Properties

Label 5733.2.a.br
Level $5733$
Weight $2$
Character orbit 5733.a
Self dual yes
Analytic conductor $45.778$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5733,2,Mod(1,5733)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5733.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5733.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.7782354788\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.4507648.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 8x^{3} + 7x^{2} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 637)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + (\beta_{4} - \beta_{3} - \beta_1 + 1) q^{4} + ( - \beta_{4} - 1) q^{5} + ( - \beta_{5} - \beta_{3} - \beta_1) q^{8} + ( - 2 \beta_{2} - \beta_1 + 1) q^{10} + (2 \beta_{5} + \beta_{4}) q^{11}+ \cdots + ( - 2 \beta_{5} - \beta_{4} - 5 \beta_{3} + \cdots - 4) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{4} - 6 q^{5} + 4 q^{10} - 4 q^{11} + 6 q^{13} - 16 q^{17} + 2 q^{19} - 16 q^{20} - 12 q^{22} + 6 q^{23} - 4 q^{25} + 6 q^{29} + 6 q^{31} + 20 q^{32} - 8 q^{38} + 4 q^{40} + 8 q^{41} + 2 q^{43}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 5x^{4} + 8x^{3} + 7x^{2} - 6x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 3\nu + 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - \nu^{3} - 4\nu^{2} + 2\nu + 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 2\nu^{4} - 4\nu^{3} + 6\nu^{2} + 4\nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 4\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + \beta_{3} + 5\beta_{2} + 6\beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + 2\beta_{4} + 6\beta_{3} + 8\beta_{2} + 18\beta _1 + 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.758419
−0.146243
1.90903
−1.20475
2.35100
−1.66745
−2.18322 0 2.76645 −2.11065 0 0 −1.67333 0 4.60802
1.2 −1.83237 0 1.35758 −2.62555 0 0 1.17715 0 4.81098
1.3 −0.264627 0 −1.92997 1.43515 0 0 1.03998 0 −0.379780
1.4 0.656184 0 −1.56942 1.35996 0 0 −2.34220 0 0.892385
1.5 1.17619 0 −0.616586 −3.14862 0 0 −3.07759 0 −3.70337
1.6 2.44785 0 3.99195 −0.910286 0 0 4.87599 0 −2.22824
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5733.2.a.br 6
3.b odd 2 1 637.2.a.n yes 6
7.b odd 2 1 5733.2.a.bu 6
21.c even 2 1 637.2.a.m 6
21.g even 6 2 637.2.e.o 12
21.h odd 6 2 637.2.e.n 12
39.d odd 2 1 8281.2.a.cd 6
273.g even 2 1 8281.2.a.cc 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
637.2.a.m 6 21.c even 2 1
637.2.a.n yes 6 3.b odd 2 1
637.2.e.n 12 21.h odd 6 2
637.2.e.o 12 21.g even 6 2
5733.2.a.br 6 1.a even 1 1 trivial
5733.2.a.bu 6 7.b odd 2 1
8281.2.a.cc 6 273.g even 2 1
8281.2.a.cd 6 39.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5733))\):

\( T_{2}^{6} - 8T_{2}^{4} + 14T_{2}^{2} - 4T_{2} - 2 \) Copy content Toggle raw display
\( T_{5}^{6} + 6T_{5}^{5} + 5T_{5}^{4} - 24T_{5}^{3} - 31T_{5}^{2} + 26T_{5} + 31 \) Copy content Toggle raw display
\( T_{11}^{6} + 4T_{11}^{5} - 38T_{11}^{4} - 156T_{11}^{3} + 186T_{11}^{2} + 692T_{11} - 562 \) Copy content Toggle raw display
\( T_{17}^{6} + 16T_{17}^{5} + 56T_{17}^{4} - 324T_{17}^{3} - 2792T_{17}^{2} - 6792T_{17} - 5294 \) Copy content Toggle raw display
\( T_{19}^{6} - 2T_{19}^{5} - 17T_{19}^{4} + 16T_{19}^{3} + 83T_{19}^{2} - 6T_{19} - 73 \) Copy content Toggle raw display
\( T_{31}^{6} - 6T_{31}^{5} - 115T_{31}^{4} + 508T_{31}^{3} + 4181T_{31}^{2} - 10046T_{31} - 44249 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 8 T^{4} + \cdots - 2 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 6 T^{5} + \cdots + 31 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 4 T^{5} + \cdots - 562 \) Copy content Toggle raw display
$13$ \( (T - 1)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + 16 T^{5} + \cdots - 5294 \) Copy content Toggle raw display
$19$ \( T^{6} - 2 T^{5} + \cdots - 73 \) Copy content Toggle raw display
$23$ \( T^{6} - 6 T^{5} + \cdots + 529 \) Copy content Toggle raw display
$29$ \( T^{6} - 6 T^{5} + \cdots + 529 \) Copy content Toggle raw display
$31$ \( T^{6} - 6 T^{5} + \cdots - 44249 \) Copy content Toggle raw display
$37$ \( T^{6} - 82 T^{4} + \cdots + 254 \) Copy content Toggle raw display
$41$ \( T^{6} - 8 T^{5} + \cdots + 28784 \) Copy content Toggle raw display
$43$ \( T^{6} - 2 T^{5} + \cdots + 35153 \) Copy content Toggle raw display
$47$ \( T^{6} + 30 T^{5} + \cdots - 135617 \) Copy content Toggle raw display
$53$ \( T^{6} - 14 T^{5} + \cdots - 1319 \) Copy content Toggle raw display
$59$ \( T^{6} + 24 T^{5} + \cdots + 1532 \) Copy content Toggle raw display
$61$ \( T^{6} - 246 T^{4} + \cdots - 216584 \) Copy content Toggle raw display
$67$ \( T^{6} - 16 T^{5} + \cdots + 6112 \) Copy content Toggle raw display
$71$ \( T^{6} + 8 T^{5} + \cdots - 1206162 \) Copy content Toggle raw display
$73$ \( T^{6} + 6 T^{5} + \cdots - 142657 \) Copy content Toggle raw display
$79$ \( T^{6} + 22 T^{5} + \cdots + 7913 \) Copy content Toggle raw display
$83$ \( T^{6} + 50 T^{5} + \cdots - 167041 \) Copy content Toggle raw display
$89$ \( T^{6} + 26 T^{5} + \cdots + 9959 \) Copy content Toggle raw display
$97$ \( T^{6} + 14 T^{5} + \cdots + 217287 \) Copy content Toggle raw display
show more
show less