Properties

Label 5733.2.a.bz.1.9
Level $5733$
Weight $2$
Character 5733.1
Self dual yes
Analytic conductor $45.778$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5733,2,Mod(1,5733)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5733.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5733.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.7782354788\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 18x^{8} + 110x^{6} - 265x^{4} + 243x^{2} - 63 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 819)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(2.55095\) of defining polynomial
Character \(\chi\) \(=\) 5733.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.55095 q^{2} +4.50732 q^{4} -1.71239 q^{5} +6.39604 q^{8} -4.36821 q^{10} +0.945869 q^{11} -1.00000 q^{13} +7.30130 q^{16} +0.170552 q^{17} -2.87466 q^{19} -7.71828 q^{20} +2.41286 q^{22} +5.66479 q^{23} -2.06772 q^{25} -2.55095 q^{26} +9.22485 q^{29} +7.36902 q^{31} +5.83313 q^{32} +0.435068 q^{34} +5.50732 q^{37} -7.33311 q^{38} -10.9525 q^{40} +11.0005 q^{41} +2.58714 q^{43} +4.26333 q^{44} +14.4506 q^{46} -0.418242 q^{47} -5.27465 q^{50} -4.50732 q^{52} -0.626142 q^{53} -1.61970 q^{55} +23.5321 q^{58} +6.73714 q^{59} +8.16219 q^{61} +18.7980 q^{62} +0.277410 q^{64} +1.71239 q^{65} -8.39123 q^{67} +0.768731 q^{68} +0.382966 q^{71} +2.22066 q^{73} +14.0489 q^{74} -12.9570 q^{76} +13.5304 q^{79} -12.5027 q^{80} +28.0616 q^{82} -5.90576 q^{83} -0.292051 q^{85} +6.59965 q^{86} +6.04981 q^{88} -17.7074 q^{89} +25.5330 q^{92} -1.06691 q^{94} +4.92254 q^{95} -7.69624 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 16 q^{4} + 4 q^{10} - 10 q^{13} + 32 q^{16} - 6 q^{19} + 10 q^{22} + 24 q^{25} - 12 q^{31} - 34 q^{34} + 26 q^{37} + 70 q^{40} + 40 q^{43} - 6 q^{46} - 16 q^{52} + 24 q^{55} + 36 q^{58} + 22 q^{61}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.55095 1.80379 0.901895 0.431955i \(-0.142176\pi\)
0.901895 + 0.431955i \(0.142176\pi\)
\(3\) 0 0
\(4\) 4.50732 2.25366
\(5\) −1.71239 −0.765804 −0.382902 0.923789i \(-0.625075\pi\)
−0.382902 + 0.923789i \(0.625075\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 6.39604 2.26134
\(9\) 0 0
\(10\) −4.36821 −1.38135
\(11\) 0.945869 0.285190 0.142595 0.989781i \(-0.454455\pi\)
0.142595 + 0.989781i \(0.454455\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 7.30130 1.82532
\(17\) 0.170552 0.0413648 0.0206824 0.999786i \(-0.493416\pi\)
0.0206824 + 0.999786i \(0.493416\pi\)
\(18\) 0 0
\(19\) −2.87466 −0.659493 −0.329747 0.944070i \(-0.606963\pi\)
−0.329747 + 0.944070i \(0.606963\pi\)
\(20\) −7.71828 −1.72586
\(21\) 0 0
\(22\) 2.41286 0.514423
\(23\) 5.66479 1.18119 0.590595 0.806968i \(-0.298893\pi\)
0.590595 + 0.806968i \(0.298893\pi\)
\(24\) 0 0
\(25\) −2.06772 −0.413545
\(26\) −2.55095 −0.500281
\(27\) 0 0
\(28\) 0 0
\(29\) 9.22485 1.71301 0.856505 0.516138i \(-0.172631\pi\)
0.856505 + 0.516138i \(0.172631\pi\)
\(30\) 0 0
\(31\) 7.36902 1.32352 0.661758 0.749718i \(-0.269811\pi\)
0.661758 + 0.749718i \(0.269811\pi\)
\(32\) 5.83313 1.03116
\(33\) 0 0
\(34\) 0.435068 0.0746135
\(35\) 0 0
\(36\) 0 0
\(37\) 5.50732 0.905398 0.452699 0.891663i \(-0.350461\pi\)
0.452699 + 0.891663i \(0.350461\pi\)
\(38\) −7.33311 −1.18959
\(39\) 0 0
\(40\) −10.9525 −1.73174
\(41\) 11.0005 1.71799 0.858993 0.511988i \(-0.171091\pi\)
0.858993 + 0.511988i \(0.171091\pi\)
\(42\) 0 0
\(43\) 2.58714 0.394535 0.197268 0.980350i \(-0.436793\pi\)
0.197268 + 0.980350i \(0.436793\pi\)
\(44\) 4.26333 0.642722
\(45\) 0 0
\(46\) 14.4506 2.13062
\(47\) −0.418242 −0.0610069 −0.0305034 0.999535i \(-0.509711\pi\)
−0.0305034 + 0.999535i \(0.509711\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −5.27465 −0.745948
\(51\) 0 0
\(52\) −4.50732 −0.625053
\(53\) −0.626142 −0.0860072 −0.0430036 0.999075i \(-0.513693\pi\)
−0.0430036 + 0.999075i \(0.513693\pi\)
\(54\) 0 0
\(55\) −1.61970 −0.218400
\(56\) 0 0
\(57\) 0 0
\(58\) 23.5321 3.08991
\(59\) 6.73714 0.877101 0.438550 0.898707i \(-0.355492\pi\)
0.438550 + 0.898707i \(0.355492\pi\)
\(60\) 0 0
\(61\) 8.16219 1.04506 0.522530 0.852621i \(-0.324988\pi\)
0.522530 + 0.852621i \(0.324988\pi\)
\(62\) 18.7980 2.38734
\(63\) 0 0
\(64\) 0.277410 0.0346762
\(65\) 1.71239 0.212396
\(66\) 0 0
\(67\) −8.39123 −1.02515 −0.512576 0.858642i \(-0.671309\pi\)
−0.512576 + 0.858642i \(0.671309\pi\)
\(68\) 0.768731 0.0932223
\(69\) 0 0
\(70\) 0 0
\(71\) 0.382966 0.0454497 0.0227248 0.999742i \(-0.492766\pi\)
0.0227248 + 0.999742i \(0.492766\pi\)
\(72\) 0 0
\(73\) 2.22066 0.259909 0.129955 0.991520i \(-0.458517\pi\)
0.129955 + 0.991520i \(0.458517\pi\)
\(74\) 14.0489 1.63315
\(75\) 0 0
\(76\) −12.9570 −1.48627
\(77\) 0 0
\(78\) 0 0
\(79\) 13.5304 1.52229 0.761144 0.648583i \(-0.224638\pi\)
0.761144 + 0.648583i \(0.224638\pi\)
\(80\) −12.5027 −1.39784
\(81\) 0 0
\(82\) 28.0616 3.09889
\(83\) −5.90576 −0.648241 −0.324121 0.946016i \(-0.605068\pi\)
−0.324121 + 0.946016i \(0.605068\pi\)
\(84\) 0 0
\(85\) −0.292051 −0.0316773
\(86\) 6.59965 0.711659
\(87\) 0 0
\(88\) 6.04981 0.644912
\(89\) −17.7074 −1.87698 −0.938492 0.345300i \(-0.887777\pi\)
−0.938492 + 0.345300i \(0.887777\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 25.5330 2.66200
\(93\) 0 0
\(94\) −1.06691 −0.110044
\(95\) 4.92254 0.505042
\(96\) 0 0
\(97\) −7.69624 −0.781435 −0.390718 0.920511i \(-0.627773\pi\)
−0.390718 + 0.920511i \(0.627773\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −9.31990 −0.931990
\(101\) −7.15538 −0.711987 −0.355994 0.934488i \(-0.615857\pi\)
−0.355994 + 0.934488i \(0.615857\pi\)
\(102\) 0 0
\(103\) 6.48058 0.638551 0.319275 0.947662i \(-0.396560\pi\)
0.319275 + 0.947662i \(0.396560\pi\)
\(104\) −6.39604 −0.627183
\(105\) 0 0
\(106\) −1.59725 −0.155139
\(107\) −5.32369 −0.514661 −0.257330 0.966324i \(-0.582843\pi\)
−0.257330 + 0.966324i \(0.582843\pi\)
\(108\) 0 0
\(109\) 14.4367 1.38279 0.691395 0.722477i \(-0.256997\pi\)
0.691395 + 0.722477i \(0.256997\pi\)
\(110\) −4.13175 −0.393947
\(111\) 0 0
\(112\) 0 0
\(113\) −8.90291 −0.837515 −0.418758 0.908098i \(-0.637534\pi\)
−0.418758 + 0.908098i \(0.637534\pi\)
\(114\) 0 0
\(115\) −9.70033 −0.904560
\(116\) 41.5793 3.86054
\(117\) 0 0
\(118\) 17.1861 1.58211
\(119\) 0 0
\(120\) 0 0
\(121\) −10.1053 −0.918667
\(122\) 20.8213 1.88507
\(123\) 0 0
\(124\) 33.2145 2.98275
\(125\) 12.1027 1.08250
\(126\) 0 0
\(127\) 20.4367 1.81347 0.906734 0.421703i \(-0.138568\pi\)
0.906734 + 0.421703i \(0.138568\pi\)
\(128\) −10.9586 −0.968614
\(129\) 0 0
\(130\) 4.36821 0.383117
\(131\) −9.79064 −0.855412 −0.427706 0.903918i \(-0.640678\pi\)
−0.427706 + 0.903918i \(0.640678\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −21.4056 −1.84916
\(135\) 0 0
\(136\) 1.09085 0.0935400
\(137\) −14.8880 −1.27197 −0.635985 0.771702i \(-0.719406\pi\)
−0.635985 + 0.771702i \(0.719406\pi\)
\(138\) 0 0
\(139\) −4.38193 −0.371670 −0.185835 0.982581i \(-0.559499\pi\)
−0.185835 + 0.982581i \(0.559499\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.976925 0.0819817
\(143\) −0.945869 −0.0790975
\(144\) 0 0
\(145\) −15.7965 −1.31183
\(146\) 5.66479 0.468822
\(147\) 0 0
\(148\) 24.8233 2.04046
\(149\) −4.19071 −0.343316 −0.171658 0.985157i \(-0.554912\pi\)
−0.171658 + 0.985157i \(0.554912\pi\)
\(150\) 0 0
\(151\) −13.5718 −1.10446 −0.552230 0.833692i \(-0.686223\pi\)
−0.552230 + 0.833692i \(0.686223\pi\)
\(152\) −18.3865 −1.49134
\(153\) 0 0
\(154\) 0 0
\(155\) −12.6186 −1.01355
\(156\) 0 0
\(157\) 19.1330 1.52698 0.763489 0.645820i \(-0.223485\pi\)
0.763489 + 0.645820i \(0.223485\pi\)
\(158\) 34.5153 2.74589
\(159\) 0 0
\(160\) −9.98859 −0.789668
\(161\) 0 0
\(162\) 0 0
\(163\) 13.0953 1.02571 0.512853 0.858477i \(-0.328589\pi\)
0.512853 + 0.858477i \(0.328589\pi\)
\(164\) 49.5827 3.87176
\(165\) 0 0
\(166\) −15.0653 −1.16929
\(167\) −7.06625 −0.546803 −0.273402 0.961900i \(-0.588149\pi\)
−0.273402 + 0.961900i \(0.588149\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −0.745005 −0.0571393
\(171\) 0 0
\(172\) 11.6611 0.889148
\(173\) −17.9309 −1.36326 −0.681629 0.731698i \(-0.738728\pi\)
−0.681629 + 0.731698i \(0.738728\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 6.90607 0.520565
\(177\) 0 0
\(178\) −45.1707 −3.38569
\(179\) −20.9307 −1.56443 −0.782216 0.623007i \(-0.785911\pi\)
−0.782216 + 0.623007i \(0.785911\pi\)
\(180\) 0 0
\(181\) 20.2884 1.50802 0.754012 0.656861i \(-0.228116\pi\)
0.754012 + 0.656861i \(0.228116\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 36.2322 2.67107
\(185\) −9.43067 −0.693357
\(186\) 0 0
\(187\) 0.161319 0.0117968
\(188\) −1.88515 −0.137489
\(189\) 0 0
\(190\) 12.5571 0.910990
\(191\) −15.9714 −1.15565 −0.577824 0.816161i \(-0.696098\pi\)
−0.577824 + 0.816161i \(0.696098\pi\)
\(192\) 0 0
\(193\) −0.579628 −0.0417225 −0.0208613 0.999782i \(-0.506641\pi\)
−0.0208613 + 0.999782i \(0.506641\pi\)
\(194\) −19.6327 −1.40955
\(195\) 0 0
\(196\) 0 0
\(197\) 3.18381 0.226837 0.113419 0.993547i \(-0.463820\pi\)
0.113419 + 0.993547i \(0.463820\pi\)
\(198\) 0 0
\(199\) 19.4381 1.37793 0.688964 0.724796i \(-0.258066\pi\)
0.688964 + 0.724796i \(0.258066\pi\)
\(200\) −13.2252 −0.935166
\(201\) 0 0
\(202\) −18.2530 −1.28428
\(203\) 0 0
\(204\) 0 0
\(205\) −18.8371 −1.31564
\(206\) 16.5316 1.15181
\(207\) 0 0
\(208\) −7.30130 −0.506254
\(209\) −2.71905 −0.188081
\(210\) 0 0
\(211\) −17.6859 −1.21755 −0.608773 0.793344i \(-0.708338\pi\)
−0.608773 + 0.793344i \(0.708338\pi\)
\(212\) −2.82222 −0.193831
\(213\) 0 0
\(214\) −13.5804 −0.928340
\(215\) −4.43019 −0.302136
\(216\) 0 0
\(217\) 0 0
\(218\) 36.8273 2.49426
\(219\) 0 0
\(220\) −7.30048 −0.492199
\(221\) −0.170552 −0.0114725
\(222\) 0 0
\(223\) 4.74846 0.317980 0.158990 0.987280i \(-0.449176\pi\)
0.158990 + 0.987280i \(0.449176\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −22.7108 −1.51070
\(227\) 12.0779 0.801640 0.400820 0.916157i \(-0.368725\pi\)
0.400820 + 0.916157i \(0.368725\pi\)
\(228\) 0 0
\(229\) −14.9478 −0.987781 −0.493890 0.869524i \(-0.664426\pi\)
−0.493890 + 0.869524i \(0.664426\pi\)
\(230\) −24.7450 −1.63164
\(231\) 0 0
\(232\) 59.0025 3.87370
\(233\) −22.6812 −1.48590 −0.742948 0.669349i \(-0.766573\pi\)
−0.742948 + 0.669349i \(0.766573\pi\)
\(234\) 0 0
\(235\) 0.716193 0.0467193
\(236\) 30.3664 1.97669
\(237\) 0 0
\(238\) 0 0
\(239\) 12.9840 0.839865 0.419933 0.907555i \(-0.362054\pi\)
0.419933 + 0.907555i \(0.362054\pi\)
\(240\) 0 0
\(241\) −7.02215 −0.452337 −0.226168 0.974088i \(-0.572620\pi\)
−0.226168 + 0.974088i \(0.572620\pi\)
\(242\) −25.7781 −1.65708
\(243\) 0 0
\(244\) 36.7896 2.35521
\(245\) 0 0
\(246\) 0 0
\(247\) 2.87466 0.182910
\(248\) 47.1325 2.99292
\(249\) 0 0
\(250\) 30.8733 1.95260
\(251\) 12.9538 0.817638 0.408819 0.912615i \(-0.365941\pi\)
0.408819 + 0.912615i \(0.365941\pi\)
\(252\) 0 0
\(253\) 5.35815 0.336864
\(254\) 52.1330 3.27112
\(255\) 0 0
\(256\) −28.5096 −1.78185
\(257\) 30.3685 1.89434 0.947168 0.320737i \(-0.103931\pi\)
0.947168 + 0.320737i \(0.103931\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 7.71828 0.478668
\(261\) 0 0
\(262\) −24.9754 −1.54298
\(263\) 14.7986 0.912521 0.456260 0.889846i \(-0.349189\pi\)
0.456260 + 0.889846i \(0.349189\pi\)
\(264\) 0 0
\(265\) 1.07220 0.0658646
\(266\) 0 0
\(267\) 0 0
\(268\) −37.8220 −2.31034
\(269\) −11.5959 −0.707012 −0.353506 0.935432i \(-0.615011\pi\)
−0.353506 + 0.935432i \(0.615011\pi\)
\(270\) 0 0
\(271\) −30.3093 −1.84116 −0.920579 0.390556i \(-0.872283\pi\)
−0.920579 + 0.390556i \(0.872283\pi\)
\(272\) 1.24525 0.0755042
\(273\) 0 0
\(274\) −37.9785 −2.29437
\(275\) −1.95580 −0.117939
\(276\) 0 0
\(277\) 5.34980 0.321438 0.160719 0.987000i \(-0.448619\pi\)
0.160719 + 0.987000i \(0.448619\pi\)
\(278\) −11.1781 −0.670416
\(279\) 0 0
\(280\) 0 0
\(281\) 22.1624 1.32210 0.661049 0.750343i \(-0.270112\pi\)
0.661049 + 0.750343i \(0.270112\pi\)
\(282\) 0 0
\(283\) −14.1677 −0.842182 −0.421091 0.907018i \(-0.638353\pi\)
−0.421091 + 0.907018i \(0.638353\pi\)
\(284\) 1.72615 0.102428
\(285\) 0 0
\(286\) −2.41286 −0.142675
\(287\) 0 0
\(288\) 0 0
\(289\) −16.9709 −0.998289
\(290\) −40.2961 −2.36627
\(291\) 0 0
\(292\) 10.0092 0.585747
\(293\) 29.8938 1.74641 0.873206 0.487351i \(-0.162037\pi\)
0.873206 + 0.487351i \(0.162037\pi\)
\(294\) 0 0
\(295\) −11.5366 −0.671687
\(296\) 35.2250 2.04741
\(297\) 0 0
\(298\) −10.6903 −0.619271
\(299\) −5.66479 −0.327603
\(300\) 0 0
\(301\) 0 0
\(302\) −34.6210 −1.99221
\(303\) 0 0
\(304\) −20.9888 −1.20379
\(305\) −13.9768 −0.800311
\(306\) 0 0
\(307\) 12.5659 0.717171 0.358586 0.933497i \(-0.383259\pi\)
0.358586 + 0.933497i \(0.383259\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −32.1894 −1.82824
\(311\) −24.3379 −1.38007 −0.690037 0.723774i \(-0.742406\pi\)
−0.690037 + 0.723774i \(0.742406\pi\)
\(312\) 0 0
\(313\) 26.7536 1.51220 0.756102 0.654454i \(-0.227102\pi\)
0.756102 + 0.654454i \(0.227102\pi\)
\(314\) 48.8072 2.75435
\(315\) 0 0
\(316\) 60.9858 3.43072
\(317\) −14.7383 −0.827783 −0.413891 0.910326i \(-0.635831\pi\)
−0.413891 + 0.910326i \(0.635831\pi\)
\(318\) 0 0
\(319\) 8.72549 0.488534
\(320\) −0.475033 −0.0265552
\(321\) 0 0
\(322\) 0 0
\(323\) −0.490278 −0.0272798
\(324\) 0 0
\(325\) 2.06772 0.114697
\(326\) 33.4055 1.85016
\(327\) 0 0
\(328\) 70.3594 3.88495
\(329\) 0 0
\(330\) 0 0
\(331\) −2.71497 −0.149228 −0.0746141 0.997212i \(-0.523772\pi\)
−0.0746141 + 0.997212i \(0.523772\pi\)
\(332\) −26.6191 −1.46092
\(333\) 0 0
\(334\) −18.0256 −0.986318
\(335\) 14.3690 0.785065
\(336\) 0 0
\(337\) 14.2245 0.774859 0.387429 0.921899i \(-0.373363\pi\)
0.387429 + 0.921899i \(0.373363\pi\)
\(338\) 2.55095 0.138753
\(339\) 0 0
\(340\) −1.31637 −0.0713900
\(341\) 6.97013 0.377454
\(342\) 0 0
\(343\) 0 0
\(344\) 16.5474 0.892179
\(345\) 0 0
\(346\) −45.7406 −2.45903
\(347\) 12.7508 0.684499 0.342249 0.939609i \(-0.388811\pi\)
0.342249 + 0.939609i \(0.388811\pi\)
\(348\) 0 0
\(349\) −12.9040 −0.690735 −0.345368 0.938467i \(-0.612246\pi\)
−0.345368 + 0.938467i \(0.612246\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5.51738 0.294077
\(353\) −10.0199 −0.533306 −0.266653 0.963793i \(-0.585918\pi\)
−0.266653 + 0.963793i \(0.585918\pi\)
\(354\) 0 0
\(355\) −0.655786 −0.0348055
\(356\) −79.8131 −4.23009
\(357\) 0 0
\(358\) −53.3930 −2.82191
\(359\) −32.0182 −1.68986 −0.844928 0.534880i \(-0.820357\pi\)
−0.844928 + 0.534880i \(0.820357\pi\)
\(360\) 0 0
\(361\) −10.7363 −0.565069
\(362\) 51.7546 2.72016
\(363\) 0 0
\(364\) 0 0
\(365\) −3.80264 −0.199039
\(366\) 0 0
\(367\) 21.4376 1.11903 0.559516 0.828820i \(-0.310987\pi\)
0.559516 + 0.828820i \(0.310987\pi\)
\(368\) 41.3603 2.15606
\(369\) 0 0
\(370\) −24.0571 −1.25067
\(371\) 0 0
\(372\) 0 0
\(373\) 8.85712 0.458604 0.229302 0.973355i \(-0.426356\pi\)
0.229302 + 0.973355i \(0.426356\pi\)
\(374\) 0.411517 0.0212790
\(375\) 0 0
\(376\) −2.67509 −0.137957
\(377\) −9.22485 −0.475104
\(378\) 0 0
\(379\) 6.14238 0.315513 0.157757 0.987478i \(-0.449574\pi\)
0.157757 + 0.987478i \(0.449574\pi\)
\(380\) 22.1875 1.13819
\(381\) 0 0
\(382\) −40.7421 −2.08455
\(383\) 3.09085 0.157935 0.0789675 0.996877i \(-0.474838\pi\)
0.0789675 + 0.996877i \(0.474838\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.47860 −0.0752587
\(387\) 0 0
\(388\) −34.6894 −1.76109
\(389\) 19.7251 1.00010 0.500052 0.865996i \(-0.333314\pi\)
0.500052 + 0.865996i \(0.333314\pi\)
\(390\) 0 0
\(391\) 0.966139 0.0488598
\(392\) 0 0
\(393\) 0 0
\(394\) 8.12173 0.409167
\(395\) −23.1693 −1.16577
\(396\) 0 0
\(397\) 12.2724 0.615936 0.307968 0.951397i \(-0.400351\pi\)
0.307968 + 0.951397i \(0.400351\pi\)
\(398\) 49.5854 2.48549
\(399\) 0 0
\(400\) −15.0971 −0.754854
\(401\) 1.67260 0.0835256 0.0417628 0.999128i \(-0.486703\pi\)
0.0417628 + 0.999128i \(0.486703\pi\)
\(402\) 0 0
\(403\) −7.36902 −0.367077
\(404\) −32.2516 −1.60458
\(405\) 0 0
\(406\) 0 0
\(407\) 5.20920 0.258211
\(408\) 0 0
\(409\) −31.3713 −1.55121 −0.775606 0.631217i \(-0.782556\pi\)
−0.775606 + 0.631217i \(0.782556\pi\)
\(410\) −48.0524 −2.37314
\(411\) 0 0
\(412\) 29.2101 1.43908
\(413\) 0 0
\(414\) 0 0
\(415\) 10.1130 0.496425
\(416\) −5.83313 −0.285993
\(417\) 0 0
\(418\) −6.93616 −0.339259
\(419\) 4.81220 0.235091 0.117546 0.993067i \(-0.462497\pi\)
0.117546 + 0.993067i \(0.462497\pi\)
\(420\) 0 0
\(421\) −2.96460 −0.144486 −0.0722428 0.997387i \(-0.523016\pi\)
−0.0722428 + 0.997387i \(0.523016\pi\)
\(422\) −45.1157 −2.19620
\(423\) 0 0
\(424\) −4.00483 −0.194492
\(425\) −0.352654 −0.0171062
\(426\) 0 0
\(427\) 0 0
\(428\) −23.9956 −1.15987
\(429\) 0 0
\(430\) −11.3012 −0.544991
\(431\) −22.4741 −1.08254 −0.541270 0.840849i \(-0.682056\pi\)
−0.541270 + 0.840849i \(0.682056\pi\)
\(432\) 0 0
\(433\) −3.29895 −0.158537 −0.0792686 0.996853i \(-0.525258\pi\)
−0.0792686 + 0.996853i \(0.525258\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 65.0710 3.11634
\(437\) −16.2844 −0.778987
\(438\) 0 0
\(439\) −37.2693 −1.77876 −0.889382 0.457164i \(-0.848865\pi\)
−0.889382 + 0.457164i \(0.848865\pi\)
\(440\) −10.3596 −0.493876
\(441\) 0 0
\(442\) −0.435068 −0.0206941
\(443\) −33.5072 −1.59198 −0.795988 0.605312i \(-0.793048\pi\)
−0.795988 + 0.605312i \(0.793048\pi\)
\(444\) 0 0
\(445\) 30.3220 1.43740
\(446\) 12.1131 0.573570
\(447\) 0 0
\(448\) 0 0
\(449\) 5.41038 0.255331 0.127666 0.991817i \(-0.459252\pi\)
0.127666 + 0.991817i \(0.459252\pi\)
\(450\) 0 0
\(451\) 10.4050 0.489953
\(452\) −40.1283 −1.88747
\(453\) 0 0
\(454\) 30.8101 1.44599
\(455\) 0 0
\(456\) 0 0
\(457\) −9.05154 −0.423413 −0.211707 0.977333i \(-0.567902\pi\)
−0.211707 + 0.977333i \(0.567902\pi\)
\(458\) −38.1311 −1.78175
\(459\) 0 0
\(460\) −43.7225 −2.03857
\(461\) 20.8560 0.971360 0.485680 0.874137i \(-0.338572\pi\)
0.485680 + 0.874137i \(0.338572\pi\)
\(462\) 0 0
\(463\) 16.3606 0.760341 0.380170 0.924916i \(-0.375865\pi\)
0.380170 + 0.924916i \(0.375865\pi\)
\(464\) 67.3533 3.12680
\(465\) 0 0
\(466\) −57.8586 −2.68025
\(467\) 18.9701 0.877834 0.438917 0.898528i \(-0.355362\pi\)
0.438917 + 0.898528i \(0.355362\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 1.82697 0.0842718
\(471\) 0 0
\(472\) 43.0910 1.98342
\(473\) 2.44710 0.112518
\(474\) 0 0
\(475\) 5.94401 0.272730
\(476\) 0 0
\(477\) 0 0
\(478\) 33.1215 1.51494
\(479\) −16.0811 −0.734765 −0.367383 0.930070i \(-0.619746\pi\)
−0.367383 + 0.930070i \(0.619746\pi\)
\(480\) 0 0
\(481\) −5.50732 −0.251112
\(482\) −17.9131 −0.815921
\(483\) 0 0
\(484\) −45.5480 −2.07036
\(485\) 13.1790 0.598426
\(486\) 0 0
\(487\) 23.7280 1.07522 0.537610 0.843194i \(-0.319327\pi\)
0.537610 + 0.843194i \(0.319327\pi\)
\(488\) 52.2056 2.36324
\(489\) 0 0
\(490\) 0 0
\(491\) −25.2613 −1.14003 −0.570013 0.821635i \(-0.693062\pi\)
−0.570013 + 0.821635i \(0.693062\pi\)
\(492\) 0 0
\(493\) 1.57331 0.0708584
\(494\) 7.33311 0.329932
\(495\) 0 0
\(496\) 53.8034 2.41584
\(497\) 0 0
\(498\) 0 0
\(499\) −11.4025 −0.510446 −0.255223 0.966882i \(-0.582149\pi\)
−0.255223 + 0.966882i \(0.582149\pi\)
\(500\) 54.5507 2.43958
\(501\) 0 0
\(502\) 33.0445 1.47485
\(503\) −32.2176 −1.43651 −0.718256 0.695779i \(-0.755059\pi\)
−0.718256 + 0.695779i \(0.755059\pi\)
\(504\) 0 0
\(505\) 12.2528 0.545242
\(506\) 13.6683 0.607632
\(507\) 0 0
\(508\) 92.1150 4.08694
\(509\) −14.5352 −0.644262 −0.322131 0.946695i \(-0.604399\pi\)
−0.322131 + 0.946695i \(0.604399\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −50.8093 −2.24547
\(513\) 0 0
\(514\) 77.4684 3.41699
\(515\) −11.0973 −0.489005
\(516\) 0 0
\(517\) −0.395602 −0.0173986
\(518\) 0 0
\(519\) 0 0
\(520\) 10.9525 0.480299
\(521\) 41.4253 1.81487 0.907437 0.420187i \(-0.138036\pi\)
0.907437 + 0.420187i \(0.138036\pi\)
\(522\) 0 0
\(523\) −5.74016 −0.251000 −0.125500 0.992094i \(-0.540053\pi\)
−0.125500 + 0.992094i \(0.540053\pi\)
\(524\) −44.1296 −1.92781
\(525\) 0 0
\(526\) 37.7504 1.64600
\(527\) 1.25680 0.0547470
\(528\) 0 0
\(529\) 9.08988 0.395212
\(530\) 2.73512 0.118806
\(531\) 0 0
\(532\) 0 0
\(533\) −11.0005 −0.476483
\(534\) 0 0
\(535\) 9.11623 0.394129
\(536\) −53.6706 −2.31822
\(537\) 0 0
\(538\) −29.5804 −1.27530
\(539\) 0 0
\(540\) 0 0
\(541\) −28.2743 −1.21561 −0.607804 0.794087i \(-0.707949\pi\)
−0.607804 + 0.794087i \(0.707949\pi\)
\(542\) −77.3173 −3.32106
\(543\) 0 0
\(544\) 0.994850 0.0426539
\(545\) −24.7213 −1.05895
\(546\) 0 0
\(547\) −7.27163 −0.310912 −0.155456 0.987843i \(-0.549685\pi\)
−0.155456 + 0.987843i \(0.549685\pi\)
\(548\) −67.1051 −2.86659
\(549\) 0 0
\(550\) −4.98913 −0.212737
\(551\) −26.5183 −1.12972
\(552\) 0 0
\(553\) 0 0
\(554\) 13.6470 0.579807
\(555\) 0 0
\(556\) −19.7508 −0.837619
\(557\) −21.9639 −0.930640 −0.465320 0.885143i \(-0.654061\pi\)
−0.465320 + 0.885143i \(0.654061\pi\)
\(558\) 0 0
\(559\) −2.58714 −0.109424
\(560\) 0 0
\(561\) 0 0
\(562\) 56.5351 2.38479
\(563\) −0.925026 −0.0389852 −0.0194926 0.999810i \(-0.506205\pi\)
−0.0194926 + 0.999810i \(0.506205\pi\)
\(564\) 0 0
\(565\) 15.2452 0.641372
\(566\) −36.1410 −1.51912
\(567\) 0 0
\(568\) 2.44946 0.102777
\(569\) 25.4286 1.06602 0.533012 0.846108i \(-0.321060\pi\)
0.533012 + 0.846108i \(0.321060\pi\)
\(570\) 0 0
\(571\) 27.4393 1.14830 0.574149 0.818751i \(-0.305333\pi\)
0.574149 + 0.818751i \(0.305333\pi\)
\(572\) −4.26333 −0.178259
\(573\) 0 0
\(574\) 0 0
\(575\) −11.7132 −0.488476
\(576\) 0 0
\(577\) −28.1653 −1.17254 −0.586269 0.810117i \(-0.699404\pi\)
−0.586269 + 0.810117i \(0.699404\pi\)
\(578\) −43.2919 −1.80070
\(579\) 0 0
\(580\) −71.2000 −2.95642
\(581\) 0 0
\(582\) 0 0
\(583\) −0.592248 −0.0245284
\(584\) 14.2035 0.587743
\(585\) 0 0
\(586\) 76.2574 3.15016
\(587\) 12.9149 0.533055 0.266528 0.963827i \(-0.414124\pi\)
0.266528 + 0.963827i \(0.414124\pi\)
\(588\) 0 0
\(589\) −21.1835 −0.872849
\(590\) −29.4292 −1.21158
\(591\) 0 0
\(592\) 40.2106 1.65264
\(593\) 43.2007 1.77404 0.887020 0.461731i \(-0.152772\pi\)
0.887020 + 0.461731i \(0.152772\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −18.8889 −0.773718
\(597\) 0 0
\(598\) −14.4506 −0.590928
\(599\) −1.40835 −0.0575435 −0.0287718 0.999586i \(-0.509160\pi\)
−0.0287718 + 0.999586i \(0.509160\pi\)
\(600\) 0 0
\(601\) 12.3321 0.503038 0.251519 0.967852i \(-0.419070\pi\)
0.251519 + 0.967852i \(0.419070\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −61.1726 −2.48908
\(605\) 17.3043 0.703518
\(606\) 0 0
\(607\) −19.0729 −0.774145 −0.387072 0.922049i \(-0.626514\pi\)
−0.387072 + 0.922049i \(0.626514\pi\)
\(608\) −16.7683 −0.680044
\(609\) 0 0
\(610\) −35.6541 −1.44359
\(611\) 0.418242 0.0169203
\(612\) 0 0
\(613\) 25.5970 1.03385 0.516926 0.856030i \(-0.327076\pi\)
0.516926 + 0.856030i \(0.327076\pi\)
\(614\) 32.0548 1.29363
\(615\) 0 0
\(616\) 0 0
\(617\) −26.3910 −1.06246 −0.531232 0.847227i \(-0.678271\pi\)
−0.531232 + 0.847227i \(0.678271\pi\)
\(618\) 0 0
\(619\) 23.6491 0.950537 0.475269 0.879841i \(-0.342351\pi\)
0.475269 + 0.879841i \(0.342351\pi\)
\(620\) −56.8762 −2.28420
\(621\) 0 0
\(622\) −62.0845 −2.48936
\(623\) 0 0
\(624\) 0 0
\(625\) −10.3859 −0.415436
\(626\) 68.2470 2.72770
\(627\) 0 0
\(628\) 86.2385 3.44129
\(629\) 0.939282 0.0374516
\(630\) 0 0
\(631\) −27.3253 −1.08780 −0.543901 0.839149i \(-0.683053\pi\)
−0.543901 + 0.839149i \(0.683053\pi\)
\(632\) 86.5409 3.44241
\(633\) 0 0
\(634\) −37.5965 −1.49315
\(635\) −34.9957 −1.38876
\(636\) 0 0
\(637\) 0 0
\(638\) 22.2583 0.881213
\(639\) 0 0
\(640\) 18.7654 0.741768
\(641\) −32.0621 −1.26638 −0.633189 0.773997i \(-0.718254\pi\)
−0.633189 + 0.773997i \(0.718254\pi\)
\(642\) 0 0
\(643\) 13.9492 0.550102 0.275051 0.961430i \(-0.411305\pi\)
0.275051 + 0.961430i \(0.411305\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.25067 −0.0492071
\(647\) −9.05163 −0.355856 −0.177928 0.984043i \(-0.556939\pi\)
−0.177928 + 0.984043i \(0.556939\pi\)
\(648\) 0 0
\(649\) 6.37245 0.250141
\(650\) 5.27465 0.206889
\(651\) 0 0
\(652\) 59.0248 2.31159
\(653\) −48.6482 −1.90375 −0.951875 0.306485i \(-0.900847\pi\)
−0.951875 + 0.306485i \(0.900847\pi\)
\(654\) 0 0
\(655\) 16.7654 0.655078
\(656\) 80.3177 3.13588
\(657\) 0 0
\(658\) 0 0
\(659\) −0.495381 −0.0192973 −0.00964865 0.999953i \(-0.503071\pi\)
−0.00964865 + 0.999953i \(0.503071\pi\)
\(660\) 0 0
\(661\) −20.4339 −0.794787 −0.397393 0.917648i \(-0.630085\pi\)
−0.397393 + 0.917648i \(0.630085\pi\)
\(662\) −6.92574 −0.269176
\(663\) 0 0
\(664\) −37.7734 −1.46589
\(665\) 0 0
\(666\) 0 0
\(667\) 52.2568 2.02339
\(668\) −31.8499 −1.23231
\(669\) 0 0
\(670\) 36.6547 1.41609
\(671\) 7.72036 0.298041
\(672\) 0 0
\(673\) 27.7119 1.06822 0.534108 0.845416i \(-0.320648\pi\)
0.534108 + 0.845416i \(0.320648\pi\)
\(674\) 36.2860 1.39768
\(675\) 0 0
\(676\) 4.50732 0.173358
\(677\) 31.4521 1.20880 0.604401 0.796680i \(-0.293412\pi\)
0.604401 + 0.796680i \(0.293412\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.86797 −0.0716332
\(681\) 0 0
\(682\) 17.7804 0.680847
\(683\) −43.6581 −1.67053 −0.835266 0.549846i \(-0.814686\pi\)
−0.835266 + 0.549846i \(0.814686\pi\)
\(684\) 0 0
\(685\) 25.4941 0.974078
\(686\) 0 0
\(687\) 0 0
\(688\) 18.8895 0.720155
\(689\) 0.626142 0.0238541
\(690\) 0 0
\(691\) 6.80736 0.258964 0.129482 0.991582i \(-0.458669\pi\)
0.129482 + 0.991582i \(0.458669\pi\)
\(692\) −80.8201 −3.07232
\(693\) 0 0
\(694\) 32.5266 1.23469
\(695\) 7.50357 0.284627
\(696\) 0 0
\(697\) 1.87615 0.0710642
\(698\) −32.9174 −1.24594
\(699\) 0 0
\(700\) 0 0
\(701\) −6.52605 −0.246485 −0.123243 0.992377i \(-0.539329\pi\)
−0.123243 + 0.992377i \(0.539329\pi\)
\(702\) 0 0
\(703\) −15.8317 −0.597104
\(704\) 0.262393 0.00988931
\(705\) 0 0
\(706\) −25.5603 −0.961973
\(707\) 0 0
\(708\) 0 0
\(709\) 12.0610 0.452961 0.226481 0.974016i \(-0.427278\pi\)
0.226481 + 0.974016i \(0.427278\pi\)
\(710\) −1.67288 −0.0627819
\(711\) 0 0
\(712\) −113.257 −4.24450
\(713\) 41.7440 1.56332
\(714\) 0 0
\(715\) 1.61970 0.0605732
\(716\) −94.3412 −3.52570
\(717\) 0 0
\(718\) −81.6767 −3.04815
\(719\) −40.4591 −1.50887 −0.754435 0.656375i \(-0.772089\pi\)
−0.754435 + 0.656375i \(0.772089\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −27.3877 −1.01927
\(723\) 0 0
\(724\) 91.4463 3.39857
\(725\) −19.0744 −0.708407
\(726\) 0 0
\(727\) −50.2601 −1.86404 −0.932022 0.362402i \(-0.881957\pi\)
−0.932022 + 0.362402i \(0.881957\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −9.70033 −0.359025
\(731\) 0.441241 0.0163199
\(732\) 0 0
\(733\) −38.9127 −1.43728 −0.718638 0.695385i \(-0.755234\pi\)
−0.718638 + 0.695385i \(0.755234\pi\)
\(734\) 54.6860 2.01850
\(735\) 0 0
\(736\) 33.0435 1.21800
\(737\) −7.93700 −0.292363
\(738\) 0 0
\(739\) 12.7456 0.468853 0.234426 0.972134i \(-0.424679\pi\)
0.234426 + 0.972134i \(0.424679\pi\)
\(740\) −42.5071 −1.56259
\(741\) 0 0
\(742\) 0 0
\(743\) −32.9198 −1.20771 −0.603856 0.797094i \(-0.706370\pi\)
−0.603856 + 0.797094i \(0.706370\pi\)
\(744\) 0 0
\(745\) 7.17612 0.262913
\(746\) 22.5940 0.827226
\(747\) 0 0
\(748\) 0.727118 0.0265861
\(749\) 0 0
\(750\) 0 0
\(751\) 24.8325 0.906151 0.453075 0.891472i \(-0.350327\pi\)
0.453075 + 0.891472i \(0.350327\pi\)
\(752\) −3.05371 −0.111357
\(753\) 0 0
\(754\) −23.5321 −0.856988
\(755\) 23.2402 0.845799
\(756\) 0 0
\(757\) −50.3919 −1.83153 −0.915763 0.401718i \(-0.868413\pi\)
−0.915763 + 0.401718i \(0.868413\pi\)
\(758\) 15.6689 0.569119
\(759\) 0 0
\(760\) 31.4848 1.14207
\(761\) −23.4517 −0.850125 −0.425063 0.905164i \(-0.639748\pi\)
−0.425063 + 0.905164i \(0.639748\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −71.9881 −2.60444
\(765\) 0 0
\(766\) 7.88459 0.284882
\(767\) −6.73714 −0.243264
\(768\) 0 0
\(769\) −30.0016 −1.08188 −0.540942 0.841060i \(-0.681932\pi\)
−0.540942 + 0.841060i \(0.681932\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.61257 −0.0940284
\(773\) 20.1710 0.725501 0.362751 0.931886i \(-0.381838\pi\)
0.362751 + 0.931886i \(0.381838\pi\)
\(774\) 0 0
\(775\) −15.2371 −0.547333
\(776\) −49.2255 −1.76709
\(777\) 0 0
\(778\) 50.3177 1.80398
\(779\) −31.6227 −1.13300
\(780\) 0 0
\(781\) 0.362235 0.0129618
\(782\) 2.46457 0.0881328
\(783\) 0 0
\(784\) 0 0
\(785\) −32.7631 −1.16937
\(786\) 0 0
\(787\) 43.0122 1.53322 0.766610 0.642113i \(-0.221942\pi\)
0.766610 + 0.642113i \(0.221942\pi\)
\(788\) 14.3505 0.511214
\(789\) 0 0
\(790\) −59.1036 −2.10281
\(791\) 0 0
\(792\) 0 0
\(793\) −8.16219 −0.289848
\(794\) 31.3063 1.11102
\(795\) 0 0
\(796\) 87.6136 3.10538
\(797\) −25.9842 −0.920408 −0.460204 0.887813i \(-0.652224\pi\)
−0.460204 + 0.887813i \(0.652224\pi\)
\(798\) 0 0
\(799\) −0.0713318 −0.00252354
\(800\) −12.0613 −0.426432
\(801\) 0 0
\(802\) 4.26671 0.150663
\(803\) 2.10046 0.0741235
\(804\) 0 0
\(805\) 0 0
\(806\) −18.7980 −0.662130
\(807\) 0 0
\(808\) −45.7661 −1.61005
\(809\) −11.1651 −0.392545 −0.196272 0.980549i \(-0.562884\pi\)
−0.196272 + 0.980549i \(0.562884\pi\)
\(810\) 0 0
\(811\) −1.42780 −0.0501370 −0.0250685 0.999686i \(-0.507980\pi\)
−0.0250685 + 0.999686i \(0.507980\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 13.2884 0.465758
\(815\) −22.4243 −0.785489
\(816\) 0 0
\(817\) −7.43716 −0.260193
\(818\) −80.0265 −2.79806
\(819\) 0 0
\(820\) −84.9048 −2.96500
\(821\) 13.5993 0.474618 0.237309 0.971434i \(-0.423735\pi\)
0.237309 + 0.971434i \(0.423735\pi\)
\(822\) 0 0
\(823\) 1.71358 0.0597315 0.0298658 0.999554i \(-0.490492\pi\)
0.0298658 + 0.999554i \(0.490492\pi\)
\(824\) 41.4501 1.44398
\(825\) 0 0
\(826\) 0 0
\(827\) 26.1056 0.907779 0.453890 0.891058i \(-0.350036\pi\)
0.453890 + 0.891058i \(0.350036\pi\)
\(828\) 0 0
\(829\) −42.3246 −1.46999 −0.734996 0.678071i \(-0.762816\pi\)
−0.734996 + 0.678071i \(0.762816\pi\)
\(830\) 25.7976 0.895447
\(831\) 0 0
\(832\) −0.277410 −0.00961745
\(833\) 0 0
\(834\) 0 0
\(835\) 12.1002 0.418744
\(836\) −12.2556 −0.423870
\(837\) 0 0
\(838\) 12.2757 0.424055
\(839\) 9.93079 0.342849 0.171424 0.985197i \(-0.445163\pi\)
0.171424 + 0.985197i \(0.445163\pi\)
\(840\) 0 0
\(841\) 56.0978 1.93441
\(842\) −7.56252 −0.260622
\(843\) 0 0
\(844\) −79.7159 −2.74394
\(845\) −1.71239 −0.0589080
\(846\) 0 0
\(847\) 0 0
\(848\) −4.57165 −0.156991
\(849\) 0 0
\(850\) −0.899600 −0.0308560
\(851\) 31.1978 1.06945
\(852\) 0 0
\(853\) 12.7011 0.434879 0.217439 0.976074i \(-0.430230\pi\)
0.217439 + 0.976074i \(0.430230\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −34.0505 −1.16382
\(857\) 7.43718 0.254049 0.127025 0.991900i \(-0.459457\pi\)
0.127025 + 0.991900i \(0.459457\pi\)
\(858\) 0 0
\(859\) −19.9696 −0.681354 −0.340677 0.940180i \(-0.610656\pi\)
−0.340677 + 0.940180i \(0.610656\pi\)
\(860\) −19.9683 −0.680913
\(861\) 0 0
\(862\) −57.3303 −1.95268
\(863\) 24.8553 0.846083 0.423042 0.906110i \(-0.360962\pi\)
0.423042 + 0.906110i \(0.360962\pi\)
\(864\) 0 0
\(865\) 30.7046 1.04399
\(866\) −8.41543 −0.285968
\(867\) 0 0
\(868\) 0 0
\(869\) 12.7980 0.434142
\(870\) 0 0
\(871\) 8.39123 0.284326
\(872\) 92.3380 3.12696
\(873\) 0 0
\(874\) −41.5405 −1.40513
\(875\) 0 0
\(876\) 0 0
\(877\) 6.50366 0.219613 0.109806 0.993953i \(-0.464977\pi\)
0.109806 + 0.993953i \(0.464977\pi\)
\(878\) −95.0718 −3.20852
\(879\) 0 0
\(880\) −11.8259 −0.398650
\(881\) 23.2792 0.784295 0.392148 0.919902i \(-0.371732\pi\)
0.392148 + 0.919902i \(0.371732\pi\)
\(882\) 0 0
\(883\) 58.0834 1.95466 0.977331 0.211719i \(-0.0679062\pi\)
0.977331 + 0.211719i \(0.0679062\pi\)
\(884\) −0.768731 −0.0258552
\(885\) 0 0
\(886\) −85.4751 −2.87159
\(887\) 30.4508 1.02244 0.511218 0.859451i \(-0.329194\pi\)
0.511218 + 0.859451i \(0.329194\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 77.3498 2.59277
\(891\) 0 0
\(892\) 21.4028 0.716620
\(893\) 1.20231 0.0402336
\(894\) 0 0
\(895\) 35.8414 1.19805
\(896\) 0 0
\(897\) 0 0
\(898\) 13.8016 0.460565
\(899\) 67.9781 2.26720
\(900\) 0 0
\(901\) −0.106790 −0.00355767
\(902\) 26.5426 0.883772
\(903\) 0 0
\(904\) −56.9433 −1.89391
\(905\) −34.7416 −1.15485
\(906\) 0 0
\(907\) 20.2830 0.673486 0.336743 0.941597i \(-0.390675\pi\)
0.336743 + 0.941597i \(0.390675\pi\)
\(908\) 54.4391 1.80662
\(909\) 0 0
\(910\) 0 0
\(911\) −5.25462 −0.174093 −0.0870466 0.996204i \(-0.527743\pi\)
−0.0870466 + 0.996204i \(0.527743\pi\)
\(912\) 0 0
\(913\) −5.58607 −0.184872
\(914\) −23.0900 −0.763749
\(915\) 0 0
\(916\) −67.3747 −2.22612
\(917\) 0 0
\(918\) 0 0
\(919\) 1.58055 0.0521375 0.0260687 0.999660i \(-0.491701\pi\)
0.0260687 + 0.999660i \(0.491701\pi\)
\(920\) −62.0437 −2.04552
\(921\) 0 0
\(922\) 53.2024 1.75213
\(923\) −0.382966 −0.0126055
\(924\) 0 0
\(925\) −11.3876 −0.374423
\(926\) 41.7350 1.37150
\(927\) 0 0
\(928\) 53.8098 1.76639
\(929\) −26.9760 −0.885053 −0.442527 0.896755i \(-0.645918\pi\)
−0.442527 + 0.896755i \(0.645918\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −102.232 −3.34871
\(933\) 0 0
\(934\) 48.3918 1.58343
\(935\) −0.276242 −0.00903406
\(936\) 0 0
\(937\) −14.3690 −0.469415 −0.234708 0.972066i \(-0.575413\pi\)
−0.234708 + 0.972066i \(0.575413\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 3.22811 0.105289
\(941\) −6.42582 −0.209476 −0.104738 0.994500i \(-0.533400\pi\)
−0.104738 + 0.994500i \(0.533400\pi\)
\(942\) 0 0
\(943\) 62.3154 2.02927
\(944\) 49.1899 1.60099
\(945\) 0 0
\(946\) 6.24241 0.202958
\(947\) −22.7979 −0.740833 −0.370417 0.928866i \(-0.620785\pi\)
−0.370417 + 0.928866i \(0.620785\pi\)
\(948\) 0 0
\(949\) −2.22066 −0.0720858
\(950\) 15.1628 0.491948
\(951\) 0 0
\(952\) 0 0
\(953\) 31.3962 1.01702 0.508511 0.861055i \(-0.330196\pi\)
0.508511 + 0.861055i \(0.330196\pi\)
\(954\) 0 0
\(955\) 27.3492 0.884999
\(956\) 58.5231 1.89277
\(957\) 0 0
\(958\) −41.0221 −1.32536
\(959\) 0 0
\(960\) 0 0
\(961\) 23.3025 0.751693
\(962\) −14.0489 −0.452954
\(963\) 0 0
\(964\) −31.6511 −1.01941
\(965\) 0.992548 0.0319512
\(966\) 0 0
\(967\) 23.3937 0.752290 0.376145 0.926561i \(-0.377249\pi\)
0.376145 + 0.926561i \(0.377249\pi\)
\(968\) −64.6341 −2.07742
\(969\) 0 0
\(970\) 33.6188 1.07943
\(971\) 48.2200 1.54745 0.773727 0.633519i \(-0.218390\pi\)
0.773727 + 0.633519i \(0.218390\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 60.5289 1.93947
\(975\) 0 0
\(976\) 59.5945 1.90757
\(977\) −39.6682 −1.26910 −0.634549 0.772883i \(-0.718814\pi\)
−0.634549 + 0.772883i \(0.718814\pi\)
\(978\) 0 0
\(979\) −16.7489 −0.535298
\(980\) 0 0
\(981\) 0 0
\(982\) −64.4402 −2.05637
\(983\) −53.7093 −1.71306 −0.856530 0.516096i \(-0.827385\pi\)
−0.856530 + 0.516096i \(0.827385\pi\)
\(984\) 0 0
\(985\) −5.45192 −0.173713
\(986\) 4.01343 0.127814
\(987\) 0 0
\(988\) 12.9570 0.412218
\(989\) 14.6556 0.466021
\(990\) 0 0
\(991\) 45.1025 1.43273 0.716364 0.697727i \(-0.245805\pi\)
0.716364 + 0.697727i \(0.245805\pi\)
\(992\) 42.9845 1.36476
\(993\) 0 0
\(994\) 0 0
\(995\) −33.2855 −1.05522
\(996\) 0 0
\(997\) −6.94418 −0.219924 −0.109962 0.993936i \(-0.535073\pi\)
−0.109962 + 0.993936i \(0.535073\pi\)
\(998\) −29.0871 −0.920737
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5733.2.a.bz.1.9 10
3.2 odd 2 inner 5733.2.a.bz.1.2 10
7.3 odd 6 819.2.j.j.352.2 yes 20
7.5 odd 6 819.2.j.j.235.2 20
7.6 odd 2 5733.2.a.by.1.9 10
21.5 even 6 819.2.j.j.235.9 yes 20
21.17 even 6 819.2.j.j.352.9 yes 20
21.20 even 2 5733.2.a.by.1.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
819.2.j.j.235.2 20 7.5 odd 6
819.2.j.j.235.9 yes 20 21.5 even 6
819.2.j.j.352.2 yes 20 7.3 odd 6
819.2.j.j.352.9 yes 20 21.17 even 6
5733.2.a.by.1.2 10 21.20 even 2
5733.2.a.by.1.9 10 7.6 odd 2
5733.2.a.bz.1.2 10 3.2 odd 2 inner
5733.2.a.bz.1.9 10 1.1 even 1 trivial