Properties

Label 5733.2.a.t
Level 57335733
Weight 22
Character orbit 5733.a
Self dual yes
Analytic conductor 45.77845.778
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5733,2,Mod(1,5733)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5733.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5733=327213 5733 = 3^{2} \cdot 7^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5733.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 45.778235478845.7782354788
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x23 x^{2} - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 117)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=3\beta = \sqrt{3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+βq2+q4βq82βq11q135q16+4βq172q196q22+4βq235q25βq26+4βq292q313βq32++10q97+O(q100) q + \beta q^{2} + q^{4} - \beta q^{8} - 2 \beta q^{11} - q^{13} - 5 q^{16} + 4 \beta q^{17} - 2 q^{19} - 6 q^{22} + 4 \beta q^{23} - 5 q^{25} - \beta q^{26} + 4 \beta q^{29} - 2 q^{31} - 3 \beta q^{32} + \cdots + 10 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q42q1310q164q1912q2210q254q31+24q34+4q37+16q43+24q462q52+24q58+20q61+2q64+28q67+20q734q76++20q97+O(q100) 2 q + 2 q^{4} - 2 q^{13} - 10 q^{16} - 4 q^{19} - 12 q^{22} - 10 q^{25} - 4 q^{31} + 24 q^{34} + 4 q^{37} + 16 q^{43} + 24 q^{46} - 2 q^{52} + 24 q^{58} + 20 q^{61} + 2 q^{64} + 28 q^{67} + 20 q^{73} - 4 q^{76}+ \cdots + 20 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.73205
1.73205
−1.73205 0 1.00000 0 0 0 1.73205 0 0
1.2 1.73205 0 1.00000 0 0 0 −1.73205 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
77 1 -1
1313 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5733.2.a.t 2
3.b odd 2 1 inner 5733.2.a.t 2
7.b odd 2 1 117.2.a.b 2
21.c even 2 1 117.2.a.b 2
28.d even 2 1 1872.2.a.v 2
35.c odd 2 1 2925.2.a.y 2
35.f even 4 2 2925.2.c.s 4
56.e even 2 1 7488.2.a.cj 2
56.h odd 2 1 7488.2.a.cq 2
63.l odd 6 2 1053.2.e.i 4
63.o even 6 2 1053.2.e.i 4
84.h odd 2 1 1872.2.a.v 2
91.b odd 2 1 1521.2.a.j 2
91.i even 4 2 1521.2.b.i 4
105.g even 2 1 2925.2.a.y 2
105.k odd 4 2 2925.2.c.s 4
168.e odd 2 1 7488.2.a.cj 2
168.i even 2 1 7488.2.a.cq 2
273.g even 2 1 1521.2.a.j 2
273.o odd 4 2 1521.2.b.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.2.a.b 2 7.b odd 2 1
117.2.a.b 2 21.c even 2 1
1053.2.e.i 4 63.l odd 6 2
1053.2.e.i 4 63.o even 6 2
1521.2.a.j 2 91.b odd 2 1
1521.2.a.j 2 273.g even 2 1
1521.2.b.i 4 91.i even 4 2
1521.2.b.i 4 273.o odd 4 2
1872.2.a.v 2 28.d even 2 1
1872.2.a.v 2 84.h odd 2 1
2925.2.a.y 2 35.c odd 2 1
2925.2.a.y 2 105.g even 2 1
2925.2.c.s 4 35.f even 4 2
2925.2.c.s 4 105.k odd 4 2
5733.2.a.t 2 1.a even 1 1 trivial
5733.2.a.t 2 3.b odd 2 1 inner
7488.2.a.cj 2 56.e even 2 1
7488.2.a.cj 2 168.e odd 2 1
7488.2.a.cq 2 56.h odd 2 1
7488.2.a.cq 2 168.i even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(5733))S_{2}^{\mathrm{new}}(\Gamma_0(5733)):

T223 T_{2}^{2} - 3 Copy content Toggle raw display
T5 T_{5} Copy content Toggle raw display
T11212 T_{11}^{2} - 12 Copy content Toggle raw display
T17248 T_{17}^{2} - 48 Copy content Toggle raw display
T19+2 T_{19} + 2 Copy content Toggle raw display
T31+2 T_{31} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T23 T^{2} - 3 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T212 T^{2} - 12 Copy content Toggle raw display
1313 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
1717 T248 T^{2} - 48 Copy content Toggle raw display
1919 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
2323 T248 T^{2} - 48 Copy content Toggle raw display
2929 T248 T^{2} - 48 Copy content Toggle raw display
3131 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
3737 (T2)2 (T - 2)^{2} Copy content Toggle raw display
4141 T248 T^{2} - 48 Copy content Toggle raw display
4343 (T8)2 (T - 8)^{2} Copy content Toggle raw display
4747 T2108 T^{2} - 108 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T212 T^{2} - 12 Copy content Toggle raw display
6161 (T10)2 (T - 10)^{2} Copy content Toggle raw display
6767 (T14)2 (T - 14)^{2} Copy content Toggle raw display
7171 T212 T^{2} - 12 Copy content Toggle raw display
7373 (T10)2 (T - 10)^{2} Copy content Toggle raw display
7979 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
8383 T2108 T^{2} - 108 Copy content Toggle raw display
8989 T248 T^{2} - 48 Copy content Toggle raw display
9797 (T10)2 (T - 10)^{2} Copy content Toggle raw display
show more
show less