061 0.989127i \(-0.546981\pi\)
−0.147061 + 0.989127i \(0.546981\pi\)
\(882\) 0 0
\(883\) 55.9321 1.88226 0.941132 0.338039i \(-0.109764\pi\)
0.941132 + 0.338039i \(0.109764\pi\)
\(884\) 0 0
\(885\) 10.9680 0.368684
\(886\) 0 0
\(887\) 46.1060 1.54809 0.774043 0.633133i \(-0.218231\pi\)
0.774043 + 0.633133i \(0.218231\pi\)
\(888\) 0 0
\(889\) 0.166496 0.00558409
\(890\) 0 0
\(891\) 2.23055 0.0747263
\(892\) 0 0
\(893\) 23.7621 0.795167
\(894\) 0 0
\(895\) −25.3833 −0.848470
\(896\) 0 0
\(897\) 7.13447 0.238213
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −1.42907 −0.0476094
\(902\) 0 0
\(903\) 4.16650 0.138652
\(904\) 0 0
\(905\) −61.7931 −2.05407
\(906\) 0 0
\(907\) 39.0630 1.29707 0.648533 0.761186i \(-0.275383\pi\)
0.648533 + 0.761186i \(0.275383\pi\)
\(908\) 0 0
\(909\) 11.3650 0.376954
\(910\) 0 0
\(911\) −36.4995 −1.20928 −0.604641 0.796498i \(-0.706683\pi\)
−0.604641 + 0.796498i \(0.706683\pi\)
\(912\) 0 0
\(913\) 36.4316 1.20571
\(914\) 0 0
\(915\) −16.0951 −0.532086
\(916\) 0 0
\(917\) −13.1985 −0.435854
\(918\) 0 0
\(919\) 9.88279 0.326003 0.163002 0.986626i \(-0.447882\pi\)
0.163002 + 0.986626i \(0.447882\pi\)
\(920\) 0 0
\(921\) −19.2552 −0.634480
\(922\) 0 0
\(923\) 20.4611 0.673485
\(924\) 0 0
\(925\) 25.9852 0.854389
\(926\) 0 0
\(927\) −0.801477 −0.0263240
\(928\) 0 0
\(929\) −34.3897 −1.12829 −0.564144 0.825676i \(-0.690794\pi\)
−0.564144 + 0.825676i \(0.690794\pi\)
\(930\) 0 0
\(931\) 3.19852 0.104827
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −7.13447 −0.233322
\(936\) 0 0
\(937\) 33.5389 1.09567 0.547834 0.836587i \(-0.315453\pi\)
0.547834 + 0.836587i \(0.315453\pi\)
\(938\) 0 0
\(939\) −9.03203 −0.294749
\(940\) 0 0
\(941\) −1.07780 −0.0351352 −0.0175676 0.999846i \(-0.505592\pi\)
−0.0175676 + 0.999846i \(0.505592\pi\)
\(942\) 0 0
\(943\) 7.13447 0.232330
\(944\) 0 0
\(945\) 3.19852 0.104048
\(946\) 0 0
\(947\) −5.12708 −0.166608 −0.0833039 0.996524i \(-0.526547\pi\)
−0.0833039 + 0.996524i \(0.526547\pi\)
\(948\) 0 0
\(949\) −46.0493 −1.49482
\(950\) 0 0
\(951\) 34.1774 1.10828
\(952\) 0 0
\(953\) 29.5424 0.956973 0.478486 0.878095i \(-0.341186\pi\)
0.478486 + 0.878095i \(0.341186\pi\)
\(954\) 0 0
\(955\) −19.1911 −0.621011
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.57093 −0.212186
\(960\) 0 0
\(961\) 24.1911 0.780359
\(962\) 0 0
\(963\) −6.23055 −0.200777
\(964\) 0 0
\(965\) 39.3010 1.26514
\(966\) 0 0
\(967\) 4.51426 0.145169 0.0725843 0.997362i \(-0.476875\pi\)
0.0725843 + 0.997362i \(0.476875\pi\)
\(968\) 0 0
\(969\) 3.19852 0.102751
\(970\) 0 0
\(971\) 44.3330 1.42271 0.711357 0.702831i \(-0.248081\pi\)
0.711357 + 0.702831i \(0.248081\pi\)
\(972\) 0 0
\(973\) −14.3970 −0.461548
\(974\) 0 0
\(975\) −16.7300 −0.535790
\(976\) 0 0
\(977\) 33.6522 1.07663 0.538315 0.842744i \(-0.319061\pi\)
0.538315 + 0.842744i \(0.319061\pi\)
\(978\) 0 0
\(979\) 18.7300 0.598615
\(980\) 0 0
\(981\) 8.96797 0.286325
\(982\) 0 0
\(983\) −57.8645 −1.84559 −0.922796 0.385290i \(-0.874101\pi\)
−0.922796 + 0.385290i \(0.874101\pi\)
\(984\) 0 0
\(985\) −46.5818 −1.48422
\(986\) 0 0
\(987\) −7.42907 −0.236470
\(988\) 0 0
\(989\) 9.29358 0.295519
\(990\) 0 0
\(991\) 12.7941 0.406418 0.203209 0.979135i \(-0.434863\pi\)
0.203209 + 0.979135i \(0.434863\pi\)
\(992\) 0 0
\(993\) −6.10244 −0.193655
\(994\) 0 0
\(995\) −50.8251 −1.61126
\(996\) 0 0
\(997\) 1.95071 0.0617797 0.0308898 0.999523i \(-0.490166\pi\)
0.0308898 + 0.999523i \(0.490166\pi\)
\(998\) 0 0
\(999\) 4.96797 0.157180
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5712.2.a.bw.1.1 3
4.3 odd 2 1428.2.a.j.1.1 3
12.11 even 2 4284.2.a.s.1.3 3
28.27 even 2 9996.2.a.x.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1428.2.a.j.1.1 3 4.3 odd 2
4284.2.a.s.1.3 3 12.11 even 2
5712.2.a.bw.1.1 3 1.1 even 1 trivial
9996.2.a.x.1.3 3 28.27 even 2