Properties

Label 5712.2.a.bz.1.3
Level $5712$
Weight $2$
Character 5712.1
Self dual yes
Analytic conductor $45.611$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5712,2,Mod(1,5712)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5712, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5712.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5712.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.6105496346\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.7232.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 5x^{2} + 4x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 2856)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.63640\) of defining polynomial
Character \(\chi\) \(=\) 5712.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.19202 q^{5} +1.00000 q^{7} +1.00000 q^{9} -1.95063 q^{11} -4.46483 q^{13} +1.19202 q^{15} +1.00000 q^{17} +3.82047 q^{19} +1.00000 q^{21} -5.22344 q^{23} -3.57908 q^{25} +1.00000 q^{27} +5.27281 q^{29} +4.51420 q^{31} -1.95063 q^{33} +1.19202 q^{35} +0.758609 q^{37} -4.46483 q^{39} -3.83638 q^{41} +7.60749 q^{43} +1.19202 q^{45} +10.0314 q^{47} +1.00000 q^{49} +1.00000 q^{51} +8.03142 q^{53} -2.32520 q^{55} +3.82047 q^{57} +10.6599 q^{59} +3.77111 q^{61} +1.00000 q^{63} -5.32218 q^{65} -7.90126 q^{67} -5.22344 q^{69} +11.9013 q^{71} +3.02840 q^{73} -3.57908 q^{75} -1.95063 q^{77} +7.15856 q^{79} +1.00000 q^{81} +2.24441 q^{83} +1.19202 q^{85} +5.27281 q^{87} +2.16158 q^{89} -4.46483 q^{91} +4.51420 q^{93} +4.55409 q^{95} +12.4469 q^{97} -1.95063 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 2 q^{5} + 4 q^{7} + 4 q^{9} + 6 q^{11} + 2 q^{13} + 2 q^{15} + 4 q^{17} + 2 q^{19} + 4 q^{21} + 10 q^{23} + 10 q^{25} + 4 q^{27} + 4 q^{29} + 12 q^{31} + 6 q^{33} + 2 q^{35} - 8 q^{37} + 2 q^{39}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 1.19202 0.533089 0.266544 0.963823i \(-0.414118\pi\)
0.266544 + 0.963823i \(0.414118\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.95063 −0.588137 −0.294069 0.955784i \(-0.595009\pi\)
−0.294069 + 0.955784i \(0.595009\pi\)
\(12\) 0 0
\(13\) −4.46483 −1.23832 −0.619161 0.785264i \(-0.712527\pi\)
−0.619161 + 0.785264i \(0.712527\pi\)
\(14\) 0 0
\(15\) 1.19202 0.307779
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 3.82047 0.876477 0.438238 0.898859i \(-0.355603\pi\)
0.438238 + 0.898859i \(0.355603\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) −5.22344 −1.08916 −0.544581 0.838708i \(-0.683311\pi\)
−0.544581 + 0.838708i \(0.683311\pi\)
\(24\) 0 0
\(25\) −3.57908 −0.715817
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 5.27281 0.979136 0.489568 0.871965i \(-0.337154\pi\)
0.489568 + 0.871965i \(0.337154\pi\)
\(30\) 0 0
\(31\) 4.51420 0.810774 0.405387 0.914145i \(-0.367137\pi\)
0.405387 + 0.914145i \(0.367137\pi\)
\(32\) 0 0
\(33\) −1.95063 −0.339561
\(34\) 0 0
\(35\) 1.19202 0.201489
\(36\) 0 0
\(37\) 0.758609 0.124715 0.0623573 0.998054i \(-0.480138\pi\)
0.0623573 + 0.998054i \(0.480138\pi\)
\(38\) 0 0
\(39\) −4.46483 −0.714945
\(40\) 0 0
\(41\) −3.83638 −0.599142 −0.299571 0.954074i \(-0.596844\pi\)
−0.299571 + 0.954074i \(0.596844\pi\)
\(42\) 0 0
\(43\) 7.60749 1.16013 0.580065 0.814570i \(-0.303027\pi\)
0.580065 + 0.814570i \(0.303027\pi\)
\(44\) 0 0
\(45\) 1.19202 0.177696
\(46\) 0 0
\(47\) 10.0314 1.46323 0.731616 0.681717i \(-0.238766\pi\)
0.731616 + 0.681717i \(0.238766\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 0 0
\(53\) 8.03142 1.10320 0.551600 0.834109i \(-0.314017\pi\)
0.551600 + 0.834109i \(0.314017\pi\)
\(54\) 0 0
\(55\) −2.32520 −0.313529
\(56\) 0 0
\(57\) 3.82047 0.506034
\(58\) 0 0
\(59\) 10.6599 1.38780 0.693898 0.720073i \(-0.255892\pi\)
0.693898 + 0.720073i \(0.255892\pi\)
\(60\) 0 0
\(61\) 3.77111 0.482841 0.241420 0.970421i \(-0.422387\pi\)
0.241420 + 0.970421i \(0.422387\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) −5.32218 −0.660135
\(66\) 0 0
\(67\) −7.90126 −0.965293 −0.482646 0.875815i \(-0.660324\pi\)
−0.482646 + 0.875815i \(0.660324\pi\)
\(68\) 0 0
\(69\) −5.22344 −0.628828
\(70\) 0 0
\(71\) 11.9013 1.41242 0.706210 0.708002i \(-0.250403\pi\)
0.706210 + 0.708002i \(0.250403\pi\)
\(72\) 0 0
\(73\) 3.02840 0.354448 0.177224 0.984171i \(-0.443288\pi\)
0.177224 + 0.984171i \(0.443288\pi\)
\(74\) 0 0
\(75\) −3.57908 −0.413277
\(76\) 0 0
\(77\) −1.95063 −0.222295
\(78\) 0 0
\(79\) 7.15856 0.805401 0.402700 0.915332i \(-0.368072\pi\)
0.402700 + 0.915332i \(0.368072\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 2.24441 0.246356 0.123178 0.992385i \(-0.460691\pi\)
0.123178 + 0.992385i \(0.460691\pi\)
\(84\) 0 0
\(85\) 1.19202 0.129293
\(86\) 0 0
\(87\) 5.27281 0.565305
\(88\) 0 0
\(89\) 2.16158 0.229127 0.114563 0.993416i \(-0.463453\pi\)
0.114563 + 0.993416i \(0.463453\pi\)
\(90\) 0 0
\(91\) −4.46483 −0.468042
\(92\) 0 0
\(93\) 4.51420 0.468101
\(94\) 0 0
\(95\) 4.55409 0.467240
\(96\) 0 0
\(97\) 12.4469 1.26379 0.631895 0.775054i \(-0.282278\pi\)
0.631895 + 0.775054i \(0.282278\pi\)
\(98\) 0 0
\(99\) −1.95063 −0.196046
\(100\) 0 0
\(101\) 1.62544 0.161737 0.0808684 0.996725i \(-0.474231\pi\)
0.0808684 + 0.996725i \(0.474231\pi\)
\(102\) 0 0
\(103\) 7.68084 0.756815 0.378408 0.925639i \(-0.376472\pi\)
0.378408 + 0.925639i \(0.376472\pi\)
\(104\) 0 0
\(105\) 1.19202 0.116329
\(106\) 0 0
\(107\) 4.43341 0.428594 0.214297 0.976769i \(-0.431254\pi\)
0.214297 + 0.976769i \(0.431254\pi\)
\(108\) 0 0
\(109\) −0.498295 −0.0477280 −0.0238640 0.999715i \(-0.507597\pi\)
−0.0238640 + 0.999715i \(0.507597\pi\)
\(110\) 0 0
\(111\) 0.758609 0.0720040
\(112\) 0 0
\(113\) 1.70622 0.160508 0.0802540 0.996774i \(-0.474427\pi\)
0.0802540 + 0.996774i \(0.474427\pi\)
\(114\) 0 0
\(115\) −6.22646 −0.580620
\(116\) 0 0
\(117\) −4.46483 −0.412774
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −7.19504 −0.654094
\(122\) 0 0
\(123\) −3.83638 −0.345915
\(124\) 0 0
\(125\) −10.2265 −0.914682
\(126\) 0 0
\(127\) 1.32218 0.117324 0.0586622 0.998278i \(-0.481317\pi\)
0.0586622 + 0.998278i \(0.481317\pi\)
\(128\) 0 0
\(129\) 7.60749 0.669802
\(130\) 0 0
\(131\) −8.02295 −0.700968 −0.350484 0.936569i \(-0.613983\pi\)
−0.350484 + 0.936569i \(0.613983\pi\)
\(132\) 0 0
\(133\) 3.82047 0.331277
\(134\) 0 0
\(135\) 1.19202 0.102593
\(136\) 0 0
\(137\) −9.05982 −0.774033 −0.387016 0.922073i \(-0.626494\pi\)
−0.387016 + 0.922073i \(0.626494\pi\)
\(138\) 0 0
\(139\) 19.4435 1.64917 0.824587 0.565735i \(-0.191408\pi\)
0.824587 + 0.565735i \(0.191408\pi\)
\(140\) 0 0
\(141\) 10.0314 0.844798
\(142\) 0 0
\(143\) 8.70924 0.728303
\(144\) 0 0
\(145\) 6.28531 0.521966
\(146\) 0 0
\(147\) 1.00000 0.0824786
\(148\) 0 0
\(149\) −17.0534 −1.39707 −0.698534 0.715577i \(-0.746164\pi\)
−0.698534 + 0.715577i \(0.746164\pi\)
\(150\) 0 0
\(151\) 8.16158 0.664180 0.332090 0.943248i \(-0.392246\pi\)
0.332090 + 0.943248i \(0.392246\pi\)
\(152\) 0 0
\(153\) 1.00000 0.0808452
\(154\) 0 0
\(155\) 5.38103 0.432215
\(156\) 0 0
\(157\) −12.6264 −1.00770 −0.503849 0.863792i \(-0.668083\pi\)
−0.503849 + 0.863792i \(0.668083\pi\)
\(158\) 0 0
\(159\) 8.03142 0.636933
\(160\) 0 0
\(161\) −5.22344 −0.411665
\(162\) 0 0
\(163\) 2.24441 0.175796 0.0878978 0.996129i \(-0.471985\pi\)
0.0878978 + 0.996129i \(0.471985\pi\)
\(164\) 0 0
\(165\) −2.32520 −0.181016
\(166\) 0 0
\(167\) 8.54766 0.661438 0.330719 0.943729i \(-0.392709\pi\)
0.330719 + 0.943729i \(0.392709\pi\)
\(168\) 0 0
\(169\) 6.93473 0.533440
\(170\) 0 0
\(171\) 3.82047 0.292159
\(172\) 0 0
\(173\) 15.5402 1.18150 0.590748 0.806856i \(-0.298833\pi\)
0.590748 + 0.806856i \(0.298833\pi\)
\(174\) 0 0
\(175\) −3.57908 −0.270553
\(176\) 0 0
\(177\) 10.6599 0.801245
\(178\) 0 0
\(179\) 2.90467 0.217105 0.108553 0.994091i \(-0.465378\pi\)
0.108553 + 0.994091i \(0.465378\pi\)
\(180\) 0 0
\(181\) −17.0534 −1.26757 −0.633784 0.773510i \(-0.718499\pi\)
−0.633784 + 0.773510i \(0.718499\pi\)
\(182\) 0 0
\(183\) 3.77111 0.278768
\(184\) 0 0
\(185\) 0.904279 0.0664839
\(186\) 0 0
\(187\) −1.95063 −0.142644
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 21.1582 1.53095 0.765476 0.643465i \(-0.222504\pi\)
0.765476 + 0.643465i \(0.222504\pi\)
\(192\) 0 0
\(193\) 6.51420 0.468902 0.234451 0.972128i \(-0.424671\pi\)
0.234451 + 0.972128i \(0.424671\pi\)
\(194\) 0 0
\(195\) −5.32218 −0.381129
\(196\) 0 0
\(197\) −0.979033 −0.0697532 −0.0348766 0.999392i \(-0.511104\pi\)
−0.0348766 + 0.999392i \(0.511104\pi\)
\(198\) 0 0
\(199\) −5.18355 −0.367452 −0.183726 0.982977i \(-0.558816\pi\)
−0.183726 + 0.982977i \(0.558816\pi\)
\(200\) 0 0
\(201\) −7.90126 −0.557312
\(202\) 0 0
\(203\) 5.27281 0.370079
\(204\) 0 0
\(205\) −4.57305 −0.319396
\(206\) 0 0
\(207\) −5.22344 −0.363054
\(208\) 0 0
\(209\) −7.45234 −0.515489
\(210\) 0 0
\(211\) −22.5611 −1.55317 −0.776586 0.630011i \(-0.783050\pi\)
−0.776586 + 0.630011i \(0.783050\pi\)
\(212\) 0 0
\(213\) 11.9013 0.815461
\(214\) 0 0
\(215\) 9.06829 0.618452
\(216\) 0 0
\(217\) 4.51420 0.306444
\(218\) 0 0
\(219\) 3.02840 0.204640
\(220\) 0 0
\(221\) −4.46483 −0.300337
\(222\) 0 0
\(223\) 8.12169 0.543868 0.271934 0.962316i \(-0.412337\pi\)
0.271934 + 0.962316i \(0.412337\pi\)
\(224\) 0 0
\(225\) −3.57908 −0.238606
\(226\) 0 0
\(227\) 2.42393 0.160882 0.0804411 0.996759i \(-0.474367\pi\)
0.0804411 + 0.996759i \(0.474367\pi\)
\(228\) 0 0
\(229\) −15.8184 −1.04531 −0.522656 0.852544i \(-0.675059\pi\)
−0.522656 + 0.852544i \(0.675059\pi\)
\(230\) 0 0
\(231\) −1.95063 −0.128342
\(232\) 0 0
\(233\) −23.6325 −1.54822 −0.774108 0.633054i \(-0.781801\pi\)
−0.774108 + 0.633054i \(0.781801\pi\)
\(234\) 0 0
\(235\) 11.9577 0.780033
\(236\) 0 0
\(237\) 7.15856 0.464998
\(238\) 0 0
\(239\) −8.57704 −0.554802 −0.277401 0.960754i \(-0.589473\pi\)
−0.277401 + 0.960754i \(0.589473\pi\)
\(240\) 0 0
\(241\) −24.4469 −1.57476 −0.787381 0.616467i \(-0.788564\pi\)
−0.787381 + 0.616467i \(0.788564\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 1.19202 0.0761555
\(246\) 0 0
\(247\) −17.0578 −1.08536
\(248\) 0 0
\(249\) 2.24441 0.142234
\(250\) 0 0
\(251\) −3.75520 −0.237026 −0.118513 0.992952i \(-0.537813\pi\)
−0.118513 + 0.992952i \(0.537813\pi\)
\(252\) 0 0
\(253\) 10.1890 0.640577
\(254\) 0 0
\(255\) 1.19202 0.0746473
\(256\) 0 0
\(257\) −2.51420 −0.156832 −0.0784158 0.996921i \(-0.524986\pi\)
−0.0784158 + 0.996921i \(0.524986\pi\)
\(258\) 0 0
\(259\) 0.758609 0.0471377
\(260\) 0 0
\(261\) 5.27281 0.326379
\(262\) 0 0
\(263\) −7.05340 −0.434931 −0.217465 0.976068i \(-0.569779\pi\)
−0.217465 + 0.976068i \(0.569779\pi\)
\(264\) 0 0
\(265\) 9.57363 0.588103
\(266\) 0 0
\(267\) 2.16158 0.132286
\(268\) 0 0
\(269\) −12.3252 −0.751480 −0.375740 0.926725i \(-0.622611\pi\)
−0.375740 + 0.926725i \(0.622611\pi\)
\(270\) 0 0
\(271\) −19.6639 −1.19450 −0.597248 0.802056i \(-0.703739\pi\)
−0.597248 + 0.802056i \(0.703739\pi\)
\(272\) 0 0
\(273\) −4.46483 −0.270224
\(274\) 0 0
\(275\) 6.98147 0.420999
\(276\) 0 0
\(277\) 9.37155 0.563082 0.281541 0.959549i \(-0.409154\pi\)
0.281541 + 0.959549i \(0.409154\pi\)
\(278\) 0 0
\(279\) 4.51420 0.270258
\(280\) 0 0
\(281\) 8.90467 0.531208 0.265604 0.964082i \(-0.414429\pi\)
0.265604 + 0.964082i \(0.414429\pi\)
\(282\) 0 0
\(283\) 4.25389 0.252867 0.126434 0.991975i \(-0.459647\pi\)
0.126434 + 0.991975i \(0.459647\pi\)
\(284\) 0 0
\(285\) 4.55409 0.269761
\(286\) 0 0
\(287\) −3.83638 −0.226454
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 12.4469 0.729649
\(292\) 0 0
\(293\) 23.8813 1.39516 0.697579 0.716508i \(-0.254261\pi\)
0.697579 + 0.716508i \(0.254261\pi\)
\(294\) 0 0
\(295\) 12.7068 0.739819
\(296\) 0 0
\(297\) −1.95063 −0.113187
\(298\) 0 0
\(299\) 23.3218 1.34873
\(300\) 0 0
\(301\) 7.60749 0.438488
\(302\) 0 0
\(303\) 1.62544 0.0933788
\(304\) 0 0
\(305\) 4.49524 0.257397
\(306\) 0 0
\(307\) −29.9482 −1.70923 −0.854617 0.519259i \(-0.826208\pi\)
−0.854617 + 0.519259i \(0.826208\pi\)
\(308\) 0 0
\(309\) 7.68084 0.436948
\(310\) 0 0
\(311\) 6.74310 0.382366 0.191183 0.981554i \(-0.438768\pi\)
0.191183 + 0.981554i \(0.438768\pi\)
\(312\) 0 0
\(313\) −26.3985 −1.49213 −0.746066 0.665872i \(-0.768060\pi\)
−0.746066 + 0.665872i \(0.768060\pi\)
\(314\) 0 0
\(315\) 1.19202 0.0671628
\(316\) 0 0
\(317\) −17.4344 −0.979213 −0.489606 0.871944i \(-0.662859\pi\)
−0.489606 + 0.871944i \(0.662859\pi\)
\(318\) 0 0
\(319\) −10.2853 −0.575867
\(320\) 0 0
\(321\) 4.43341 0.247449
\(322\) 0 0
\(323\) 3.82047 0.212577
\(324\) 0 0
\(325\) 15.9800 0.886411
\(326\) 0 0
\(327\) −0.498295 −0.0275558
\(328\) 0 0
\(329\) 10.0314 0.553050
\(330\) 0 0
\(331\) −12.9631 −0.712518 −0.356259 0.934387i \(-0.615948\pi\)
−0.356259 + 0.934387i \(0.615948\pi\)
\(332\) 0 0
\(333\) 0.758609 0.0415715
\(334\) 0 0
\(335\) −9.41848 −0.514587
\(336\) 0 0
\(337\) 34.6588 1.88799 0.943994 0.329964i \(-0.107037\pi\)
0.943994 + 0.329964i \(0.107037\pi\)
\(338\) 0 0
\(339\) 1.70622 0.0926693
\(340\) 0 0
\(341\) −8.80554 −0.476847
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −6.22646 −0.335221
\(346\) 0 0
\(347\) −3.47029 −0.186295 −0.0931474 0.995652i \(-0.529693\pi\)
−0.0931474 + 0.995652i \(0.529693\pi\)
\(348\) 0 0
\(349\) −19.2390 −1.02984 −0.514919 0.857239i \(-0.672178\pi\)
−0.514919 + 0.857239i \(0.672178\pi\)
\(350\) 0 0
\(351\) −4.46483 −0.238315
\(352\) 0 0
\(353\) 25.9895 1.38328 0.691640 0.722242i \(-0.256888\pi\)
0.691640 + 0.722242i \(0.256888\pi\)
\(354\) 0 0
\(355\) 14.1866 0.752945
\(356\) 0 0
\(357\) 1.00000 0.0529256
\(358\) 0 0
\(359\) 36.3167 1.91672 0.958362 0.285557i \(-0.0921786\pi\)
0.958362 + 0.285557i \(0.0921786\pi\)
\(360\) 0 0
\(361\) −4.40398 −0.231788
\(362\) 0 0
\(363\) −7.19504 −0.377642
\(364\) 0 0
\(365\) 3.60992 0.188952
\(366\) 0 0
\(367\) −8.08180 −0.421866 −0.210933 0.977500i \(-0.567650\pi\)
−0.210933 + 0.977500i \(0.567650\pi\)
\(368\) 0 0
\(369\) −3.83638 −0.199714
\(370\) 0 0
\(371\) 8.03142 0.416970
\(372\) 0 0
\(373\) −18.9925 −0.983394 −0.491697 0.870766i \(-0.663623\pi\)
−0.491697 + 0.870766i \(0.663623\pi\)
\(374\) 0 0
\(375\) −10.2265 −0.528092
\(376\) 0 0
\(377\) −23.5422 −1.21249
\(378\) 0 0
\(379\) −4.56561 −0.234520 −0.117260 0.993101i \(-0.537411\pi\)
−0.117260 + 0.993101i \(0.537411\pi\)
\(380\) 0 0
\(381\) 1.32218 0.0677373
\(382\) 0 0
\(383\) 3.92665 0.200642 0.100321 0.994955i \(-0.468013\pi\)
0.100321 + 0.994955i \(0.468013\pi\)
\(384\) 0 0
\(385\) −2.32520 −0.118503
\(386\) 0 0
\(387\) 7.60749 0.386710
\(388\) 0 0
\(389\) 12.1866 0.617884 0.308942 0.951081i \(-0.400025\pi\)
0.308942 + 0.951081i \(0.400025\pi\)
\(390\) 0 0
\(391\) −5.22344 −0.264161
\(392\) 0 0
\(393\) −8.02295 −0.404704
\(394\) 0 0
\(395\) 8.53316 0.429350
\(396\) 0 0
\(397\) 17.9936 0.903072 0.451536 0.892253i \(-0.350876\pi\)
0.451536 + 0.892253i \(0.350876\pi\)
\(398\) 0 0
\(399\) 3.82047 0.191263
\(400\) 0 0
\(401\) −15.9915 −0.798579 −0.399289 0.916825i \(-0.630743\pi\)
−0.399289 + 0.916825i \(0.630743\pi\)
\(402\) 0 0
\(403\) −20.1551 −1.00400
\(404\) 0 0
\(405\) 1.19202 0.0592321
\(406\) 0 0
\(407\) −1.47977 −0.0733493
\(408\) 0 0
\(409\) −21.0264 −1.03969 −0.519843 0.854262i \(-0.674010\pi\)
−0.519843 + 0.854262i \(0.674010\pi\)
\(410\) 0 0
\(411\) −9.05982 −0.446888
\(412\) 0 0
\(413\) 10.6599 0.524538
\(414\) 0 0
\(415\) 2.67538 0.131329
\(416\) 0 0
\(417\) 19.4435 0.952151
\(418\) 0 0
\(419\) −2.15554 −0.105305 −0.0526526 0.998613i \(-0.516768\pi\)
−0.0526526 + 0.998613i \(0.516768\pi\)
\(420\) 0 0
\(421\) 19.9726 0.973403 0.486702 0.873568i \(-0.338200\pi\)
0.486702 + 0.873568i \(0.338200\pi\)
\(422\) 0 0
\(423\) 10.0314 0.487744
\(424\) 0 0
\(425\) −3.57908 −0.173611
\(426\) 0 0
\(427\) 3.77111 0.182497
\(428\) 0 0
\(429\) 8.70924 0.420486
\(430\) 0 0
\(431\) −21.0912 −1.01593 −0.507965 0.861378i \(-0.669602\pi\)
−0.507965 + 0.861378i \(0.669602\pi\)
\(432\) 0 0
\(433\) 26.4320 1.27024 0.635120 0.772413i \(-0.280951\pi\)
0.635120 + 0.772413i \(0.280951\pi\)
\(434\) 0 0
\(435\) 6.28531 0.301357
\(436\) 0 0
\(437\) −19.9560 −0.954626
\(438\) 0 0
\(439\) 30.7636 1.46827 0.734133 0.679005i \(-0.237589\pi\)
0.734133 + 0.679005i \(0.237589\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 34.7636 1.65167 0.825834 0.563913i \(-0.190705\pi\)
0.825834 + 0.563913i \(0.190705\pi\)
\(444\) 0 0
\(445\) 2.57665 0.122145
\(446\) 0 0
\(447\) −17.0534 −0.806598
\(448\) 0 0
\(449\) −8.44688 −0.398633 −0.199316 0.979935i \(-0.563872\pi\)
−0.199316 + 0.979935i \(0.563872\pi\)
\(450\) 0 0
\(451\) 7.48336 0.352378
\(452\) 0 0
\(453\) 8.16158 0.383464
\(454\) 0 0
\(455\) −5.32218 −0.249508
\(456\) 0 0
\(457\) 31.4668 1.47196 0.735978 0.677006i \(-0.236723\pi\)
0.735978 + 0.677006i \(0.236723\pi\)
\(458\) 0 0
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) 29.8370 1.38965 0.694824 0.719180i \(-0.255482\pi\)
0.694824 + 0.719180i \(0.255482\pi\)
\(462\) 0 0
\(463\) −20.1298 −0.935509 −0.467755 0.883858i \(-0.654937\pi\)
−0.467755 + 0.883858i \(0.654937\pi\)
\(464\) 0 0
\(465\) 5.38103 0.249539
\(466\) 0 0
\(467\) −17.5392 −0.811615 −0.405808 0.913958i \(-0.633010\pi\)
−0.405808 + 0.913958i \(0.633010\pi\)
\(468\) 0 0
\(469\) −7.90126 −0.364846
\(470\) 0 0
\(471\) −12.6264 −0.581794
\(472\) 0 0
\(473\) −14.8394 −0.682316
\(474\) 0 0
\(475\) −13.6738 −0.627397
\(476\) 0 0
\(477\) 8.03142 0.367733
\(478\) 0 0
\(479\) −5.80048 −0.265031 −0.132515 0.991181i \(-0.542305\pi\)
−0.132515 + 0.991181i \(0.542305\pi\)
\(480\) 0 0
\(481\) −3.38706 −0.154437
\(482\) 0 0
\(483\) −5.22344 −0.237675
\(484\) 0 0
\(485\) 14.8370 0.673712
\(486\) 0 0
\(487\) 15.2150 0.689456 0.344728 0.938703i \(-0.387971\pi\)
0.344728 + 0.938703i \(0.387971\pi\)
\(488\) 0 0
\(489\) 2.24441 0.101496
\(490\) 0 0
\(491\) −40.3062 −1.81899 −0.909497 0.415711i \(-0.863533\pi\)
−0.909497 + 0.415711i \(0.863533\pi\)
\(492\) 0 0
\(493\) 5.27281 0.237475
\(494\) 0 0
\(495\) −2.32520 −0.104510
\(496\) 0 0
\(497\) 11.9013 0.533845
\(498\) 0 0
\(499\) −15.2664 −0.683417 −0.341709 0.939806i \(-0.611006\pi\)
−0.341709 + 0.939806i \(0.611006\pi\)
\(500\) 0 0
\(501\) 8.54766 0.381881
\(502\) 0 0
\(503\) 13.8364 0.616934 0.308467 0.951235i \(-0.400184\pi\)
0.308467 + 0.951235i \(0.400184\pi\)
\(504\) 0 0
\(505\) 1.93756 0.0862201
\(506\) 0 0
\(507\) 6.93473 0.307982
\(508\) 0 0
\(509\) 26.8718 1.19107 0.595536 0.803328i \(-0.296940\pi\)
0.595536 + 0.803328i \(0.296940\pi\)
\(510\) 0 0
\(511\) 3.02840 0.133969
\(512\) 0 0
\(513\) 3.82047 0.168678
\(514\) 0 0
\(515\) 9.15573 0.403450
\(516\) 0 0
\(517\) −19.5676 −0.860582
\(518\) 0 0
\(519\) 15.5402 0.682138
\(520\) 0 0
\(521\) 2.28326 0.100032 0.0500158 0.998748i \(-0.484073\pi\)
0.0500158 + 0.998748i \(0.484073\pi\)
\(522\) 0 0
\(523\) 7.69470 0.336466 0.168233 0.985747i \(-0.446194\pi\)
0.168233 + 0.985747i \(0.446194\pi\)
\(524\) 0 0
\(525\) −3.57908 −0.156204
\(526\) 0 0
\(527\) 4.51420 0.196642
\(528\) 0 0
\(529\) 4.28433 0.186275
\(530\) 0 0
\(531\) 10.6599 0.462599
\(532\) 0 0
\(533\) 17.1288 0.741930
\(534\) 0 0
\(535\) 5.28473 0.228479
\(536\) 0 0
\(537\) 2.90467 0.125346
\(538\) 0 0
\(539\) −1.95063 −0.0840196
\(540\) 0 0
\(541\) −0.993537 −0.0427155 −0.0213577 0.999772i \(-0.506799\pi\)
−0.0213577 + 0.999772i \(0.506799\pi\)
\(542\) 0 0
\(543\) −17.0534 −0.731831
\(544\) 0 0
\(545\) −0.593979 −0.0254433
\(546\) 0 0
\(547\) −1.07982 −0.0461696 −0.0230848 0.999734i \(-0.507349\pi\)
−0.0230848 + 0.999734i \(0.507349\pi\)
\(548\) 0 0
\(549\) 3.77111 0.160947
\(550\) 0 0
\(551\) 20.1446 0.858190
\(552\) 0 0
\(553\) 7.15856 0.304413
\(554\) 0 0
\(555\) 0.904279 0.0383845
\(556\) 0 0
\(557\) 34.0882 1.44436 0.722182 0.691703i \(-0.243139\pi\)
0.722182 + 0.691703i \(0.243139\pi\)
\(558\) 0 0
\(559\) −33.9661 −1.43661
\(560\) 0 0
\(561\) −1.95063 −0.0823557
\(562\) 0 0
\(563\) 31.1071 1.31101 0.655505 0.755191i \(-0.272456\pi\)
0.655505 + 0.755191i \(0.272456\pi\)
\(564\) 0 0
\(565\) 2.03386 0.0855650
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) 4.95466 0.207710 0.103855 0.994592i \(-0.466882\pi\)
0.103855 + 0.994592i \(0.466882\pi\)
\(570\) 0 0
\(571\) −7.68185 −0.321475 −0.160738 0.986997i \(-0.551387\pi\)
−0.160738 + 0.986997i \(0.551387\pi\)
\(572\) 0 0
\(573\) 21.1582 0.883895
\(574\) 0 0
\(575\) 18.6951 0.779641
\(576\) 0 0
\(577\) −0.671395 −0.0279506 −0.0139753 0.999902i \(-0.504449\pi\)
−0.0139753 + 0.999902i \(0.504449\pi\)
\(578\) 0 0
\(579\) 6.51420 0.270721
\(580\) 0 0
\(581\) 2.24441 0.0931137
\(582\) 0 0
\(583\) −15.6663 −0.648833
\(584\) 0 0
\(585\) −5.32218 −0.220045
\(586\) 0 0
\(587\) −13.7302 −0.566706 −0.283353 0.959016i \(-0.591447\pi\)
−0.283353 + 0.959016i \(0.591447\pi\)
\(588\) 0 0
\(589\) 17.2464 0.710625
\(590\) 0 0
\(591\) −0.979033 −0.0402720
\(592\) 0 0
\(593\) −12.4533 −0.511396 −0.255698 0.966757i \(-0.582305\pi\)
−0.255698 + 0.966757i \(0.582305\pi\)
\(594\) 0 0
\(595\) 1.19202 0.0488681
\(596\) 0 0
\(597\) −5.18355 −0.212149
\(598\) 0 0
\(599\) 21.2400 0.867841 0.433921 0.900951i \(-0.357130\pi\)
0.433921 + 0.900951i \(0.357130\pi\)
\(600\) 0 0
\(601\) 22.6758 0.924964 0.462482 0.886629i \(-0.346959\pi\)
0.462482 + 0.886629i \(0.346959\pi\)
\(602\) 0 0
\(603\) −7.90126 −0.321764
\(604\) 0 0
\(605\) −8.57665 −0.348690
\(606\) 0 0
\(607\) −1.05379 −0.0427719 −0.0213860 0.999771i \(-0.506808\pi\)
−0.0213860 + 0.999771i \(0.506808\pi\)
\(608\) 0 0
\(609\) 5.27281 0.213665
\(610\) 0 0
\(611\) −44.7886 −1.81195
\(612\) 0 0
\(613\) 13.6393 0.550886 0.275443 0.961317i \(-0.411175\pi\)
0.275443 + 0.961317i \(0.411175\pi\)
\(614\) 0 0
\(615\) −4.57305 −0.184403
\(616\) 0 0
\(617\) 15.3867 0.619444 0.309722 0.950827i \(-0.399764\pi\)
0.309722 + 0.950827i \(0.399764\pi\)
\(618\) 0 0
\(619\) −48.4114 −1.94582 −0.972909 0.231190i \(-0.925738\pi\)
−0.972909 + 0.231190i \(0.925738\pi\)
\(620\) 0 0
\(621\) −5.22344 −0.209609
\(622\) 0 0
\(623\) 2.16158 0.0866017
\(624\) 0 0
\(625\) 5.70525 0.228210
\(626\) 0 0
\(627\) −7.45234 −0.297618
\(628\) 0 0
\(629\) 0.758609 0.0302477
\(630\) 0 0
\(631\) −43.3072 −1.72403 −0.862016 0.506881i \(-0.830798\pi\)
−0.862016 + 0.506881i \(0.830798\pi\)
\(632\) 0 0
\(633\) −22.5611 −0.896725
\(634\) 0 0
\(635\) 1.57607 0.0625443
\(636\) 0 0
\(637\) −4.46483 −0.176903
\(638\) 0 0
\(639\) 11.9013 0.470807
\(640\) 0 0
\(641\) −24.6250 −0.972628 −0.486314 0.873784i \(-0.661659\pi\)
−0.486314 + 0.873784i \(0.661659\pi\)
\(642\) 0 0
\(643\) −13.1751 −0.519575 −0.259788 0.965666i \(-0.583653\pi\)
−0.259788 + 0.965666i \(0.583653\pi\)
\(644\) 0 0
\(645\) 9.06829 0.357064
\(646\) 0 0
\(647\) −6.18657 −0.243219 −0.121610 0.992578i \(-0.538806\pi\)
−0.121610 + 0.992578i \(0.538806\pi\)
\(648\) 0 0
\(649\) −20.7935 −0.816215
\(650\) 0 0
\(651\) 4.51420 0.176925
\(652\) 0 0
\(653\) 31.8978 1.24826 0.624128 0.781322i \(-0.285454\pi\)
0.624128 + 0.781322i \(0.285454\pi\)
\(654\) 0 0
\(655\) −9.56353 −0.373678
\(656\) 0 0
\(657\) 3.02840 0.118149
\(658\) 0 0
\(659\) −21.6724 −0.844236 −0.422118 0.906541i \(-0.638713\pi\)
−0.422118 + 0.906541i \(0.638713\pi\)
\(660\) 0 0
\(661\) −17.1511 −0.667101 −0.333551 0.942732i \(-0.608247\pi\)
−0.333551 + 0.942732i \(0.608247\pi\)
\(662\) 0 0
\(663\) −4.46483 −0.173400
\(664\) 0 0
\(665\) 4.55409 0.176600
\(666\) 0 0
\(667\) −27.5422 −1.06644
\(668\) 0 0
\(669\) 8.12169 0.314003
\(670\) 0 0
\(671\) −7.35603 −0.283977
\(672\) 0 0
\(673\) −15.0594 −0.580498 −0.290249 0.956951i \(-0.593738\pi\)
−0.290249 + 0.956951i \(0.593738\pi\)
\(674\) 0 0
\(675\) −3.57908 −0.137759
\(676\) 0 0
\(677\) 27.0514 1.03967 0.519834 0.854267i \(-0.325994\pi\)
0.519834 + 0.854267i \(0.325994\pi\)
\(678\) 0 0
\(679\) 12.4469 0.477667
\(680\) 0 0
\(681\) 2.42393 0.0928853
\(682\) 0 0
\(683\) −31.9087 −1.22095 −0.610476 0.792035i \(-0.709022\pi\)
−0.610476 + 0.792035i \(0.709022\pi\)
\(684\) 0 0
\(685\) −10.7995 −0.412628
\(686\) 0 0
\(687\) −15.8184 −0.603511
\(688\) 0 0
\(689\) −35.8589 −1.36612
\(690\) 0 0
\(691\) −33.5885 −1.27777 −0.638883 0.769304i \(-0.720603\pi\)
−0.638883 + 0.769304i \(0.720603\pi\)
\(692\) 0 0
\(693\) −1.95063 −0.0740983
\(694\) 0 0
\(695\) 23.1771 0.879156
\(696\) 0 0
\(697\) −3.83638 −0.145313
\(698\) 0 0
\(699\) −23.6325 −0.893862
\(700\) 0 0
\(701\) −35.8234 −1.35303 −0.676516 0.736428i \(-0.736511\pi\)
−0.676516 + 0.736428i \(0.736511\pi\)
\(702\) 0 0
\(703\) 2.89825 0.109309
\(704\) 0 0
\(705\) 11.9577 0.450352
\(706\) 0 0
\(707\) 1.62544 0.0611308
\(708\) 0 0
\(709\) 4.63449 0.174052 0.0870259 0.996206i \(-0.472264\pi\)
0.0870259 + 0.996206i \(0.472264\pi\)
\(710\) 0 0
\(711\) 7.15856 0.268467
\(712\) 0 0
\(713\) −23.5797 −0.883065
\(714\) 0 0
\(715\) 10.3816 0.388250
\(716\) 0 0
\(717\) −8.57704 −0.320315
\(718\) 0 0
\(719\) 8.57869 0.319931 0.159966 0.987123i \(-0.448862\pi\)
0.159966 + 0.987123i \(0.448862\pi\)
\(720\) 0 0
\(721\) 7.68084 0.286049
\(722\) 0 0
\(723\) −24.4469 −0.909189
\(724\) 0 0
\(725\) −18.8718 −0.700882
\(726\) 0 0
\(727\) −9.74650 −0.361478 −0.180739 0.983531i \(-0.557849\pi\)
−0.180739 + 0.983531i \(0.557849\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 7.60749 0.281373
\(732\) 0 0
\(733\) 41.5790 1.53576 0.767878 0.640596i \(-0.221313\pi\)
0.767878 + 0.640596i \(0.221313\pi\)
\(734\) 0 0
\(735\) 1.19202 0.0439684
\(736\) 0 0
\(737\) 15.4124 0.567725
\(738\) 0 0
\(739\) −20.0963 −0.739254 −0.369627 0.929180i \(-0.620515\pi\)
−0.369627 + 0.929180i \(0.620515\pi\)
\(740\) 0 0
\(741\) −17.0578 −0.626633
\(742\) 0 0
\(743\) 30.7890 1.12954 0.564769 0.825249i \(-0.308965\pi\)
0.564769 + 0.825249i \(0.308965\pi\)
\(744\) 0 0
\(745\) −20.3280 −0.744761
\(746\) 0 0
\(747\) 2.24441 0.0821186
\(748\) 0 0
\(749\) 4.43341 0.161993
\(750\) 0 0
\(751\) 46.7326 1.70530 0.852648 0.522486i \(-0.174995\pi\)
0.852648 + 0.522486i \(0.174995\pi\)
\(752\) 0 0
\(753\) −3.75520 −0.136847
\(754\) 0 0
\(755\) 9.72878 0.354067
\(756\) 0 0
\(757\) −7.51557 −0.273158 −0.136579 0.990629i \(-0.543611\pi\)
−0.136579 + 0.990629i \(0.543611\pi\)
\(758\) 0 0
\(759\) 10.1890 0.369837
\(760\) 0 0
\(761\) 18.9776 0.687939 0.343969 0.938981i \(-0.388228\pi\)
0.343969 + 0.938981i \(0.388228\pi\)
\(762\) 0 0
\(763\) −0.498295 −0.0180395
\(764\) 0 0
\(765\) 1.19202 0.0430977
\(766\) 0 0
\(767\) −47.5945 −1.71854
\(768\) 0 0
\(769\) −26.2515 −0.946652 −0.473326 0.880887i \(-0.656947\pi\)
−0.473326 + 0.880887i \(0.656947\pi\)
\(770\) 0 0
\(771\) −2.51420 −0.0905467
\(772\) 0 0
\(773\) 12.1082 0.435502 0.217751 0.976004i \(-0.430128\pi\)
0.217751 + 0.976004i \(0.430128\pi\)
\(774\) 0 0
\(775\) −16.1567 −0.580366
\(776\) 0 0
\(777\) 0.758609 0.0272149
\(778\) 0 0
\(779\) −14.6568 −0.525134
\(780\) 0 0
\(781\) −23.2150 −0.830697
\(782\) 0 0
\(783\) 5.27281 0.188435
\(784\) 0 0
\(785\) −15.0510 −0.537192
\(786\) 0 0
\(787\) 36.0713 1.28580 0.642901 0.765949i \(-0.277731\pi\)
0.642901 + 0.765949i \(0.277731\pi\)
\(788\) 0 0
\(789\) −7.05340 −0.251108
\(790\) 0 0
\(791\) 1.70622 0.0606663
\(792\) 0 0
\(793\) −16.8374 −0.597912
\(794\) 0 0
\(795\) 9.57363 0.339542
\(796\) 0 0
\(797\) −39.3925 −1.39535 −0.697676 0.716413i \(-0.745783\pi\)
−0.697676 + 0.716413i \(0.745783\pi\)
\(798\) 0 0
\(799\) 10.0314 0.354886
\(800\) 0 0
\(801\) 2.16158 0.0763755
\(802\) 0 0
\(803\) −5.90730 −0.208464
\(804\) 0 0
\(805\) −6.22646 −0.219454
\(806\) 0 0
\(807\) −12.3252 −0.433867
\(808\) 0 0
\(809\) −3.92869 −0.138125 −0.0690627 0.997612i \(-0.522001\pi\)
−0.0690627 + 0.997612i \(0.522001\pi\)
\(810\) 0 0
\(811\) −15.5781 −0.547021 −0.273511 0.961869i \(-0.588185\pi\)
−0.273511 + 0.961869i \(0.588185\pi\)
\(812\) 0 0
\(813\) −19.6639 −0.689643
\(814\) 0 0
\(815\) 2.67538 0.0937146
\(816\) 0 0
\(817\) 29.0642 1.01683
\(818\) 0 0
\(819\) −4.46483 −0.156014
\(820\) 0 0
\(821\) 11.5247 0.402213 0.201107 0.979569i \(-0.435546\pi\)
0.201107 + 0.979569i \(0.435546\pi\)
\(822\) 0 0
\(823\) 3.99357 0.139207 0.0696036 0.997575i \(-0.477827\pi\)
0.0696036 + 0.997575i \(0.477827\pi\)
\(824\) 0 0
\(825\) 6.98147 0.243064
\(826\) 0 0
\(827\) −48.0215 −1.66987 −0.834936 0.550347i \(-0.814495\pi\)
−0.834936 + 0.550347i \(0.814495\pi\)
\(828\) 0 0
\(829\) −28.7481 −0.998463 −0.499231 0.866469i \(-0.666384\pi\)
−0.499231 + 0.866469i \(0.666384\pi\)
\(830\) 0 0
\(831\) 9.37155 0.325095
\(832\) 0 0
\(833\) 1.00000 0.0346479
\(834\) 0 0
\(835\) 10.1890 0.352605
\(836\) 0 0
\(837\) 4.51420 0.156034
\(838\) 0 0
\(839\) 26.8478 0.926890 0.463445 0.886126i \(-0.346613\pi\)
0.463445 + 0.886126i \(0.346613\pi\)
\(840\) 0 0
\(841\) −1.19748 −0.0412923
\(842\) 0 0
\(843\) 8.90467 0.306693
\(844\) 0 0
\(845\) 8.26635 0.284371
\(846\) 0 0
\(847\) −7.19504 −0.247224
\(848\) 0 0
\(849\) 4.25389 0.145993
\(850\) 0 0
\(851\) −3.96255 −0.135834
\(852\) 0 0
\(853\) −50.9232 −1.74358 −0.871789 0.489881i \(-0.837040\pi\)
−0.871789 + 0.489881i \(0.837040\pi\)
\(854\) 0 0
\(855\) 4.55409 0.155747
\(856\) 0 0
\(857\) 8.77412 0.299718 0.149859 0.988707i \(-0.452118\pi\)
0.149859 + 0.988707i \(0.452118\pi\)
\(858\) 0 0
\(859\) 23.9740 0.817981 0.408991 0.912539i \(-0.365881\pi\)
0.408991 + 0.912539i \(0.365881\pi\)
\(860\) 0 0
\(861\) −3.83638 −0.130743
\(862\) 0 0
\(863\) 16.0564 0.546567 0.273283 0.961934i \(-0.411890\pi\)
0.273283 + 0.961934i \(0.411890\pi\)
\(864\) 0 0
\(865\) 18.5242 0.629842
\(866\) 0 0
\(867\) 1.00000 0.0339618
\(868\) 0 0
\(869\) −13.9637 −0.473686
\(870\) 0 0
\(871\) 35.2778 1.19534
\(872\) 0 0
\(873\) 12.4469 0.421263
\(874\) 0 0
\(875\) −10.2265 −0.345717
\(876\) 0 0
\(877\) 7.43478 0.251055 0.125527 0.992090i \(-0.459938\pi\)
0.125527 + 0.992090i \(0.459938\pi\)
\(878\) 0 0
\(879\) 23.8813 0.805495
\(880\) 0 0
\(881\) 10.6335 0.358250 0.179125 0.983826i \(-0.442673\pi\)
0.179125 + 0.983826i \(0.442673\pi\)
\(882\) 0 0
\(883\) −53.0578 −1.78554 −0.892768 0.450516i \(-0.851240\pi\)
−0.892768 + 0.450516i \(0.851240\pi\)
\(884\) 0 0
\(885\) 12.7068 0.427134
\(886\) 0 0
\(887\) 33.0832 1.11082 0.555412 0.831575i \(-0.312561\pi\)
0.555412 + 0.831575i \(0.312561\pi\)
\(888\) 0 0
\(889\) 1.32218 0.0443445
\(890\) 0 0
\(891\) −1.95063 −0.0653486
\(892\) 0 0
\(893\) 38.3248 1.28249
\(894\) 0 0
\(895\) 3.46243 0.115736
\(896\) 0 0
\(897\) 23.3218 0.778692
\(898\) 0 0
\(899\) 23.8025 0.793859
\(900\) 0 0
\(901\) 8.03142 0.267565
\(902\) 0 0
\(903\) 7.60749 0.253161
\(904\) 0 0
\(905\) −20.3280 −0.675726
\(906\) 0 0
\(907\) −28.0091 −0.930026 −0.465013 0.885304i \(-0.653950\pi\)
−0.465013 + 0.885304i \(0.653950\pi\)
\(908\) 0 0
\(909\) 1.62544 0.0539123
\(910\) 0 0
\(911\) 51.2484 1.69794 0.848968 0.528444i \(-0.177224\pi\)
0.848968 + 0.528444i \(0.177224\pi\)
\(912\) 0 0
\(913\) −4.37801 −0.144891
\(914\) 0 0
\(915\) 4.49524 0.148608
\(916\) 0 0
\(917\) −8.02295 −0.264941
\(918\) 0 0
\(919\) 12.4743 0.411490 0.205745 0.978606i \(-0.434038\pi\)
0.205745 + 0.978606i \(0.434038\pi\)
\(920\) 0 0
\(921\) −29.9482 −0.986827
\(922\) 0 0
\(923\) −53.1371 −1.74903
\(924\) 0 0
\(925\) −2.71512 −0.0892727
\(926\) 0 0
\(927\) 7.68084 0.252272
\(928\) 0 0
\(929\) 9.37256 0.307504 0.153752 0.988109i \(-0.450864\pi\)
0.153752 + 0.988109i \(0.450864\pi\)
\(930\) 0 0
\(931\) 3.82047 0.125211
\(932\) 0 0
\(933\) 6.74310 0.220759
\(934\) 0 0
\(935\) −2.32520 −0.0760420
\(936\) 0 0
\(937\) −13.0303 −0.425683 −0.212841 0.977087i \(-0.568272\pi\)
−0.212841 + 0.977087i \(0.568272\pi\)
\(938\) 0 0
\(939\) −26.3985 −0.861483
\(940\) 0 0
\(941\) 7.97501 0.259978 0.129989 0.991515i \(-0.458506\pi\)
0.129989 + 0.991515i \(0.458506\pi\)
\(942\) 0 0
\(943\) 20.0391 0.652563
\(944\) 0 0
\(945\) 1.19202 0.0387765
\(946\) 0 0
\(947\) 36.1348 1.17422 0.587111 0.809506i \(-0.300265\pi\)
0.587111 + 0.809506i \(0.300265\pi\)
\(948\) 0 0
\(949\) −13.5213 −0.438920
\(950\) 0 0
\(951\) −17.4344 −0.565349
\(952\) 0 0
\(953\) 52.7108 1.70747 0.853735 0.520708i \(-0.174332\pi\)
0.853735 + 0.520708i \(0.174332\pi\)
\(954\) 0 0
\(955\) 25.2210 0.816133
\(956\) 0 0
\(957\) −10.2853 −0.332477
\(958\) 0 0
\(959\) −9.05982 −0.292557
\(960\) 0 0
\(961\) −10.6220 −0.342645
\(962\) 0 0
\(963\) 4.43341 0.142865
\(964\) 0 0
\(965\) 7.76507 0.249967
\(966\) 0 0
\(967\) 23.2295 0.747010 0.373505 0.927628i \(-0.378156\pi\)
0.373505 + 0.927628i \(0.378156\pi\)
\(968\) 0 0
\(969\) 3.82047 0.122731
\(970\) 0 0
\(971\) 48.1537 1.54533 0.772663 0.634816i \(-0.218924\pi\)
0.772663 + 0.634816i \(0.218924\pi\)
\(972\) 0 0
\(973\) 19.4435 0.623329
\(974\) 0 0
\(975\) 15.9800 0.511770
\(976\) 0 0
\(977\) −17.3447 −0.554907 −0.277454 0.960739i \(-0.589490\pi\)
−0.277454 + 0.960739i \(0.589490\pi\)
\(978\) 0 0
\(979\) −4.21644 −0.134758
\(980\) 0 0
\(981\) −0.498295 −0.0159093
\(982\) 0 0
\(983\) 8.07579 0.257578 0.128789 0.991672i \(-0.458891\pi\)
0.128789 + 0.991672i \(0.458891\pi\)
\(984\) 0 0
\(985\) −1.16703 −0.0371846
\(986\) 0 0
\(987\) 10.0314 0.319304
\(988\) 0 0
\(989\) −39.7372 −1.26357
\(990\) 0 0
\(991\) 34.7213 1.10296 0.551479 0.834189i \(-0.314064\pi\)
0.551479 + 0.834189i \(0.314064\pi\)
\(992\) 0 0
\(993\) −12.9631 −0.411372
\(994\) 0 0
\(995\) −6.17891 −0.195885
\(996\) 0 0
\(997\) −41.0844 −1.30116 −0.650578 0.759439i \(-0.725473\pi\)
−0.650578 + 0.759439i \(0.725473\pi\)
\(998\) 0 0
\(999\) 0.758609 0.0240013
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5712.2.a.bz.1.3 4
4.3 odd 2 2856.2.a.u.1.3 4
12.11 even 2 8568.2.a.bi.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2856.2.a.u.1.3 4 4.3 odd 2
5712.2.a.bz.1.3 4 1.1 even 1 trivial
8568.2.a.bi.1.2 4 12.11 even 2