Properties

Label 5733.2.a.t
Level $5733$
Weight $2$
Character orbit 5733.a
Self dual yes
Analytic conductor $45.778$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5733,2,Mod(1,5733)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5733.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5733.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.7782354788\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 117)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + q^{4} - \beta q^{8} - 2 \beta q^{11} - q^{13} - 5 q^{16} + 4 \beta q^{17} - 2 q^{19} - 6 q^{22} + 4 \beta q^{23} - 5 q^{25} - \beta q^{26} + 4 \beta q^{29} - 2 q^{31} - 3 \beta q^{32} + \cdots + 10 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 2 q^{13} - 10 q^{16} - 4 q^{19} - 12 q^{22} - 10 q^{25} - 4 q^{31} + 24 q^{34} + 4 q^{37} + 16 q^{43} + 24 q^{46} - 2 q^{52} + 24 q^{58} + 20 q^{61} + 2 q^{64} + 28 q^{67} + 20 q^{73} - 4 q^{76}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−1.73205 0 1.00000 0 0 0 1.73205 0 0
1.2 1.73205 0 1.00000 0 0 0 −1.73205 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5733.2.a.t 2
3.b odd 2 1 inner 5733.2.a.t 2
7.b odd 2 1 117.2.a.b 2
21.c even 2 1 117.2.a.b 2
28.d even 2 1 1872.2.a.v 2
35.c odd 2 1 2925.2.a.y 2
35.f even 4 2 2925.2.c.s 4
56.e even 2 1 7488.2.a.cj 2
56.h odd 2 1 7488.2.a.cq 2
63.l odd 6 2 1053.2.e.i 4
63.o even 6 2 1053.2.e.i 4
84.h odd 2 1 1872.2.a.v 2
91.b odd 2 1 1521.2.a.j 2
91.i even 4 2 1521.2.b.i 4
105.g even 2 1 2925.2.a.y 2
105.k odd 4 2 2925.2.c.s 4
168.e odd 2 1 7488.2.a.cj 2
168.i even 2 1 7488.2.a.cq 2
273.g even 2 1 1521.2.a.j 2
273.o odd 4 2 1521.2.b.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.2.a.b 2 7.b odd 2 1
117.2.a.b 2 21.c even 2 1
1053.2.e.i 4 63.l odd 6 2
1053.2.e.i 4 63.o even 6 2
1521.2.a.j 2 91.b odd 2 1
1521.2.a.j 2 273.g even 2 1
1521.2.b.i 4 91.i even 4 2
1521.2.b.i 4 273.o odd 4 2
1872.2.a.v 2 28.d even 2 1
1872.2.a.v 2 84.h odd 2 1
2925.2.a.y 2 35.c odd 2 1
2925.2.a.y 2 105.g even 2 1
2925.2.c.s 4 35.f even 4 2
2925.2.c.s 4 105.k odd 4 2
5733.2.a.t 2 1.a even 1 1 trivial
5733.2.a.t 2 3.b odd 2 1 inner
7488.2.a.cj 2 56.e even 2 1
7488.2.a.cj 2 168.e odd 2 1
7488.2.a.cq 2 56.h odd 2 1
7488.2.a.cq 2 168.i even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5733))\):

\( T_{2}^{2} - 3 \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display
\( T_{11}^{2} - 12 \) Copy content Toggle raw display
\( T_{17}^{2} - 48 \) Copy content Toggle raw display
\( T_{19} + 2 \) Copy content Toggle raw display
\( T_{31} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 3 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 12 \) Copy content Toggle raw display
$13$ \( (T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 48 \) Copy content Toggle raw display
$19$ \( (T + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 48 \) Copy content Toggle raw display
$29$ \( T^{2} - 48 \) Copy content Toggle raw display
$31$ \( (T + 2)^{2} \) Copy content Toggle raw display
$37$ \( (T - 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 48 \) Copy content Toggle raw display
$43$ \( (T - 8)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 108 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 12 \) Copy content Toggle raw display
$61$ \( (T - 10)^{2} \) Copy content Toggle raw display
$67$ \( (T - 14)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 12 \) Copy content Toggle raw display
$73$ \( (T - 10)^{2} \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 108 \) Copy content Toggle raw display
$89$ \( T^{2} - 48 \) Copy content Toggle raw display
$97$ \( (T - 10)^{2} \) Copy content Toggle raw display
show more
show less