Properties

Label 5733.2.a.br
Level 57335733
Weight 22
Character orbit 5733.a
Self dual yes
Analytic conductor 45.77845.778
Analytic rank 11
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5733,2,Mod(1,5733)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5733.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5733=327213 5733 = 3^{2} \cdot 7^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5733.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 45.778235478845.7782354788
Analytic rank: 11
Dimension: 66
Coefficient field: 6.6.4507648.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x62x55x4+8x3+7x26x1 x^{6} - 2x^{5} - 5x^{4} + 8x^{3} + 7x^{2} - 6x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 637)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q2+(β4β3β1+1)q4+(β41)q5+(β5β3β1)q8+(2β2β1+1)q10+(2β5+β4)q11++(2β5β45β3+4)q97+O(q100) q + \beta_{2} q^{2} + (\beta_{4} - \beta_{3} - \beta_1 + 1) q^{4} + ( - \beta_{4} - 1) q^{5} + ( - \beta_{5} - \beta_{3} - \beta_1) q^{8} + ( - 2 \beta_{2} - \beta_1 + 1) q^{10} + (2 \beta_{5} + \beta_{4}) q^{11}+ \cdots + ( - 2 \beta_{5} - \beta_{4} - 5 \beta_{3} + \cdots - 4) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+4q46q5+4q104q11+6q1316q17+2q1916q2012q22+6q234q25+6q29+6q31+20q328q38+4q40+8q41+2q43+14q97+O(q100) 6 q + 4 q^{4} - 6 q^{5} + 4 q^{10} - 4 q^{11} + 6 q^{13} - 16 q^{17} + 2 q^{19} - 16 q^{20} - 12 q^{22} + 6 q^{23} - 4 q^{25} + 6 q^{29} + 6 q^{31} + 20 q^{32} - 8 q^{38} + 4 q^{40} + 8 q^{41} + 2 q^{43}+ \cdots - 14 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x62x55x4+8x3+7x26x1 x^{6} - 2x^{5} - 5x^{4} + 8x^{3} + 7x^{2} - 6x - 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν2 \nu^{2} - \nu - 2 Copy content Toggle raw display
β3\beta_{3}== ν3ν23ν+1 \nu^{3} - \nu^{2} - 3\nu + 1 Copy content Toggle raw display
β4\beta_{4}== ν4ν34ν2+2ν+2 \nu^{4} - \nu^{3} - 4\nu^{2} + 2\nu + 2 Copy content Toggle raw display
β5\beta_{5}== ν52ν44ν3+6ν2+4ν2 \nu^{5} - 2\nu^{4} - 4\nu^{3} + 6\nu^{2} + 4\nu - 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+2 \beta_{2} + \beta _1 + 2 Copy content Toggle raw display
ν3\nu^{3}== β3+β2+4β1+1 \beta_{3} + \beta_{2} + 4\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== β4+β3+5β2+6β1+7 \beta_{4} + \beta_{3} + 5\beta_{2} + 6\beta _1 + 7 Copy content Toggle raw display
ν5\nu^{5}== β5+2β4+6β3+8β2+18β1+8 \beta_{5} + 2\beta_{4} + 6\beta_{3} + 8\beta_{2} + 18\beta _1 + 8 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0.758419
−0.146243
1.90903
−1.20475
2.35100
−1.66745
−2.18322 0 2.76645 −2.11065 0 0 −1.67333 0 4.60802
1.2 −1.83237 0 1.35758 −2.62555 0 0 1.17715 0 4.81098
1.3 −0.264627 0 −1.92997 1.43515 0 0 1.03998 0 −0.379780
1.4 0.656184 0 −1.56942 1.35996 0 0 −2.34220 0 0.892385
1.5 1.17619 0 −0.616586 −3.14862 0 0 −3.07759 0 −3.70337
1.6 2.44785 0 3.99195 −0.910286 0 0 4.87599 0 −2.22824
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
77 +1 +1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5733.2.a.br 6
3.b odd 2 1 637.2.a.n yes 6
7.b odd 2 1 5733.2.a.bu 6
21.c even 2 1 637.2.a.m 6
21.g even 6 2 637.2.e.o 12
21.h odd 6 2 637.2.e.n 12
39.d odd 2 1 8281.2.a.cd 6
273.g even 2 1 8281.2.a.cc 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
637.2.a.m 6 21.c even 2 1
637.2.a.n yes 6 3.b odd 2 1
637.2.e.n 12 21.h odd 6 2
637.2.e.o 12 21.g even 6 2
5733.2.a.br 6 1.a even 1 1 trivial
5733.2.a.bu 6 7.b odd 2 1
8281.2.a.cc 6 273.g even 2 1
8281.2.a.cd 6 39.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(5733))S_{2}^{\mathrm{new}}(\Gamma_0(5733)):

T268T24+14T224T22 T_{2}^{6} - 8T_{2}^{4} + 14T_{2}^{2} - 4T_{2} - 2 Copy content Toggle raw display
T56+6T55+5T5424T5331T52+26T5+31 T_{5}^{6} + 6T_{5}^{5} + 5T_{5}^{4} - 24T_{5}^{3} - 31T_{5}^{2} + 26T_{5} + 31 Copy content Toggle raw display
T116+4T11538T114156T113+186T112+692T11562 T_{11}^{6} + 4T_{11}^{5} - 38T_{11}^{4} - 156T_{11}^{3} + 186T_{11}^{2} + 692T_{11} - 562 Copy content Toggle raw display
T176+16T175+56T174324T1732792T1726792T175294 T_{17}^{6} + 16T_{17}^{5} + 56T_{17}^{4} - 324T_{17}^{3} - 2792T_{17}^{2} - 6792T_{17} - 5294 Copy content Toggle raw display
T1962T19517T194+16T193+83T1926T1973 T_{19}^{6} - 2T_{19}^{5} - 17T_{19}^{4} + 16T_{19}^{3} + 83T_{19}^{2} - 6T_{19} - 73 Copy content Toggle raw display
T3166T315115T314+508T313+4181T31210046T3144249 T_{31}^{6} - 6T_{31}^{5} - 115T_{31}^{4} + 508T_{31}^{3} + 4181T_{31}^{2} - 10046T_{31} - 44249 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T68T4+2 T^{6} - 8 T^{4} + \cdots - 2 Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 T6+6T5++31 T^{6} + 6 T^{5} + \cdots + 31 Copy content Toggle raw display
77 T6 T^{6} Copy content Toggle raw display
1111 T6+4T5+562 T^{6} + 4 T^{5} + \cdots - 562 Copy content Toggle raw display
1313 (T1)6 (T - 1)^{6} Copy content Toggle raw display
1717 T6+16T5+5294 T^{6} + 16 T^{5} + \cdots - 5294 Copy content Toggle raw display
1919 T62T5+73 T^{6} - 2 T^{5} + \cdots - 73 Copy content Toggle raw display
2323 T66T5++529 T^{6} - 6 T^{5} + \cdots + 529 Copy content Toggle raw display
2929 T66T5++529 T^{6} - 6 T^{5} + \cdots + 529 Copy content Toggle raw display
3131 T66T5+44249 T^{6} - 6 T^{5} + \cdots - 44249 Copy content Toggle raw display
3737 T682T4++254 T^{6} - 82 T^{4} + \cdots + 254 Copy content Toggle raw display
4141 T68T5++28784 T^{6} - 8 T^{5} + \cdots + 28784 Copy content Toggle raw display
4343 T62T5++35153 T^{6} - 2 T^{5} + \cdots + 35153 Copy content Toggle raw display
4747 T6+30T5+135617 T^{6} + 30 T^{5} + \cdots - 135617 Copy content Toggle raw display
5353 T614T5+1319 T^{6} - 14 T^{5} + \cdots - 1319 Copy content Toggle raw display
5959 T6+24T5++1532 T^{6} + 24 T^{5} + \cdots + 1532 Copy content Toggle raw display
6161 T6246T4+216584 T^{6} - 246 T^{4} + \cdots - 216584 Copy content Toggle raw display
6767 T616T5++6112 T^{6} - 16 T^{5} + \cdots + 6112 Copy content Toggle raw display
7171 T6+8T5+1206162 T^{6} + 8 T^{5} + \cdots - 1206162 Copy content Toggle raw display
7373 T6+6T5+142657 T^{6} + 6 T^{5} + \cdots - 142657 Copy content Toggle raw display
7979 T6+22T5++7913 T^{6} + 22 T^{5} + \cdots + 7913 Copy content Toggle raw display
8383 T6+50T5+167041 T^{6} + 50 T^{5} + \cdots - 167041 Copy content Toggle raw display
8989 T6+26T5++9959 T^{6} + 26 T^{5} + \cdots + 9959 Copy content Toggle raw display
9797 T6+14T5++217287 T^{6} + 14 T^{5} + \cdots + 217287 Copy content Toggle raw display
show more
show less