Properties

Label 5733.2.a.k.1.1
Level $5733$
Weight $2$
Character 5733.1
Self dual yes
Analytic conductor $45.778$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5733,2,Mod(1,5733)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5733.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5733.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.7782354788\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 5733.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{4} +4.00000 q^{5} -3.00000 q^{8} +4.00000 q^{10} +5.00000 q^{11} +1.00000 q^{13} -1.00000 q^{16} +3.00000 q^{17} +5.00000 q^{19} -4.00000 q^{20} +5.00000 q^{22} -6.00000 q^{23} +11.0000 q^{25} +1.00000 q^{26} -7.00000 q^{29} +5.00000 q^{32} +3.00000 q^{34} +5.00000 q^{38} -12.0000 q^{40} +8.00000 q^{41} +2.00000 q^{43} -5.00000 q^{44} -6.00000 q^{46} +9.00000 q^{47} +11.0000 q^{50} -1.00000 q^{52} -9.00000 q^{53} +20.0000 q^{55} -7.00000 q^{58} -9.00000 q^{59} -1.00000 q^{61} +7.00000 q^{64} +4.00000 q^{65} +7.00000 q^{67} -3.00000 q^{68} +3.00000 q^{71} +6.00000 q^{73} -5.00000 q^{76} -10.0000 q^{79} -4.00000 q^{80} +8.00000 q^{82} +12.0000 q^{85} +2.00000 q^{86} -15.0000 q^{88} -8.00000 q^{89} +6.00000 q^{92} +9.00000 q^{94} +20.0000 q^{95} -18.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 4.00000 1.78885 0.894427 0.447214i \(-0.147584\pi\)
0.894427 + 0.447214i \(0.147584\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −3.00000 −1.06066
\(9\) 0 0
\(10\) 4.00000 1.26491
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) −4.00000 −0.894427
\(21\) 0 0
\(22\) 5.00000 1.06600
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) 0 0
\(29\) −7.00000 −1.29987 −0.649934 0.759991i \(-0.725203\pi\)
−0.649934 + 0.759991i \(0.725203\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 5.00000 0.883883
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 5.00000 0.811107
\(39\) 0 0
\(40\) −12.0000 −1.89737
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) −5.00000 −0.753778
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) 9.00000 1.31278 0.656392 0.754420i \(-0.272082\pi\)
0.656392 + 0.754420i \(0.272082\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 11.0000 1.55563
\(51\) 0 0
\(52\) −1.00000 −0.138675
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 0 0
\(55\) 20.0000 2.69680
\(56\) 0 0
\(57\) 0 0
\(58\) −7.00000 −0.919145
\(59\) −9.00000 −1.17170 −0.585850 0.810419i \(-0.699239\pi\)
−0.585850 + 0.810419i \(0.699239\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) 7.00000 0.855186 0.427593 0.903971i \(-0.359362\pi\)
0.427593 + 0.903971i \(0.359362\pi\)
\(68\) −3.00000 −0.363803
\(69\) 0 0
\(70\) 0 0
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −5.00000 −0.573539
\(77\) 0 0
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) −4.00000 −0.447214
\(81\) 0 0
\(82\) 8.00000 0.883452
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 12.0000 1.30158
\(86\) 2.00000 0.215666
\(87\) 0 0
\(88\) −15.0000 −1.59901
\(89\) −8.00000 −0.847998 −0.423999 0.905663i \(-0.639374\pi\)
−0.423999 + 0.905663i \(0.639374\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.00000 0.625543
\(93\) 0 0
\(94\) 9.00000 0.928279
\(95\) 20.0000 2.05196
\(96\) 0 0
\(97\) −18.0000 −1.82762 −0.913812 0.406138i \(-0.866875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −11.0000 −1.10000
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) −3.00000 −0.294174
\(105\) 0 0
\(106\) −9.00000 −0.874157
\(107\) 8.00000 0.773389 0.386695 0.922208i \(-0.373617\pi\)
0.386695 + 0.922208i \(0.373617\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 20.0000 1.90693
\(111\) 0 0
\(112\) 0 0
\(113\) 11.0000 1.03479 0.517396 0.855746i \(-0.326901\pi\)
0.517396 + 0.855746i \(0.326901\pi\)
\(114\) 0 0
\(115\) −24.0000 −2.23801
\(116\) 7.00000 0.649934
\(117\) 0 0
\(118\) −9.00000 −0.828517
\(119\) 0 0
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) −1.00000 −0.0905357
\(123\) 0 0
\(124\) 0 0
\(125\) 24.0000 2.14663
\(126\) 0 0
\(127\) 18.0000 1.59724 0.798621 0.601834i \(-0.205563\pi\)
0.798621 + 0.601834i \(0.205563\pi\)
\(128\) −3.00000 −0.265165
\(129\) 0 0
\(130\) 4.00000 0.350823
\(131\) −2.00000 −0.174741 −0.0873704 0.996176i \(-0.527846\pi\)
−0.0873704 + 0.996176i \(0.527846\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 7.00000 0.604708
\(135\) 0 0
\(136\) −9.00000 −0.771744
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3.00000 0.251754
\(143\) 5.00000 0.418121
\(144\) 0 0
\(145\) −28.0000 −2.32527
\(146\) 6.00000 0.496564
\(147\) 0 0
\(148\) 0 0
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) −1.00000 −0.0813788 −0.0406894 0.999172i \(-0.512955\pi\)
−0.0406894 + 0.999172i \(0.512955\pi\)
\(152\) −15.0000 −1.21666
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −7.00000 −0.558661 −0.279330 0.960195i \(-0.590112\pi\)
−0.279330 + 0.960195i \(0.590112\pi\)
\(158\) −10.0000 −0.795557
\(159\) 0 0
\(160\) 20.0000 1.58114
\(161\) 0 0
\(162\) 0 0
\(163\) 1.00000 0.0783260 0.0391630 0.999233i \(-0.487531\pi\)
0.0391630 + 0.999233i \(0.487531\pi\)
\(164\) −8.00000 −0.624695
\(165\) 0 0
\(166\) 0 0
\(167\) 7.00000 0.541676 0.270838 0.962625i \(-0.412699\pi\)
0.270838 + 0.962625i \(0.412699\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 12.0000 0.920358
\(171\) 0 0
\(172\) −2.00000 −0.152499
\(173\) 11.0000 0.836315 0.418157 0.908375i \(-0.362676\pi\)
0.418157 + 0.908375i \(0.362676\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −5.00000 −0.376889
\(177\) 0 0
\(178\) −8.00000 −0.599625
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 0 0
\(181\) −1.00000 −0.0743294 −0.0371647 0.999309i \(-0.511833\pi\)
−0.0371647 + 0.999309i \(0.511833\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 18.0000 1.32698
\(185\) 0 0
\(186\) 0 0
\(187\) 15.0000 1.09691
\(188\) −9.00000 −0.656392
\(189\) 0 0
\(190\) 20.0000 1.45095
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 0 0
\(193\) −4.00000 −0.287926 −0.143963 0.989583i \(-0.545985\pi\)
−0.143963 + 0.989583i \(0.545985\pi\)
\(194\) −18.0000 −1.29232
\(195\) 0 0
\(196\) 0 0
\(197\) −10.0000 −0.712470 −0.356235 0.934396i \(-0.615940\pi\)
−0.356235 + 0.934396i \(0.615940\pi\)
\(198\) 0 0
\(199\) −6.00000 −0.425329 −0.212664 0.977125i \(-0.568214\pi\)
−0.212664 + 0.977125i \(0.568214\pi\)
\(200\) −33.0000 −2.33345
\(201\) 0 0
\(202\) 2.00000 0.140720
\(203\) 0 0
\(204\) 0 0
\(205\) 32.0000 2.23498
\(206\) −14.0000 −0.975426
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 25.0000 1.72929
\(210\) 0 0
\(211\) −14.0000 −0.963800 −0.481900 0.876226i \(-0.660053\pi\)
−0.481900 + 0.876226i \(0.660053\pi\)
\(212\) 9.00000 0.618123
\(213\) 0 0
\(214\) 8.00000 0.546869
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −20.0000 −1.34840
\(221\) 3.00000 0.201802
\(222\) 0 0
\(223\) −7.00000 −0.468755 −0.234377 0.972146i \(-0.575305\pi\)
−0.234377 + 0.972146i \(0.575305\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 11.0000 0.731709
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) −24.0000 −1.58251
\(231\) 0 0
\(232\) 21.0000 1.37872
\(233\) −9.00000 −0.589610 −0.294805 0.955557i \(-0.595255\pi\)
−0.294805 + 0.955557i \(0.595255\pi\)
\(234\) 0 0
\(235\) 36.0000 2.34838
\(236\) 9.00000 0.585850
\(237\) 0 0
\(238\) 0 0
\(239\) 21.0000 1.35838 0.679189 0.733964i \(-0.262332\pi\)
0.679189 + 0.733964i \(0.262332\pi\)
\(240\) 0 0
\(241\) 16.0000 1.03065 0.515325 0.856995i \(-0.327671\pi\)
0.515325 + 0.856995i \(0.327671\pi\)
\(242\) 14.0000 0.899954
\(243\) 0 0
\(244\) 1.00000 0.0640184
\(245\) 0 0
\(246\) 0 0
\(247\) 5.00000 0.318142
\(248\) 0 0
\(249\) 0 0
\(250\) 24.0000 1.51789
\(251\) −14.0000 −0.883672 −0.441836 0.897096i \(-0.645673\pi\)
−0.441836 + 0.897096i \(0.645673\pi\)
\(252\) 0 0
\(253\) −30.0000 −1.88608
\(254\) 18.0000 1.12942
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −22.0000 −1.37232 −0.686161 0.727450i \(-0.740706\pi\)
−0.686161 + 0.727450i \(0.740706\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −4.00000 −0.248069
\(261\) 0 0
\(262\) −2.00000 −0.123560
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) −36.0000 −2.21146
\(266\) 0 0
\(267\) 0 0
\(268\) −7.00000 −0.427593
\(269\) −9.00000 −0.548740 −0.274370 0.961624i \(-0.588469\pi\)
−0.274370 + 0.961624i \(0.588469\pi\)
\(270\) 0 0
\(271\) 5.00000 0.303728 0.151864 0.988401i \(-0.451472\pi\)
0.151864 + 0.988401i \(0.451472\pi\)
\(272\) −3.00000 −0.181902
\(273\) 0 0
\(274\) 0 0
\(275\) 55.0000 3.31662
\(276\) 0 0
\(277\) 31.0000 1.86261 0.931305 0.364241i \(-0.118672\pi\)
0.931305 + 0.364241i \(0.118672\pi\)
\(278\) 12.0000 0.719712
\(279\) 0 0
\(280\) 0 0
\(281\) 16.0000 0.954480 0.477240 0.878773i \(-0.341637\pi\)
0.477240 + 0.878773i \(0.341637\pi\)
\(282\) 0 0
\(283\) 14.0000 0.832214 0.416107 0.909316i \(-0.363394\pi\)
0.416107 + 0.909316i \(0.363394\pi\)
\(284\) −3.00000 −0.178017
\(285\) 0 0
\(286\) 5.00000 0.295656
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) −28.0000 −1.64422
\(291\) 0 0
\(292\) −6.00000 −0.351123
\(293\) −10.0000 −0.584206 −0.292103 0.956387i \(-0.594355\pi\)
−0.292103 + 0.956387i \(0.594355\pi\)
\(294\) 0 0
\(295\) −36.0000 −2.09600
\(296\) 0 0
\(297\) 0 0
\(298\) 18.0000 1.04271
\(299\) −6.00000 −0.346989
\(300\) 0 0
\(301\) 0 0
\(302\) −1.00000 −0.0575435
\(303\) 0 0
\(304\) −5.00000 −0.286770
\(305\) −4.00000 −0.229039
\(306\) 0 0
\(307\) 17.0000 0.970241 0.485121 0.874447i \(-0.338776\pi\)
0.485121 + 0.874447i \(0.338776\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −2.00000 −0.113047 −0.0565233 0.998401i \(-0.518002\pi\)
−0.0565233 + 0.998401i \(0.518002\pi\)
\(314\) −7.00000 −0.395033
\(315\) 0 0
\(316\) 10.0000 0.562544
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) −35.0000 −1.95962
\(320\) 28.0000 1.56525
\(321\) 0 0
\(322\) 0 0
\(323\) 15.0000 0.834622
\(324\) 0 0
\(325\) 11.0000 0.610170
\(326\) 1.00000 0.0553849
\(327\) 0 0
\(328\) −24.0000 −1.32518
\(329\) 0 0
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 7.00000 0.383023
\(335\) 28.0000 1.52980
\(336\) 0 0
\(337\) 7.00000 0.381314 0.190657 0.981657i \(-0.438938\pi\)
0.190657 + 0.981657i \(0.438938\pi\)
\(338\) 1.00000 0.0543928
\(339\) 0 0
\(340\) −12.0000 −0.650791
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −6.00000 −0.323498
\(345\) 0 0
\(346\) 11.0000 0.591364
\(347\) 28.0000 1.50312 0.751559 0.659665i \(-0.229302\pi\)
0.751559 + 0.659665i \(0.229302\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 25.0000 1.33250
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 0 0
\(355\) 12.0000 0.636894
\(356\) 8.00000 0.423999
\(357\) 0 0
\(358\) 10.0000 0.528516
\(359\) −32.0000 −1.68890 −0.844448 0.535638i \(-0.820071\pi\)
−0.844448 + 0.535638i \(0.820071\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) −1.00000 −0.0525588
\(363\) 0 0
\(364\) 0 0
\(365\) 24.0000 1.25622
\(366\) 0 0
\(367\) −18.0000 −0.939592 −0.469796 0.882775i \(-0.655673\pi\)
−0.469796 + 0.882775i \(0.655673\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −25.0000 −1.29445 −0.647225 0.762299i \(-0.724071\pi\)
−0.647225 + 0.762299i \(0.724071\pi\)
\(374\) 15.0000 0.775632
\(375\) 0 0
\(376\) −27.0000 −1.39242
\(377\) −7.00000 −0.360518
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) −20.0000 −1.02598
\(381\) 0 0
\(382\) −4.00000 −0.204658
\(383\) 24.0000 1.22634 0.613171 0.789950i \(-0.289894\pi\)
0.613171 + 0.789950i \(0.289894\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4.00000 −0.203595
\(387\) 0 0
\(388\) 18.0000 0.913812
\(389\) −9.00000 −0.456318 −0.228159 0.973624i \(-0.573271\pi\)
−0.228159 + 0.973624i \(0.573271\pi\)
\(390\) 0 0
\(391\) −18.0000 −0.910299
\(392\) 0 0
\(393\) 0 0
\(394\) −10.0000 −0.503793
\(395\) −40.0000 −2.01262
\(396\) 0 0
\(397\) 6.00000 0.301131 0.150566 0.988600i \(-0.451890\pi\)
0.150566 + 0.988600i \(0.451890\pi\)
\(398\) −6.00000 −0.300753
\(399\) 0 0
\(400\) −11.0000 −0.550000
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −2.00000 −0.0995037
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −32.0000 −1.58230 −0.791149 0.611623i \(-0.790517\pi\)
−0.791149 + 0.611623i \(0.790517\pi\)
\(410\) 32.0000 1.58037
\(411\) 0 0
\(412\) 14.0000 0.689730
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 5.00000 0.245145
\(417\) 0 0
\(418\) 25.0000 1.22279
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) −14.0000 −0.681509
\(423\) 0 0
\(424\) 27.0000 1.31124
\(425\) 33.0000 1.60074
\(426\) 0 0
\(427\) 0 0
\(428\) −8.00000 −0.386695
\(429\) 0 0
\(430\) 8.00000 0.385794
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −37.0000 −1.77811 −0.889053 0.457804i \(-0.848636\pi\)
−0.889053 + 0.457804i \(0.848636\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −30.0000 −1.43509
\(438\) 0 0
\(439\) 18.0000 0.859093 0.429547 0.903045i \(-0.358673\pi\)
0.429547 + 0.903045i \(0.358673\pi\)
\(440\) −60.0000 −2.86039
\(441\) 0 0
\(442\) 3.00000 0.142695
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 0 0
\(445\) −32.0000 −1.51695
\(446\) −7.00000 −0.331460
\(447\) 0 0
\(448\) 0 0
\(449\) 36.0000 1.69895 0.849473 0.527633i \(-0.176920\pi\)
0.849473 + 0.527633i \(0.176920\pi\)
\(450\) 0 0
\(451\) 40.0000 1.88353
\(452\) −11.0000 −0.517396
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) −38.0000 −1.77757 −0.888783 0.458329i \(-0.848448\pi\)
−0.888783 + 0.458329i \(0.848448\pi\)
\(458\) −2.00000 −0.0934539
\(459\) 0 0
\(460\) 24.0000 1.11901
\(461\) 8.00000 0.372597 0.186299 0.982493i \(-0.440351\pi\)
0.186299 + 0.982493i \(0.440351\pi\)
\(462\) 0 0
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) 7.00000 0.324967
\(465\) 0 0
\(466\) −9.00000 −0.416917
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 36.0000 1.66056
\(471\) 0 0
\(472\) 27.0000 1.24278
\(473\) 10.0000 0.459800
\(474\) 0 0
\(475\) 55.0000 2.52357
\(476\) 0 0
\(477\) 0 0
\(478\) 21.0000 0.960518
\(479\) −7.00000 −0.319838 −0.159919 0.987130i \(-0.551123\pi\)
−0.159919 + 0.987130i \(0.551123\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 16.0000 0.728780
\(483\) 0 0
\(484\) −14.0000 −0.636364
\(485\) −72.0000 −3.26935
\(486\) 0 0
\(487\) −29.0000 −1.31412 −0.657058 0.753840i \(-0.728199\pi\)
−0.657058 + 0.753840i \(0.728199\pi\)
\(488\) 3.00000 0.135804
\(489\) 0 0
\(490\) 0 0
\(491\) −2.00000 −0.0902587 −0.0451294 0.998981i \(-0.514370\pi\)
−0.0451294 + 0.998981i \(0.514370\pi\)
\(492\) 0 0
\(493\) −21.0000 −0.945792
\(494\) 5.00000 0.224961
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −32.0000 −1.43252 −0.716258 0.697835i \(-0.754147\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) −24.0000 −1.07331
\(501\) 0 0
\(502\) −14.0000 −0.624851
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 8.00000 0.355995
\(506\) −30.0000 −1.33366
\(507\) 0 0
\(508\) −18.0000 −0.798621
\(509\) −40.0000 −1.77297 −0.886484 0.462758i \(-0.846860\pi\)
−0.886484 + 0.462758i \(0.846860\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) −22.0000 −0.970378
\(515\) −56.0000 −2.46765
\(516\) 0 0
\(517\) 45.0000 1.97910
\(518\) 0 0
\(519\) 0 0
\(520\) −12.0000 −0.526235
\(521\) 42.0000 1.84005 0.920027 0.391856i \(-0.128167\pi\)
0.920027 + 0.391856i \(0.128167\pi\)
\(522\) 0 0
\(523\) 38.0000 1.66162 0.830812 0.556553i \(-0.187876\pi\)
0.830812 + 0.556553i \(0.187876\pi\)
\(524\) 2.00000 0.0873704
\(525\) 0 0
\(526\) −16.0000 −0.697633
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) −36.0000 −1.56374
\(531\) 0 0
\(532\) 0 0
\(533\) 8.00000 0.346518
\(534\) 0 0
\(535\) 32.0000 1.38348
\(536\) −21.0000 −0.907062
\(537\) 0 0
\(538\) −9.00000 −0.388018
\(539\) 0 0
\(540\) 0 0
\(541\) −4.00000 −0.171973 −0.0859867 0.996296i \(-0.527404\pi\)
−0.0859867 + 0.996296i \(0.527404\pi\)
\(542\) 5.00000 0.214768
\(543\) 0 0
\(544\) 15.0000 0.643120
\(545\) 0 0
\(546\) 0 0
\(547\) 22.0000 0.940652 0.470326 0.882493i \(-0.344136\pi\)
0.470326 + 0.882493i \(0.344136\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 55.0000 2.34521
\(551\) −35.0000 −1.49105
\(552\) 0 0
\(553\) 0 0
\(554\) 31.0000 1.31706
\(555\) 0 0
\(556\) −12.0000 −0.508913
\(557\) 14.0000 0.593199 0.296600 0.955002i \(-0.404147\pi\)
0.296600 + 0.955002i \(0.404147\pi\)
\(558\) 0 0
\(559\) 2.00000 0.0845910
\(560\) 0 0
\(561\) 0 0
\(562\) 16.0000 0.674919
\(563\) 28.0000 1.18006 0.590030 0.807382i \(-0.299116\pi\)
0.590030 + 0.807382i \(0.299116\pi\)
\(564\) 0 0
\(565\) 44.0000 1.85109
\(566\) 14.0000 0.588464
\(567\) 0 0
\(568\) −9.00000 −0.377632
\(569\) 11.0000 0.461144 0.230572 0.973055i \(-0.425940\pi\)
0.230572 + 0.973055i \(0.425940\pi\)
\(570\) 0 0
\(571\) −16.0000 −0.669579 −0.334790 0.942293i \(-0.608665\pi\)
−0.334790 + 0.942293i \(0.608665\pi\)
\(572\) −5.00000 −0.209061
\(573\) 0 0
\(574\) 0 0
\(575\) −66.0000 −2.75239
\(576\) 0 0
\(577\) 14.0000 0.582828 0.291414 0.956597i \(-0.405874\pi\)
0.291414 + 0.956597i \(0.405874\pi\)
\(578\) −8.00000 −0.332756
\(579\) 0 0
\(580\) 28.0000 1.16264
\(581\) 0 0
\(582\) 0 0
\(583\) −45.0000 −1.86371
\(584\) −18.0000 −0.744845
\(585\) 0 0
\(586\) −10.0000 −0.413096
\(587\) −29.0000 −1.19696 −0.598479 0.801138i \(-0.704228\pi\)
−0.598479 + 0.801138i \(0.704228\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −36.0000 −1.48210
\(591\) 0 0
\(592\) 0 0
\(593\) −36.0000 −1.47834 −0.739171 0.673517i \(-0.764783\pi\)
−0.739171 + 0.673517i \(0.764783\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −18.0000 −0.737309
\(597\) 0 0
\(598\) −6.00000 −0.245358
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) −9.00000 −0.367118 −0.183559 0.983009i \(-0.558762\pi\)
−0.183559 + 0.983009i \(0.558762\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.00000 0.0406894
\(605\) 56.0000 2.27672
\(606\) 0 0
\(607\) −14.0000 −0.568242 −0.284121 0.958788i \(-0.591702\pi\)
−0.284121 + 0.958788i \(0.591702\pi\)
\(608\) 25.0000 1.01388
\(609\) 0 0
\(610\) −4.00000 −0.161955
\(611\) 9.00000 0.364101
\(612\) 0 0
\(613\) −8.00000 −0.323117 −0.161558 0.986863i \(-0.551652\pi\)
−0.161558 + 0.986863i \(0.551652\pi\)
\(614\) 17.0000 0.686064
\(615\) 0 0
\(616\) 0 0
\(617\) 30.0000 1.20775 0.603877 0.797077i \(-0.293622\pi\)
0.603877 + 0.797077i \(0.293622\pi\)
\(618\) 0 0
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) −2.00000 −0.0799361
\(627\) 0 0
\(628\) 7.00000 0.279330
\(629\) 0 0
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 30.0000 1.19334
\(633\) 0 0
\(634\) 6.00000 0.238290
\(635\) 72.0000 2.85723
\(636\) 0 0
\(637\) 0 0
\(638\) −35.0000 −1.38566
\(639\) 0 0
\(640\) −12.0000 −0.474342
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) 37.0000 1.45914 0.729569 0.683907i \(-0.239721\pi\)
0.729569 + 0.683907i \(0.239721\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 15.0000 0.590167
\(647\) −22.0000 −0.864909 −0.432455 0.901656i \(-0.642352\pi\)
−0.432455 + 0.901656i \(0.642352\pi\)
\(648\) 0 0
\(649\) −45.0000 −1.76640
\(650\) 11.0000 0.431455
\(651\) 0 0
\(652\) −1.00000 −0.0391630
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 0 0
\(655\) −8.00000 −0.312586
\(656\) −8.00000 −0.312348
\(657\) 0 0
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −40.0000 −1.55582 −0.777910 0.628376i \(-0.783720\pi\)
−0.777910 + 0.628376i \(0.783720\pi\)
\(662\) 20.0000 0.777322
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 42.0000 1.62625
\(668\) −7.00000 −0.270838
\(669\) 0 0
\(670\) 28.0000 1.08173
\(671\) −5.00000 −0.193023
\(672\) 0 0
\(673\) −2.00000 −0.0770943 −0.0385472 0.999257i \(-0.512273\pi\)
−0.0385472 + 0.999257i \(0.512273\pi\)
\(674\) 7.00000 0.269630
\(675\) 0 0
\(676\) −1.00000 −0.0384615
\(677\) −39.0000 −1.49889 −0.749446 0.662066i \(-0.769680\pi\)
−0.749446 + 0.662066i \(0.769680\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −36.0000 −1.38054
\(681\) 0 0
\(682\) 0 0
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −2.00000 −0.0762493
\(689\) −9.00000 −0.342873
\(690\) 0 0
\(691\) −17.0000 −0.646710 −0.323355 0.946278i \(-0.604811\pi\)
−0.323355 + 0.946278i \(0.604811\pi\)
\(692\) −11.0000 −0.418157
\(693\) 0 0
\(694\) 28.0000 1.06287
\(695\) 48.0000 1.82074
\(696\) 0 0
\(697\) 24.0000 0.909065
\(698\) 2.00000 0.0757011
\(699\) 0 0
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 35.0000 1.31911
\(705\) 0 0
\(706\) −14.0000 −0.526897
\(707\) 0 0
\(708\) 0 0
\(709\) −42.0000 −1.57734 −0.788672 0.614815i \(-0.789231\pi\)
−0.788672 + 0.614815i \(0.789231\pi\)
\(710\) 12.0000 0.450352
\(711\) 0 0
\(712\) 24.0000 0.899438
\(713\) 0 0
\(714\) 0 0
\(715\) 20.0000 0.747958
\(716\) −10.0000 −0.373718
\(717\) 0 0
\(718\) −32.0000 −1.19423
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 6.00000 0.223297
\(723\) 0 0
\(724\) 1.00000 0.0371647
\(725\) −77.0000 −2.85971
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 24.0000 0.888280
\(731\) 6.00000 0.221918
\(732\) 0 0
\(733\) −42.0000 −1.55131 −0.775653 0.631160i \(-0.782579\pi\)
−0.775653 + 0.631160i \(0.782579\pi\)
\(734\) −18.0000 −0.664392
\(735\) 0 0
\(736\) −30.0000 −1.10581
\(737\) 35.0000 1.28924
\(738\) 0 0
\(739\) −36.0000 −1.32428 −0.662141 0.749380i \(-0.730352\pi\)
−0.662141 + 0.749380i \(0.730352\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 9.00000 0.330178 0.165089 0.986279i \(-0.447209\pi\)
0.165089 + 0.986279i \(0.447209\pi\)
\(744\) 0 0
\(745\) 72.0000 2.63788
\(746\) −25.0000 −0.915315
\(747\) 0 0
\(748\) −15.0000 −0.548454
\(749\) 0 0
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) −9.00000 −0.328196
\(753\) 0 0
\(754\) −7.00000 −0.254925
\(755\) −4.00000 −0.145575
\(756\) 0 0
\(757\) 17.0000 0.617876 0.308938 0.951082i \(-0.400027\pi\)
0.308938 + 0.951082i \(0.400027\pi\)
\(758\) −12.0000 −0.435860
\(759\) 0 0
\(760\) −60.0000 −2.17643
\(761\) 48.0000 1.74000 0.869999 0.493053i \(-0.164119\pi\)
0.869999 + 0.493053i \(0.164119\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 4.00000 0.144715
\(765\) 0 0
\(766\) 24.0000 0.867155
\(767\) −9.00000 −0.324971
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 4.00000 0.143963
\(773\) 14.0000 0.503545 0.251773 0.967786i \(-0.418987\pi\)
0.251773 + 0.967786i \(0.418987\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 54.0000 1.93849
\(777\) 0 0
\(778\) −9.00000 −0.322666
\(779\) 40.0000 1.43315
\(780\) 0 0
\(781\) 15.0000 0.536742
\(782\) −18.0000 −0.643679
\(783\) 0 0
\(784\) 0 0
\(785\) −28.0000 −0.999363
\(786\) 0 0
\(787\) 11.0000 0.392108 0.196054 0.980593i \(-0.437187\pi\)
0.196054 + 0.980593i \(0.437187\pi\)
\(788\) 10.0000 0.356235
\(789\) 0 0
\(790\) −40.0000 −1.42314
\(791\) 0 0
\(792\) 0 0
\(793\) −1.00000 −0.0355110
\(794\) 6.00000 0.212932
\(795\) 0 0
\(796\) 6.00000 0.212664
\(797\) 22.0000 0.779280 0.389640 0.920967i \(-0.372599\pi\)
0.389640 + 0.920967i \(0.372599\pi\)
\(798\) 0 0
\(799\) 27.0000 0.955191
\(800\) 55.0000 1.94454
\(801\) 0 0
\(802\) −6.00000 −0.211867
\(803\) 30.0000 1.05868
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −6.00000 −0.211079
\(809\) 3.00000 0.105474 0.0527372 0.998608i \(-0.483205\pi\)
0.0527372 + 0.998608i \(0.483205\pi\)
\(810\) 0 0
\(811\) −44.0000 −1.54505 −0.772524 0.634985i \(-0.781006\pi\)
−0.772524 + 0.634985i \(0.781006\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.00000 0.140114
\(816\) 0 0
\(817\) 10.0000 0.349856
\(818\) −32.0000 −1.11885
\(819\) 0 0
\(820\) −32.0000 −1.11749
\(821\) −32.0000 −1.11681 −0.558404 0.829569i \(-0.688586\pi\)
−0.558404 + 0.829569i \(0.688586\pi\)
\(822\) 0 0
\(823\) 36.0000 1.25488 0.627441 0.778664i \(-0.284103\pi\)
0.627441 + 0.778664i \(0.284103\pi\)
\(824\) 42.0000 1.46314
\(825\) 0 0
\(826\) 0 0
\(827\) 3.00000 0.104320 0.0521601 0.998639i \(-0.483389\pi\)
0.0521601 + 0.998639i \(0.483389\pi\)
\(828\) 0 0
\(829\) −11.0000 −0.382046 −0.191023 0.981586i \(-0.561180\pi\)
−0.191023 + 0.981586i \(0.561180\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 7.00000 0.242681
\(833\) 0 0
\(834\) 0 0
\(835\) 28.0000 0.968980
\(836\) −25.0000 −0.864643
\(837\) 0 0
\(838\) −6.00000 −0.207267
\(839\) 25.0000 0.863096 0.431548 0.902090i \(-0.357968\pi\)
0.431548 + 0.902090i \(0.357968\pi\)
\(840\) 0 0
\(841\) 20.0000 0.689655
\(842\) −22.0000 −0.758170
\(843\) 0 0
\(844\) 14.0000 0.481900
\(845\) 4.00000 0.137604
\(846\) 0 0
\(847\) 0 0
\(848\) 9.00000 0.309061
\(849\) 0 0
\(850\) 33.0000 1.13189
\(851\) 0 0
\(852\) 0 0
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −24.0000 −0.820303
\(857\) 1.00000 0.0341593 0.0170797 0.999854i \(-0.494563\pi\)
0.0170797 + 0.999854i \(0.494563\pi\)
\(858\) 0 0
\(859\) −8.00000 −0.272956 −0.136478 0.990643i \(-0.543578\pi\)
−0.136478 + 0.990643i \(0.543578\pi\)
\(860\) −8.00000 −0.272798
\(861\) 0 0
\(862\) 0 0
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) 44.0000 1.49604
\(866\) −37.0000 −1.25731
\(867\) 0 0
\(868\) 0 0
\(869\) −50.0000 −1.69613
\(870\) 0 0
\(871\) 7.00000 0.237186
\(872\) 0 0
\(873\) 0 0
\(874\) −30.0000 −1.01477
\(875\) 0 0
\(876\) 0 0
\(877\) −32.0000 −1.08056 −0.540282 0.841484i \(-0.681682\pi\)
−0.540282 + 0.841484i \(0.681682\pi\)
\(878\) 18.0000 0.607471
\(879\) 0 0
\(880\) −20.0000 −0.674200
\(881\) −6.00000 −0.202145 −0.101073 0.994879i \(-0.532227\pi\)
−0.101073 + 0.994879i \(0.532227\pi\)
\(882\) 0 0
\(883\) 32.0000 1.07689 0.538443 0.842662i \(-0.319013\pi\)
0.538443 + 0.842662i \(0.319013\pi\)
\(884\) −3.00000 −0.100901
\(885\) 0 0
\(886\) 24.0000 0.806296
\(887\) −46.0000 −1.54453 −0.772264 0.635301i \(-0.780876\pi\)
−0.772264 + 0.635301i \(0.780876\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −32.0000 −1.07264
\(891\) 0 0
\(892\) 7.00000 0.234377
\(893\) 45.0000 1.50587
\(894\) 0 0
\(895\) 40.0000 1.33705
\(896\) 0 0
\(897\) 0 0
\(898\) 36.0000 1.20134
\(899\) 0 0
\(900\) 0 0
\(901\) −27.0000 −0.899500
\(902\) 40.0000 1.33185
\(903\) 0 0
\(904\) −33.0000 −1.09756
\(905\) −4.00000 −0.132964
\(906\) 0 0
\(907\) 2.00000 0.0664089 0.0332045 0.999449i \(-0.489429\pi\)
0.0332045 + 0.999449i \(0.489429\pi\)
\(908\) −12.0000 −0.398234
\(909\) 0 0
\(910\) 0 0
\(911\) −42.0000 −1.39152 −0.695761 0.718273i \(-0.744933\pi\)
−0.695761 + 0.718273i \(0.744933\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −38.0000 −1.25693
\(915\) 0 0
\(916\) 2.00000 0.0660819
\(917\) 0 0
\(918\) 0 0
\(919\) −46.0000 −1.51740 −0.758700 0.651440i \(-0.774165\pi\)
−0.758700 + 0.651440i \(0.774165\pi\)
\(920\) 72.0000 2.37377
\(921\) 0 0
\(922\) 8.00000 0.263466
\(923\) 3.00000 0.0987462
\(924\) 0 0
\(925\) 0 0
\(926\) 40.0000 1.31448
\(927\) 0 0
\(928\) −35.0000 −1.14893
\(929\) 26.0000 0.853032 0.426516 0.904480i \(-0.359741\pi\)
0.426516 + 0.904480i \(0.359741\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 9.00000 0.294805
\(933\) 0 0
\(934\) −18.0000 −0.588978
\(935\) 60.0000 1.96221
\(936\) 0 0
\(937\) 33.0000 1.07806 0.539032 0.842286i \(-0.318790\pi\)
0.539032 + 0.842286i \(0.318790\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −36.0000 −1.17419
\(941\) −16.0000 −0.521585 −0.260793 0.965395i \(-0.583984\pi\)
−0.260793 + 0.965395i \(0.583984\pi\)
\(942\) 0 0
\(943\) −48.0000 −1.56310
\(944\) 9.00000 0.292925
\(945\) 0 0
\(946\) 10.0000 0.325128
\(947\) −11.0000 −0.357452 −0.178726 0.983899i \(-0.557198\pi\)
−0.178726 + 0.983899i \(0.557198\pi\)
\(948\) 0 0
\(949\) 6.00000 0.194768
\(950\) 55.0000 1.78444
\(951\) 0 0
\(952\) 0 0
\(953\) 43.0000 1.39291 0.696453 0.717602i \(-0.254760\pi\)
0.696453 + 0.717602i \(0.254760\pi\)
\(954\) 0 0
\(955\) −16.0000 −0.517748
\(956\) −21.0000 −0.679189
\(957\) 0 0
\(958\) −7.00000 −0.226160
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) −16.0000 −0.515325
\(965\) −16.0000 −0.515058
\(966\) 0 0
\(967\) −47.0000 −1.51142 −0.755709 0.654907i \(-0.772708\pi\)
−0.755709 + 0.654907i \(0.772708\pi\)
\(968\) −42.0000 −1.34993
\(969\) 0 0
\(970\) −72.0000 −2.31178
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −29.0000 −0.929220
\(975\) 0 0
\(976\) 1.00000 0.0320092
\(977\) 6.00000 0.191957 0.0959785 0.995383i \(-0.469402\pi\)
0.0959785 + 0.995383i \(0.469402\pi\)
\(978\) 0 0
\(979\) −40.0000 −1.27841
\(980\) 0 0
\(981\) 0 0
\(982\) −2.00000 −0.0638226
\(983\) 15.0000 0.478426 0.239213 0.970967i \(-0.423111\pi\)
0.239213 + 0.970967i \(0.423111\pi\)
\(984\) 0 0
\(985\) −40.0000 −1.27451
\(986\) −21.0000 −0.668776
\(987\) 0 0
\(988\) −5.00000 −0.159071
\(989\) −12.0000 −0.381578
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −24.0000 −0.760851
\(996\) 0 0
\(997\) −49.0000 −1.55185 −0.775923 0.630828i \(-0.782715\pi\)
−0.775923 + 0.630828i \(0.782715\pi\)
\(998\) −32.0000 −1.01294
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5733.2.a.k.1.1 1
3.2 odd 2 1911.2.a.b.1.1 1
7.3 odd 6 819.2.j.a.352.1 2
7.5 odd 6 819.2.j.a.235.1 2
7.6 odd 2 5733.2.a.i.1.1 1
21.5 even 6 273.2.i.a.235.1 yes 2
21.17 even 6 273.2.i.a.79.1 2
21.20 even 2 1911.2.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.i.a.79.1 2 21.17 even 6
273.2.i.a.235.1 yes 2 21.5 even 6
819.2.j.a.235.1 2 7.5 odd 6
819.2.j.a.352.1 2 7.3 odd 6
1911.2.a.b.1.1 1 3.2 odd 2
1911.2.a.c.1.1 1 21.20 even 2
5733.2.a.i.1.1 1 7.6 odd 2
5733.2.a.k.1.1 1 1.1 even 1 trivial