Properties

Label 575.2.r.b.57.10
Level $575$
Weight $2$
Character 575.57
Analytic conductor $4.591$
Analytic rank $0$
Dimension $200$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,2,Mod(7,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([11, 38]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 575.r (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59139811622\)
Analytic rank: \(0\)
Dimension: \(200\)
Relative dimension: \(10\) over \(\Q(\zeta_{44})\)
Twist minimal: no (minimal twist has level 115)
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

Embedding invariants

Embedding label 57.10
Character \(\chi\) \(=\) 575.57
Dual form 575.2.r.b.343.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.66353 + 0.579415i) q^{2} +(-1.52955 - 2.04324i) q^{3} +(4.93941 + 2.25575i) q^{4} +(-2.89012 - 6.32847i) q^{6} +(1.87829 + 0.134338i) q^{7} +(7.48497 + 5.60318i) q^{8} +(-0.990105 + 3.37199i) q^{9} +(-0.338516 + 0.526741i) q^{11} +(-2.94603 - 13.5427i) q^{12} +(-0.187613 - 2.62317i) q^{13} +(4.92504 + 1.44612i) q^{14} +(9.57793 + 11.0535i) q^{16} +(-0.657846 - 0.245364i) q^{17} +(-4.59096 + 8.40771i) q^{18} +(0.374105 - 0.819175i) q^{19} +(-2.59845 - 4.04326i) q^{21} +(-1.20685 + 1.20685i) q^{22} +(-3.44274 - 3.33880i) q^{23} -23.8639i q^{24} +(1.02019 - 7.09560i) q^{26} +(1.23000 - 0.458767i) q^{27} +(8.97459 + 4.90050i) q^{28} +(0.285445 - 0.130359i) q^{29} +(0.816998 + 5.68235i) q^{31} +(10.1447 + 18.5786i) q^{32} +(1.59403 - 0.114008i) q^{33} +(-1.61002 - 1.03470i) q^{34} +(-12.4969 + 14.4222i) q^{36} +(0.233984 - 0.127765i) q^{37} +(1.47108 - 1.96514i) q^{38} +(-5.07280 + 4.39561i) q^{39} +(6.57092 - 1.92940i) q^{41} +(-4.57831 - 12.2749i) q^{42} +(-9.32877 + 6.98343i) q^{43} +(-2.86026 + 1.83818i) q^{44} +(-7.23528 - 10.8878i) q^{46} +(-3.96485 - 3.96485i) q^{47} +(7.93507 - 36.4769i) q^{48} +(-3.41883 - 0.491554i) q^{49} +(0.504871 + 1.71943i) q^{51} +(4.99052 - 13.3801i) q^{52} +(-0.472144 + 6.60144i) q^{53} +(3.54196 - 0.509257i) q^{54} +(13.3062 + 11.5299i) q^{56} +(-2.24598 + 0.488583i) q^{57} +(0.835824 - 0.181822i) q^{58} +(2.23622 + 1.93770i) q^{59} +(-9.02346 + 1.29738i) q^{61} +(-1.11634 + 15.6085i) q^{62} +(-2.31269 + 6.20055i) q^{63} +(8.01475 + 27.2957i) q^{64} +(4.31181 + 0.619945i) q^{66} +(-2.99845 + 13.7837i) q^{67} +(-2.69589 - 2.69589i) q^{68} +(-1.55612 + 12.1412i) q^{69} +(5.95122 - 3.82461i) q^{71} +(-26.3048 + 19.6915i) q^{72} +(-2.49870 - 6.69927i) q^{73} +(0.697253 - 0.204732i) q^{74} +(3.69571 - 3.20235i) q^{76} +(-0.706591 + 0.943895i) q^{77} +(-16.0584 + 8.76857i) q^{78} +(-6.21028 + 7.16705i) q^{79} +(6.05065 + 3.88851i) q^{81} +(18.6198 - 1.33171i) q^{82} +(-0.0212502 - 0.0389168i) q^{83} +(-3.71419 - 25.8328i) q^{84} +(-28.8938 + 13.1953i) q^{86} +(-0.702956 - 0.383843i) q^{87} +(-5.48520 + 2.04587i) q^{88} +(0.678818 - 4.72128i) q^{89} -4.95227i q^{91} +(-9.47358 - 24.2576i) q^{92} +(10.3608 - 10.3608i) q^{93} +(-8.26321 - 12.8578i) q^{94} +(22.4437 - 49.1449i) q^{96} +(4.99601 - 9.14950i) q^{97} +(-8.82136 - 3.29020i) q^{98} +(-1.44100 - 1.66300i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 200 q + 18 q^{2} + 14 q^{3} - 36 q^{6} + 22 q^{7} + 26 q^{8} - 44 q^{11} + 6 q^{12} + 26 q^{13} - 52 q^{16} + 22 q^{17} - 58 q^{18} - 44 q^{21} - 22 q^{23} - 28 q^{26} + 26 q^{27} - 66 q^{28} - 40 q^{31}+ \cdots + 50 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/575\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.66353 + 0.579415i 1.88340 + 0.409709i 0.998434 0.0559464i \(-0.0178176\pi\)
0.884966 + 0.465655i \(0.154181\pi\)
\(3\) −1.52955 2.04324i −0.883086 1.17966i −0.982805 0.184649i \(-0.940885\pi\)
0.0997190 0.995016i \(-0.468206\pi\)
\(4\) 4.93941 + 2.25575i 2.46970 + 1.12788i
\(5\) 0 0
\(6\) −2.89012 6.32847i −1.17988 2.58359i
\(7\) 1.87829 + 0.134338i 0.709926 + 0.0507749i 0.421632 0.906767i \(-0.361457\pi\)
0.288294 + 0.957542i \(0.406912\pi\)
\(8\) 7.48497 + 5.60318i 2.64634 + 1.98102i
\(9\) −0.990105 + 3.37199i −0.330035 + 1.12400i
\(10\) 0 0
\(11\) −0.338516 + 0.526741i −0.102066 + 0.158818i −0.888530 0.458818i \(-0.848273\pi\)
0.786464 + 0.617636i \(0.211909\pi\)
\(12\) −2.94603 13.5427i −0.850445 3.90943i
\(13\) −0.187613 2.62317i −0.0520345 0.727537i −0.954771 0.297343i \(-0.903900\pi\)
0.902736 0.430194i \(-0.141555\pi\)
\(14\) 4.92504 + 1.44612i 1.31627 + 0.386492i
\(15\) 0 0
\(16\) 9.57793 + 11.0535i 2.39448 + 2.76338i
\(17\) −0.657846 0.245364i −0.159551 0.0595094i 0.268420 0.963302i \(-0.413499\pi\)
−0.427971 + 0.903793i \(0.640771\pi\)
\(18\) −4.59096 + 8.40771i −1.08210 + 1.98172i
\(19\) 0.374105 0.819175i 0.0858255 0.187932i −0.861853 0.507158i \(-0.830696\pi\)
0.947678 + 0.319227i \(0.103423\pi\)
\(20\) 0 0
\(21\) −2.59845 4.04326i −0.567028 0.882313i
\(22\) −1.20685 + 1.20685i −0.257301 + 0.257301i
\(23\) −3.44274 3.33880i −0.717860 0.696187i
\(24\) 23.8639i 4.87120i
\(25\) 0 0
\(26\) 1.02019 7.09560i 0.200076 1.39156i
\(27\) 1.23000 0.458767i 0.236714 0.0882897i
\(28\) 8.97459 + 4.90050i 1.69604 + 0.926107i
\(29\) 0.285445 0.130359i 0.0530059 0.0242070i −0.388736 0.921349i \(-0.627088\pi\)
0.441742 + 0.897142i \(0.354361\pi\)
\(30\) 0 0
\(31\) 0.816998 + 5.68235i 0.146737 + 1.02058i 0.921514 + 0.388345i \(0.126953\pi\)
−0.774777 + 0.632235i \(0.782138\pi\)
\(32\) 10.1447 + 18.5786i 1.79334 + 3.28426i
\(33\) 1.59403 0.114008i 0.277486 0.0198462i
\(34\) −1.61002 1.03470i −0.276117 0.177449i
\(35\) 0 0
\(36\) −12.4969 + 14.4222i −2.08282 + 2.40370i
\(37\) 0.233984 0.127765i 0.0384668 0.0210044i −0.459901 0.887970i \(-0.652115\pi\)
0.498367 + 0.866966i \(0.333933\pi\)
\(38\) 1.47108 1.96514i 0.238641 0.318787i
\(39\) −5.07280 + 4.39561i −0.812298 + 0.703860i
\(40\) 0 0
\(41\) 6.57092 1.92940i 1.02621 0.301321i 0.275039 0.961433i \(-0.411309\pi\)
0.751167 + 0.660112i \(0.229491\pi\)
\(42\) −4.57831 12.2749i −0.706449 1.89406i
\(43\) −9.32877 + 6.98343i −1.42262 + 1.06496i −0.436362 + 0.899771i \(0.643733\pi\)
−0.986261 + 0.165192i \(0.947176\pi\)
\(44\) −2.86026 + 1.83818i −0.431201 + 0.277116i
\(45\) 0 0
\(46\) −7.23528 10.8878i −1.06678 1.60531i
\(47\) −3.96485 3.96485i −0.578333 0.578333i 0.356111 0.934444i \(-0.384103\pi\)
−0.934444 + 0.356111i \(0.884103\pi\)
\(48\) 7.93507 36.4769i 1.14533 5.26499i
\(49\) −3.41883 0.491554i −0.488405 0.0702220i
\(50\) 0 0
\(51\) 0.504871 + 1.71943i 0.0706960 + 0.240769i
\(52\) 4.99052 13.3801i 0.692061 1.85549i
\(53\) −0.472144 + 6.60144i −0.0648540 + 0.906777i 0.856026 + 0.516932i \(0.172926\pi\)
−0.920880 + 0.389845i \(0.872528\pi\)
\(54\) 3.54196 0.509257i 0.482000 0.0693011i
\(55\) 0 0
\(56\) 13.3062 + 11.5299i 1.77812 + 1.54075i
\(57\) −2.24598 + 0.488583i −0.297488 + 0.0647145i
\(58\) 0.835824 0.181822i 0.109749 0.0238745i
\(59\) 2.23622 + 1.93770i 0.291132 + 0.252267i 0.788164 0.615465i \(-0.211032\pi\)
−0.497033 + 0.867732i \(0.665577\pi\)
\(60\) 0 0
\(61\) −9.02346 + 1.29738i −1.15534 + 0.166112i −0.693232 0.720714i \(-0.743814\pi\)
−0.462103 + 0.886826i \(0.652905\pi\)
\(62\) −1.11634 + 15.6085i −0.141775 + 1.98228i
\(63\) −2.31269 + 6.20055i −0.291371 + 0.781196i
\(64\) 8.01475 + 27.2957i 1.00184 + 3.41197i
\(65\) 0 0
\(66\) 4.31181 + 0.619945i 0.530748 + 0.0763100i
\(67\) −2.99845 + 13.7837i −0.366319 + 1.68394i 0.312723 + 0.949844i \(0.398759\pi\)
−0.679042 + 0.734099i \(0.737605\pi\)
\(68\) −2.69589 2.69589i −0.326924 0.326924i
\(69\) −1.55612 + 12.1412i −0.187335 + 1.46163i
\(70\) 0 0
\(71\) 5.95122 3.82461i 0.706279 0.453898i −0.137560 0.990493i \(-0.543926\pi\)
0.843840 + 0.536595i \(0.180290\pi\)
\(72\) −26.3048 + 19.6915i −3.10005 + 2.32067i
\(73\) −2.49870 6.69927i −0.292451 0.784091i −0.997210 0.0746444i \(-0.976218\pi\)
0.704759 0.709446i \(-0.251055\pi\)
\(74\) 0.697253 0.204732i 0.0810540 0.0237996i
\(75\) 0 0
\(76\) 3.69571 3.20235i 0.423927 0.367335i
\(77\) −0.706591 + 0.943895i −0.0805235 + 0.107567i
\(78\) −16.0584 + 8.76857i −1.81826 + 0.992845i
\(79\) −6.21028 + 7.16705i −0.698712 + 0.806356i −0.988578 0.150711i \(-0.951844\pi\)
0.289866 + 0.957067i \(0.406389\pi\)
\(80\) 0 0
\(81\) 6.05065 + 3.88851i 0.672294 + 0.432057i
\(82\) 18.6198 1.33171i 2.05621 0.147063i
\(83\) −0.0212502 0.0389168i −0.00233251 0.00427168i 0.876510 0.481383i \(-0.159866\pi\)
−0.878843 + 0.477112i \(0.841684\pi\)
\(84\) −3.71419 25.8328i −0.405252 2.81859i
\(85\) 0 0
\(86\) −28.8938 + 13.1953i −3.11569 + 1.42289i
\(87\) −0.702956 0.383843i −0.0753648 0.0411523i
\(88\) −5.48520 + 2.04587i −0.584725 + 0.218091i
\(89\) 0.678818 4.72128i 0.0719545 0.500455i −0.921693 0.387920i \(-0.873194\pi\)
0.993648 0.112535i \(-0.0358971\pi\)
\(90\) 0 0
\(91\) 4.95227i 0.519139i
\(92\) −9.47358 24.2576i −0.987689 2.52903i
\(93\) 10.3608 10.3608i 1.07436 1.07436i
\(94\) −8.26321 12.8578i −0.852285 1.32618i
\(95\) 0 0
\(96\) 22.4437 49.1449i 2.29065 5.01583i
\(97\) 4.99601 9.14950i 0.507267 0.928991i −0.491057 0.871127i \(-0.663389\pi\)
0.998325 0.0578636i \(-0.0184288\pi\)
\(98\) −8.82136 3.29020i −0.891091 0.332360i
\(99\) −1.44100 1.66300i −0.144826 0.167138i
\(100\) 0 0
\(101\) −1.17854 0.346050i −0.117269 0.0344332i 0.222572 0.974916i \(-0.428555\pi\)
−0.339840 + 0.940483i \(0.610373\pi\)
\(102\) 0.348473 + 4.87229i 0.0345039 + 0.482428i
\(103\) 0.585505 + 2.69152i 0.0576916 + 0.265204i 0.996954 0.0779971i \(-0.0248525\pi\)
−0.939262 + 0.343201i \(0.888489\pi\)
\(104\) 13.2938 20.6856i 1.30357 2.02839i
\(105\) 0 0
\(106\) −5.08255 + 17.3096i −0.493661 + 1.68125i
\(107\) −12.2682 9.18388i −1.18601 0.887839i −0.190429 0.981701i \(-0.560988\pi\)
−0.995585 + 0.0938620i \(0.970079\pi\)
\(108\) 7.11034 + 0.508541i 0.684193 + 0.0489344i
\(109\) −2.70126 5.91493i −0.258734 0.566548i 0.735032 0.678032i \(-0.237167\pi\)
−0.993766 + 0.111484i \(0.964440\pi\)
\(110\) 0 0
\(111\) −0.618945 0.282663i −0.0587476 0.0268291i
\(112\) 16.5052 + 22.0484i 1.55960 + 2.08338i
\(113\) 18.8419 + 4.09881i 1.77250 + 0.385584i 0.975778 0.218761i \(-0.0702017\pi\)
0.796722 + 0.604345i \(0.206565\pi\)
\(114\) −6.26533 −0.586802
\(115\) 0 0
\(116\) 1.70399 0.158211
\(117\) 9.03106 + 1.96459i 0.834922 + 0.181626i
\(118\) 4.83352 + 6.45682i 0.444961 + 0.594399i
\(119\) −1.20266 0.549237i −0.110248 0.0503485i
\(120\) 0 0
\(121\) 4.40670 + 9.64933i 0.400609 + 0.877212i
\(122\) −24.7860 1.77273i −2.24402 0.160495i
\(123\) −13.9928 10.4749i −1.26169 0.944486i
\(124\) −8.78247 + 29.9104i −0.788689 + 2.68603i
\(125\) 0 0
\(126\) −9.75261 + 15.1754i −0.868831 + 1.35193i
\(127\) −0.541705 2.49018i −0.0480685 0.220967i 0.946846 0.321686i \(-0.104250\pi\)
−0.994915 + 0.100718i \(0.967886\pi\)
\(128\) 2.51176 + 35.1190i 0.222010 + 3.10411i
\(129\) 28.5376 + 8.37940i 2.51260 + 0.737765i
\(130\) 0 0
\(131\) −7.52420 8.68339i −0.657392 0.758671i 0.324957 0.945729i \(-0.394650\pi\)
−0.982349 + 0.187058i \(0.940105\pi\)
\(132\) 8.13075 + 3.03261i 0.707691 + 0.263955i
\(133\) 0.812722 1.48839i 0.0704720 0.129060i
\(134\) −15.9729 + 34.9759i −1.37985 + 3.02145i
\(135\) 0 0
\(136\) −3.54914 5.52257i −0.304336 0.473556i
\(137\) 5.48458 5.48458i 0.468579 0.468579i −0.432875 0.901454i \(-0.642501\pi\)
0.901454 + 0.432875i \(0.142501\pi\)
\(138\) −11.1796 + 31.4368i −0.951668 + 2.67608i
\(139\) 6.48562i 0.550103i −0.961429 0.275052i \(-0.911305\pi\)
0.961429 0.275052i \(-0.0886949\pi\)
\(140\) 0 0
\(141\) −2.03670 + 14.1656i −0.171521 + 1.19296i
\(142\) 18.0673 6.73875i 1.51617 0.565503i
\(143\) 1.44524 + 0.789162i 0.120857 + 0.0659930i
\(144\) −46.7555 + 21.3525i −3.89629 + 1.77938i
\(145\) 0 0
\(146\) −2.77370 19.2915i −0.229553 1.59658i
\(147\) 4.22491 + 7.73735i 0.348465 + 0.638166i
\(148\) 1.44395 0.103273i 0.118692 0.00848901i
\(149\) −9.69019 6.22751i −0.793852 0.510177i 0.0797526 0.996815i \(-0.474587\pi\)
−0.873604 + 0.486637i \(0.838223\pi\)
\(150\) 0 0
\(151\) 12.3540 14.2573i 1.00536 1.16024i 0.0183059 0.999832i \(-0.494173\pi\)
0.987050 0.160411i \(-0.0512818\pi\)
\(152\) 7.39015 4.03533i 0.599420 0.327308i
\(153\) 1.47870 1.97531i 0.119546 0.159695i
\(154\) −2.42893 + 2.10468i −0.195729 + 0.169600i
\(155\) 0 0
\(156\) −34.9720 + 10.2687i −2.80000 + 0.822155i
\(157\) 5.79824 + 15.5457i 0.462750 + 1.24068i 0.933552 + 0.358442i \(0.116692\pi\)
−0.470802 + 0.882239i \(0.656035\pi\)
\(158\) −20.6940 + 15.4913i −1.64632 + 1.23242i
\(159\) 14.2105 9.13252i 1.12696 0.724256i
\(160\) 0 0
\(161\) −6.01792 6.73371i −0.474279 0.530690i
\(162\) 13.8630 + 13.8630i 1.08918 + 1.08918i
\(163\) −1.50944 + 6.93880i −0.118229 + 0.543489i 0.879486 + 0.475924i \(0.157886\pi\)
−0.997715 + 0.0675644i \(0.978477\pi\)
\(164\) 36.8087 + 5.29229i 2.87428 + 0.413259i
\(165\) 0 0
\(166\) −0.0340515 0.115969i −0.00264291 0.00900093i
\(167\) 1.68576 4.51969i 0.130448 0.349744i −0.855262 0.518196i \(-0.826604\pi\)
0.985710 + 0.168452i \(0.0538767\pi\)
\(168\) 3.20582 44.8233i 0.247335 3.45819i
\(169\) 6.02185 0.865811i 0.463219 0.0666009i
\(170\) 0 0
\(171\) 2.39185 + 2.07255i 0.182909 + 0.158492i
\(172\) −61.8314 + 13.4506i −4.71460 + 1.02560i
\(173\) 15.7707 3.43070i 1.19902 0.260831i 0.431654 0.902039i \(-0.357930\pi\)
0.767367 + 0.641208i \(0.221566\pi\)
\(174\) −1.64994 1.42968i −0.125082 0.108384i
\(175\) 0 0
\(176\) −9.06463 + 1.30330i −0.683272 + 0.0982397i
\(177\) 0.538767 7.53295i 0.0404962 0.566211i
\(178\) 4.54363 12.1820i 0.340560 0.913076i
\(179\) −2.20385 7.50562i −0.164723 0.560996i −0.999939 0.0110732i \(-0.996475\pi\)
0.835215 0.549923i \(-0.185343\pi\)
\(180\) 0 0
\(181\) −0.718152 0.103255i −0.0533798 0.00767486i 0.115573 0.993299i \(-0.463130\pi\)
−0.168953 + 0.985624i \(0.554039\pi\)
\(182\) 2.86942 13.1905i 0.212696 0.977747i
\(183\) 16.4527 + 16.4527i 1.21622 + 1.21622i
\(184\) −7.06091 44.2811i −0.520537 3.26444i
\(185\) 0 0
\(186\) 33.5993 21.5930i 2.46362 1.58327i
\(187\) 0.351934 0.263455i 0.0257360 0.0192657i
\(188\) −10.6403 28.5277i −0.776023 2.08060i
\(189\) 2.37193 0.696460i 0.172532 0.0506600i
\(190\) 0 0
\(191\) −0.881798 + 0.764082i −0.0638046 + 0.0552870i −0.686179 0.727432i \(-0.740713\pi\)
0.622375 + 0.782719i \(0.286168\pi\)
\(192\) 43.5127 58.1262i 3.14026 4.19490i
\(193\) 17.3023 9.44775i 1.24544 0.680064i 0.284998 0.958528i \(-0.408007\pi\)
0.960447 + 0.278464i \(0.0898253\pi\)
\(194\) 18.6084 21.4752i 1.33600 1.54183i
\(195\) 0 0
\(196\) −15.7782 10.1400i −1.12701 0.724288i
\(197\) 5.65515 0.404464i 0.402912 0.0288169i 0.131587 0.991305i \(-0.457993\pi\)
0.271325 + 0.962488i \(0.412538\pi\)
\(198\) −2.87457 5.26439i −0.204287 0.374124i
\(199\) 1.95540 + 13.6001i 0.138614 + 0.964085i 0.933820 + 0.357744i \(0.116454\pi\)
−0.795205 + 0.606341i \(0.792637\pi\)
\(200\) 0 0
\(201\) 32.7496 14.9562i 2.30998 1.05493i
\(202\) −2.93856 1.60458i −0.206757 0.112898i
\(203\) 0.553661 0.206505i 0.0388593 0.0144938i
\(204\) −1.38485 + 9.63183i −0.0969588 + 0.674363i
\(205\) 0 0
\(206\) 7.50821i 0.523122i
\(207\) 14.6671 8.30311i 1.01943 0.577106i
\(208\) 27.1983 27.1983i 1.88587 1.88587i
\(209\) 0.304853 + 0.474360i 0.0210871 + 0.0328122i
\(210\) 0 0
\(211\) 6.80328 14.8971i 0.468357 1.02556i −0.517146 0.855897i \(-0.673005\pi\)
0.985502 0.169661i \(-0.0542673\pi\)
\(212\) −17.2233 + 31.5421i −1.18290 + 2.16632i
\(213\) −16.9173 6.30982i −1.15915 0.432342i
\(214\) −27.3555 31.5699i −1.86998 2.15808i
\(215\) 0 0
\(216\) 11.7771 + 3.45806i 0.801328 + 0.235291i
\(217\) 0.771203 + 10.7828i 0.0523527 + 0.731986i
\(218\) −3.76768 17.3198i −0.255180 1.17304i
\(219\) −9.86633 + 15.3523i −0.666705 + 1.03741i
\(220\) 0 0
\(221\) −0.520211 + 1.77167i −0.0349932 + 0.119176i
\(222\) −1.48480 1.11151i −0.0996532 0.0745994i
\(223\) −18.8420 1.34761i −1.26176 0.0902426i −0.575621 0.817717i \(-0.695240\pi\)
−0.686135 + 0.727474i \(0.740694\pi\)
\(224\) 16.5588 + 36.2588i 1.10638 + 2.42264i
\(225\) 0 0
\(226\) 47.8112 + 21.8346i 3.18035 + 1.45242i
\(227\) −8.23865 11.0056i −0.546819 0.730464i 0.438961 0.898506i \(-0.355347\pi\)
−0.985780 + 0.168042i \(0.946256\pi\)
\(228\) −12.1959 2.65306i −0.807696 0.175703i
\(229\) 8.81270 0.582360 0.291180 0.956668i \(-0.405952\pi\)
0.291180 + 0.956668i \(0.405952\pi\)
\(230\) 0 0
\(231\) 3.00937 0.198002
\(232\) 2.86697 + 0.623672i 0.188226 + 0.0409461i
\(233\) 3.32554 + 4.44241i 0.217864 + 0.291032i 0.896137 0.443778i \(-0.146362\pi\)
−0.678273 + 0.734810i \(0.737271\pi\)
\(234\) 22.9162 + 10.4655i 1.49808 + 0.684149i
\(235\) 0 0
\(236\) 6.67465 + 14.6154i 0.434483 + 0.951385i
\(237\) 24.1429 + 1.72674i 1.56825 + 0.112164i
\(238\) −2.88509 2.15975i −0.187012 0.139996i
\(239\) 1.21124 4.12509i 0.0783483 0.266830i −0.910998 0.412411i \(-0.864687\pi\)
0.989346 + 0.145581i \(0.0465051\pi\)
\(240\) 0 0
\(241\) 0.0866550 0.134838i 0.00558194 0.00868567i −0.838451 0.544976i \(-0.816539\pi\)
0.844033 + 0.536291i \(0.180175\pi\)
\(242\) 6.14641 + 28.2546i 0.395106 + 1.81627i
\(243\) −1.59056 22.2389i −0.102034 1.42662i
\(244\) −47.4971 13.9464i −3.04069 0.892827i
\(245\) 0 0
\(246\) −31.2009 36.0077i −1.98929 2.29577i
\(247\) −2.21902 0.827653i −0.141193 0.0526623i
\(248\) −25.7240 + 47.1100i −1.63348 + 2.99149i
\(249\) −0.0470132 + 0.102944i −0.00297934 + 0.00652384i
\(250\) 0 0
\(251\) 7.73871 + 12.0417i 0.488463 + 0.760063i 0.994754 0.102300i \(-0.0326201\pi\)
−0.506291 + 0.862363i \(0.668984\pi\)
\(252\) −25.4102 + 25.4102i −1.60069 + 1.60069i
\(253\) 2.92410 0.683195i 0.183837 0.0429521i
\(254\) 6.94653i 0.435864i
\(255\) 0 0
\(256\) −5.56117 + 38.6788i −0.347573 + 2.41742i
\(257\) −20.4056 + 7.61089i −1.27287 + 0.474754i −0.892904 0.450248i \(-0.851336\pi\)
−0.379962 + 0.925002i \(0.624063\pi\)
\(258\) 71.1556 + 38.8539i 4.42996 + 2.41894i
\(259\) 0.456653 0.208547i 0.0283750 0.0129584i
\(260\) 0 0
\(261\) 0.156947 + 1.09159i 0.00971475 + 0.0675676i
\(262\) −15.0096 27.4881i −0.927299 1.69822i
\(263\) 23.6124 1.68880i 1.45601 0.104136i 0.679236 0.733920i \(-0.262311\pi\)
0.776770 + 0.629784i \(0.216857\pi\)
\(264\) 12.5701 + 8.07831i 0.773636 + 0.497186i
\(265\) 0 0
\(266\) 3.02711 3.49347i 0.185604 0.214198i
\(267\) −10.6850 + 5.83444i −0.653911 + 0.357062i
\(268\) −45.9031 + 61.3194i −2.80398 + 3.74568i
\(269\) 12.9397 11.2123i 0.788945 0.683624i −0.164104 0.986443i \(-0.552473\pi\)
0.953048 + 0.302819i \(0.0979277\pi\)
\(270\) 0 0
\(271\) −15.5892 + 4.57742i −0.946979 + 0.278058i −0.718529 0.695497i \(-0.755184\pi\)
−0.228451 + 0.973556i \(0.573366\pi\)
\(272\) −3.58867 9.62159i −0.217595 0.583395i
\(273\) −10.1187 + 7.57474i −0.612410 + 0.458444i
\(274\) 17.7862 11.4305i 1.07450 0.690541i
\(275\) 0 0
\(276\) −35.0738 + 56.4600i −2.11119 + 3.39849i
\(277\) −2.00389 2.00389i −0.120402 0.120402i 0.644338 0.764741i \(-0.277133\pi\)
−0.764741 + 0.644338i \(0.777133\pi\)
\(278\) 3.75787 17.2746i 0.225382 1.03606i
\(279\) −19.9697 2.87121i −1.19556 0.171895i
\(280\) 0 0
\(281\) −0.703529 2.39600i −0.0419690 0.142933i 0.935843 0.352417i \(-0.114640\pi\)
−0.977812 + 0.209483i \(0.932822\pi\)
\(282\) −13.6326 + 36.5503i −0.811808 + 2.17654i
\(283\) 2.34060 32.7258i 0.139134 1.94535i −0.151373 0.988477i \(-0.548369\pi\)
0.290507 0.956873i \(-0.406176\pi\)
\(284\) 38.0228 5.46686i 2.25624 0.324398i
\(285\) 0 0
\(286\) 3.39219 + 2.93935i 0.200584 + 0.173807i
\(287\) 12.6013 2.74124i 0.743829 0.161810i
\(288\) −72.6911 + 15.8130i −4.28337 + 0.931789i
\(289\) −12.4752 10.8098i −0.733834 0.635871i
\(290\) 0 0
\(291\) −26.3362 + 3.78658i −1.54386 + 0.221973i
\(292\) 2.76980 38.7269i 0.162090 2.26632i
\(293\) −6.80768 + 18.2521i −0.397709 + 1.06630i 0.571618 + 0.820520i \(0.306316\pi\)
−0.969326 + 0.245778i \(0.920957\pi\)
\(294\) 6.77004 + 23.0566i 0.394837 + 1.34469i
\(295\) 0 0
\(296\) 2.46725 + 0.354738i 0.143406 + 0.0206187i
\(297\) −0.174724 + 0.803192i −0.0101385 + 0.0466059i
\(298\) −22.2018 22.2018i −1.28612 1.28612i
\(299\) −8.11233 + 9.65729i −0.469148 + 0.558496i
\(300\) 0 0
\(301\) −18.4602 + 11.8637i −1.06403 + 0.683811i
\(302\) 41.1662 30.8166i 2.36885 1.77330i
\(303\) 1.09557 + 2.93733i 0.0629388 + 0.168745i
\(304\) 12.6379 3.71083i 0.724835 0.212831i
\(305\) 0 0
\(306\) 5.08309 4.40452i 0.290581 0.251790i
\(307\) −17.2631 + 23.0608i −0.985257 + 1.31615i −0.0367733 + 0.999324i \(0.511708\pi\)
−0.948484 + 0.316826i \(0.897383\pi\)
\(308\) −5.61933 + 3.06839i −0.320191 + 0.174838i
\(309\) 4.60387 5.31315i 0.261905 0.302254i
\(310\) 0 0
\(311\) −5.35705 3.44277i −0.303771 0.195222i 0.379871 0.925040i \(-0.375968\pi\)
−0.683642 + 0.729818i \(0.739605\pi\)
\(312\) −62.5991 + 4.47718i −3.54398 + 0.253470i
\(313\) 15.9366 + 29.1856i 0.900788 + 1.64967i 0.750340 + 0.661053i \(0.229890\pi\)
0.150449 + 0.988618i \(0.451928\pi\)
\(314\) 6.43638 + 44.7660i 0.363226 + 2.52629i
\(315\) 0 0
\(316\) −46.8422 + 21.3921i −2.63508 + 1.20340i
\(317\) 19.1230 + 10.4419i 1.07405 + 0.586477i 0.916092 0.400968i \(-0.131326\pi\)
0.157961 + 0.987445i \(0.449508\pi\)
\(318\) 43.1416 16.0910i 2.41926 0.902337i
\(319\) −0.0279626 + 0.194484i −0.00156561 + 0.0108890i
\(320\) 0 0
\(321\) 39.1141i 2.18314i
\(322\) −12.1273 21.4223i −0.675828 1.19382i
\(323\) −0.447099 + 0.447099i −0.0248773 + 0.0248773i
\(324\) 21.1151 + 32.8557i 1.17306 + 1.82532i
\(325\) 0 0
\(326\) −8.04090 + 17.6071i −0.445344 + 0.975168i
\(327\) −7.95391 + 14.5665i −0.439852 + 0.805529i
\(328\) 59.9939 + 22.3766i 3.31261 + 1.23554i
\(329\) −6.91450 7.97976i −0.381209 0.439938i
\(330\) 0 0
\(331\) 8.25389 + 2.42356i 0.453675 + 0.133211i 0.500584 0.865688i \(-0.333119\pi\)
−0.0469087 + 0.998899i \(0.514937\pi\)
\(332\) −0.0171767 0.240161i −0.000942692 0.0131806i
\(333\) 0.199153 + 0.915493i 0.0109135 + 0.0501687i
\(334\) 7.10884 11.0616i 0.388978 0.605262i
\(335\) 0 0
\(336\) 19.8046 67.4481i 1.08043 3.67960i
\(337\) −5.29945 3.96712i −0.288680 0.216103i 0.445116 0.895473i \(-0.353162\pi\)
−0.733796 + 0.679370i \(0.762253\pi\)
\(338\) 16.5410 + 1.18304i 0.899714 + 0.0643488i
\(339\) −20.4448 44.7679i −1.11041 2.43146i
\(340\) 0 0
\(341\) −3.26969 1.49322i −0.177064 0.0808623i
\(342\) 5.16989 + 6.90616i 0.279556 + 0.373443i
\(343\) −19.2359 4.18451i −1.03864 0.225942i
\(344\) −108.955 −5.87446
\(345\) 0 0
\(346\) 43.9934 2.36510
\(347\) 9.35860 + 2.03584i 0.502396 + 0.109289i 0.456619 0.889662i \(-0.349060\pi\)
0.0457765 + 0.998952i \(0.485424\pi\)
\(348\) −2.60633 3.48165i −0.139714 0.186636i
\(349\) 15.9385 + 7.27885i 0.853167 + 0.389628i 0.793485 0.608589i \(-0.208264\pi\)
0.0596813 + 0.998217i \(0.480992\pi\)
\(350\) 0 0
\(351\) −1.43419 3.14043i −0.0765513 0.167624i
\(352\) −13.2202 0.945531i −0.704641 0.0503970i
\(353\) −1.78605 1.33702i −0.0950616 0.0711622i 0.550690 0.834710i \(-0.314365\pi\)
−0.645751 + 0.763548i \(0.723456\pi\)
\(354\) 5.79973 19.7521i 0.308252 1.04981i
\(355\) 0 0
\(356\) 14.0030 21.7891i 0.742157 1.15482i
\(357\) 0.717307 + 3.29741i 0.0379639 + 0.174517i
\(358\) −1.52114 21.2684i −0.0803950 1.12407i
\(359\) 4.20106 + 1.23354i 0.221723 + 0.0651038i 0.390707 0.920515i \(-0.372230\pi\)
−0.168984 + 0.985619i \(0.554049\pi\)
\(360\) 0 0
\(361\) 11.9113 + 13.7463i 0.626908 + 0.723491i
\(362\) −1.85299 0.691131i −0.0973912 0.0363250i
\(363\) 12.9756 23.7631i 0.681043 1.24724i
\(364\) 11.1711 24.4613i 0.585524 1.28212i
\(365\) 0 0
\(366\) 34.2892 + 53.3551i 1.79233 + 2.78892i
\(367\) −14.2775 + 14.2775i −0.745280 + 0.745280i −0.973589 0.228309i \(-0.926680\pi\)
0.228309 + 0.973589i \(0.426680\pi\)
\(368\) 3.93116 70.0332i 0.204926 3.65073i
\(369\) 24.0674i 1.25290i
\(370\) 0 0
\(371\) −1.77364 + 12.3360i −0.0920830 + 0.640452i
\(372\) 74.5472 27.8047i 3.86509 1.44161i
\(373\) −14.4002 7.86310i −0.745614 0.407136i 0.0610591 0.998134i \(-0.480552\pi\)
−0.806673 + 0.590998i \(0.798734\pi\)
\(374\) 1.09004 0.497803i 0.0563645 0.0257408i
\(375\) 0 0
\(376\) −7.46102 51.8926i −0.384773 2.67615i
\(377\) −0.395506 0.724315i −0.0203696 0.0373041i
\(378\) 6.72123 0.480712i 0.345703 0.0247252i
\(379\) 4.03462 + 2.59289i 0.207244 + 0.133188i 0.640146 0.768253i \(-0.278874\pi\)
−0.432902 + 0.901441i \(0.642510\pi\)
\(380\) 0 0
\(381\) −4.25946 + 4.91568i −0.218219 + 0.251838i
\(382\) −2.79142 + 1.52423i −0.142821 + 0.0779863i
\(383\) −7.93517 + 10.6001i −0.405468 + 0.541642i −0.956075 0.293123i \(-0.905306\pi\)
0.550607 + 0.834765i \(0.314396\pi\)
\(384\) 67.9146 58.8484i 3.46575 3.00309i
\(385\) 0 0
\(386\) 51.5593 15.1392i 2.62430 0.770564i
\(387\) −14.3116 38.3708i −0.727498 1.95050i
\(388\) 45.3163 33.9233i 2.30059 1.72220i
\(389\) 11.1062 7.13754i 0.563108 0.361888i −0.227908 0.973683i \(-0.573189\pi\)
0.791016 + 0.611795i \(0.209552\pi\)
\(390\) 0 0
\(391\) 1.44557 + 3.04114i 0.0731056 + 0.153797i
\(392\) −22.8356 22.8356i −1.15337 1.15337i
\(393\) −6.23360 + 28.6554i −0.314444 + 1.44547i
\(394\) 15.2970 + 2.19938i 0.770652 + 0.110803i
\(395\) 0 0
\(396\) −3.36636 11.4648i −0.169166 0.576126i
\(397\) 5.07488 13.6063i 0.254701 0.682879i −0.745171 0.666873i \(-0.767632\pi\)
0.999872 0.0160058i \(-0.00509501\pi\)
\(398\) −2.67184 + 37.3572i −0.133927 + 1.87255i
\(399\) −4.28423 + 0.615980i −0.214480 + 0.0308376i
\(400\) 0 0
\(401\) −12.3145 10.6706i −0.614955 0.532862i 0.290734 0.956804i \(-0.406101\pi\)
−0.905689 + 0.423942i \(0.860646\pi\)
\(402\) 95.8954 20.8608i 4.78283 1.04044i
\(403\) 14.7525 3.20921i 0.734874 0.159862i
\(404\) −5.04067 4.36777i −0.250783 0.217305i
\(405\) 0 0
\(406\) 1.59434 0.229232i 0.0791259 0.0113766i
\(407\) −0.0119083 + 0.166500i −0.000590272 + 0.00825308i
\(408\) −5.85534 + 15.6988i −0.289882 + 0.777205i
\(409\) −1.62410 5.53116i −0.0803064 0.273498i 0.909545 0.415606i \(-0.136430\pi\)
−0.989851 + 0.142107i \(0.954612\pi\)
\(410\) 0 0
\(411\) −19.5952 2.81737i −0.966562 0.138971i
\(412\) −3.17936 + 14.6153i −0.156636 + 0.720043i
\(413\) 3.93997 + 3.93997i 0.193873 + 0.193873i
\(414\) 43.8771 13.6173i 2.15644 0.669252i
\(415\) 0 0
\(416\) 46.8316 30.0968i 2.29611 1.47562i
\(417\) −13.2517 + 9.92008i −0.648937 + 0.485788i
\(418\) 0.537133 + 1.44011i 0.0262720 + 0.0704380i
\(419\) −29.0927 + 8.54240i −1.42127 + 0.417324i −0.899934 0.436026i \(-0.856386\pi\)
−0.521339 + 0.853349i \(0.674567\pi\)
\(420\) 0 0
\(421\) 12.6074 10.9244i 0.614448 0.532422i −0.291085 0.956697i \(-0.594016\pi\)
0.905533 + 0.424275i \(0.139471\pi\)
\(422\) 26.7523 35.7369i 1.30228 1.73965i
\(423\) 17.2951 9.44382i 0.840914 0.459174i
\(424\) −40.5230 + 46.7661i −1.96797 + 2.27116i
\(425\) 0 0
\(426\) −41.4037 26.6085i −2.00601 1.28919i
\(427\) −17.1229 + 1.22466i −0.828636 + 0.0592652i
\(428\) −39.8812 73.0370i −1.92773 3.53037i
\(429\) −0.598123 4.16003i −0.0288776 0.200848i
\(430\) 0 0
\(431\) 20.1413 9.19824i 0.970174 0.443063i 0.133671 0.991026i \(-0.457324\pi\)
0.836503 + 0.547962i \(0.184596\pi\)
\(432\) 16.8519 + 9.20181i 0.810786 + 0.442722i
\(433\) −21.2074 + 7.90994i −1.01916 + 0.380128i −0.802840 0.596195i \(-0.796679\pi\)
−0.216321 + 0.976322i \(0.569406\pi\)
\(434\) −4.19362 + 29.1672i −0.201300 + 1.40007i
\(435\) 0 0
\(436\) 35.3096i 1.69102i
\(437\) −4.02300 + 1.57115i −0.192446 + 0.0751581i
\(438\) −35.1746 + 35.1746i −1.68071 + 1.68071i
\(439\) 14.4740 + 22.5219i 0.690805 + 1.07491i 0.992587 + 0.121536i \(0.0387821\pi\)
−0.301782 + 0.953377i \(0.597582\pi\)
\(440\) 0 0
\(441\) 5.04252 11.0416i 0.240120 0.525790i
\(442\) −2.41213 + 4.41749i −0.114733 + 0.210119i
\(443\) 15.3418 + 5.72218i 0.728909 + 0.271869i 0.686397 0.727227i \(-0.259191\pi\)
0.0425117 + 0.999096i \(0.486464\pi\)
\(444\) −2.41960 2.79237i −0.114829 0.132520i
\(445\) 0 0
\(446\) −49.4055 14.5068i −2.33942 0.686915i
\(447\) 2.09734 + 29.3247i 0.0992008 + 1.38701i
\(448\) 11.3872 + 52.3459i 0.537993 + 2.47311i
\(449\) 7.17802 11.1692i 0.338752 0.527108i −0.629527 0.776978i \(-0.716751\pi\)
0.968279 + 0.249870i \(0.0803879\pi\)
\(450\) 0 0
\(451\) −1.20807 + 4.11431i −0.0568857 + 0.193735i
\(452\) 83.8221 + 62.7484i 3.94266 + 2.95144i
\(453\) −48.0272 3.43497i −2.25651 0.161389i
\(454\) −15.5671 34.0872i −0.730601 1.59979i
\(455\) 0 0
\(456\) −19.5487 8.92760i −0.915453 0.418073i
\(457\) −3.42418 4.57417i −0.160176 0.213970i 0.713272 0.700887i \(-0.247212\pi\)
−0.873448 + 0.486917i \(0.838121\pi\)
\(458\) 23.4729 + 5.10622i 1.09682 + 0.238598i
\(459\) −0.921716 −0.0430220
\(460\) 0 0
\(461\) −40.1698 −1.87090 −0.935448 0.353465i \(-0.885003\pi\)
−0.935448 + 0.353465i \(0.885003\pi\)
\(462\) 8.01554 + 1.74367i 0.372917 + 0.0811231i
\(463\) 10.7973 + 14.4235i 0.501793 + 0.670318i 0.977901 0.209070i \(-0.0670435\pi\)
−0.476107 + 0.879387i \(0.657953\pi\)
\(464\) 4.17490 + 1.90661i 0.193815 + 0.0885123i
\(465\) 0 0
\(466\) 6.28369 + 13.7594i 0.291086 + 0.637390i
\(467\) −23.0029 1.64520i −1.06445 0.0761306i −0.471888 0.881659i \(-0.656427\pi\)
−0.592558 + 0.805528i \(0.701882\pi\)
\(468\) 40.1764 + 30.0757i 1.85716 + 1.39025i
\(469\) −7.48362 + 25.4869i −0.345562 + 1.17687i
\(470\) 0 0
\(471\) 22.8949 35.6251i 1.05494 1.64152i
\(472\) 5.88080 + 27.0336i 0.270686 + 1.24432i
\(473\) −0.520522 7.27784i −0.0239336 0.334636i
\(474\) 63.3049 + 18.5880i 2.90769 + 0.853775i
\(475\) 0 0
\(476\) −4.70149 5.42581i −0.215492 0.248691i
\(477\) −21.7925 8.12818i −0.997810 0.372164i
\(478\) 5.61630 10.2855i 0.256884 0.470447i
\(479\) 13.1399 28.7724i 0.600378 1.31464i −0.328586 0.944474i \(-0.606572\pi\)
0.928964 0.370170i \(-0.120700\pi\)
\(480\) 0 0
\(481\) −0.379048 0.589810i −0.0172831 0.0268930i
\(482\) 0.308935 0.308935i 0.0140716 0.0140716i
\(483\) −4.55386 + 22.5956i −0.207208 + 1.02813i
\(484\) 57.6024i 2.61829i
\(485\) 0 0
\(486\) 8.64905 60.1555i 0.392329 2.72871i
\(487\) 12.2027 4.55136i 0.552955 0.206242i −0.0574256 0.998350i \(-0.518289\pi\)
0.610381 + 0.792108i \(0.291016\pi\)
\(488\) −74.8097 40.8492i −3.38648 1.84916i
\(489\) 16.4864 7.52908i 0.745541 0.340477i
\(490\) 0 0
\(491\) 1.56156 + 10.8609i 0.0704723 + 0.490145i 0.994239 + 0.107189i \(0.0341850\pi\)
−0.923766 + 0.382956i \(0.874906\pi\)
\(492\) −45.4873 83.3038i −2.05073 3.75562i
\(493\) −0.219764 + 0.0157179i −0.00989769 + 0.000707896i
\(494\) −5.43088 3.49022i −0.244347 0.157032i
\(495\) 0 0
\(496\) −54.9848 + 63.4559i −2.46889 + 2.84925i
\(497\) 11.6919 6.38425i 0.524452 0.286373i
\(498\) −0.184869 + 0.246956i −0.00828416 + 0.0110663i
\(499\) −26.0855 + 22.6032i −1.16775 + 1.01186i −0.168086 + 0.985772i \(0.553759\pi\)
−0.999660 + 0.0260851i \(0.991696\pi\)
\(500\) 0 0
\(501\) −11.8132 + 3.46868i −0.527777 + 0.154969i
\(502\) 13.6352 + 36.5573i 0.608567 + 1.63163i
\(503\) −11.0415 + 8.26553i −0.492314 + 0.368542i −0.816401 0.577486i \(-0.804034\pi\)
0.324087 + 0.946027i \(0.394943\pi\)
\(504\) −52.0532 + 33.4526i −2.31863 + 1.49010i
\(505\) 0 0
\(506\) 8.18429 0.125441i 0.363836 0.00557654i
\(507\) −10.9798 10.9798i −0.487629 0.487629i
\(508\) 2.94152 13.5219i 0.130509 0.599939i
\(509\) 22.1258 + 3.18121i 0.980709 + 0.141005i 0.613979 0.789323i \(-0.289568\pi\)
0.366730 + 0.930327i \(0.380477\pi\)
\(510\) 0 0
\(511\) −3.79331 12.9188i −0.167806 0.571495i
\(512\) −12.6151 + 33.8223i −0.557513 + 1.49475i
\(513\) 0.0843390 1.17921i 0.00372366 0.0520635i
\(514\) −58.7608 + 8.44852i −2.59183 + 0.372648i
\(515\) 0 0
\(516\) 122.057 + 105.763i 5.37326 + 4.65596i
\(517\) 3.43061 0.746285i 0.150878 0.0328216i
\(518\) 1.33714 0.290878i 0.0587508 0.0127804i
\(519\) −31.1317 26.9758i −1.36653 1.18411i
\(520\) 0 0
\(521\) 26.3748 3.79213i 1.15550 0.166136i 0.462195 0.886779i \(-0.347062\pi\)
0.693307 + 0.720643i \(0.256153\pi\)
\(522\) −0.214451 + 2.99841i −0.00938625 + 0.131237i
\(523\) −3.91444 + 10.4950i −0.171166 + 0.458915i −0.994002 0.109365i \(-0.965118\pi\)
0.822835 + 0.568280i \(0.192391\pi\)
\(524\) −17.5775 59.8635i −0.767877 2.61515i
\(525\) 0 0
\(526\) 63.8710 + 9.18326i 2.78491 + 0.400409i
\(527\) 0.856783 3.93857i 0.0373221 0.171567i
\(528\) 16.5277 + 16.5277i 0.719277 + 0.719277i
\(529\) 0.704880 + 22.9892i 0.0306470 + 0.999530i
\(530\) 0 0
\(531\) −8.74800 + 5.62200i −0.379631 + 0.243974i
\(532\) 7.37180 5.51846i 0.319608 0.239256i
\(533\) −6.29393 16.8747i −0.272620 0.730923i
\(534\) −31.8404 + 9.34917i −1.37787 + 0.404578i
\(535\) 0 0
\(536\) −99.6757 + 86.3695i −4.30533 + 3.73059i
\(537\) −11.9649 + 15.9832i −0.516322 + 0.689726i
\(538\) 40.9617 22.3668i 1.76598 0.964301i
\(539\) 1.41625 1.63444i 0.0610023 0.0704004i
\(540\) 0 0
\(541\) −19.0798 12.2618i −0.820305 0.527178i 0.0618788 0.998084i \(-0.480291\pi\)
−0.882183 + 0.470906i \(0.843927\pi\)
\(542\) −44.1747 + 3.15943i −1.89746 + 0.135709i
\(543\) 0.887475 + 1.62529i 0.0380852 + 0.0697479i
\(544\) −2.11512 14.7110i −0.0906851 0.630728i
\(545\) 0 0
\(546\) −31.3403 + 14.3126i −1.34124 + 0.612524i
\(547\) 11.4414 + 6.24748i 0.489199 + 0.267123i 0.704861 0.709345i \(-0.251009\pi\)
−0.215662 + 0.976468i \(0.569191\pi\)
\(548\) 39.4624 14.7187i 1.68575 0.628753i
\(549\) 4.55943 31.7115i 0.194592 1.35342i
\(550\) 0 0
\(551\) 0.282598i 0.0120391i
\(552\) −79.6767 + 82.1572i −3.39127 + 3.49684i
\(553\) −12.6275 + 12.6275i −0.536976 + 0.536976i
\(554\) −4.17634 6.49851i −0.177436 0.276095i
\(555\) 0 0
\(556\) 14.6299 32.0351i 0.620448 1.35859i
\(557\) 21.5196 39.4102i 0.911814 1.66986i 0.185332 0.982676i \(-0.440664\pi\)
0.726482 0.687186i \(-0.241154\pi\)
\(558\) −51.5263 19.2183i −2.18128 0.813577i
\(559\) 20.0689 + 23.1608i 0.848825 + 0.979596i
\(560\) 0 0
\(561\) −1.07660 0.316119i −0.0454541 0.0133465i
\(562\) −0.485591 6.78945i −0.0204834 0.286396i
\(563\) 1.12605 + 5.17637i 0.0474573 + 0.218158i 0.994768 0.102158i \(-0.0325747\pi\)
−0.947311 + 0.320316i \(0.896211\pi\)
\(564\) −42.0141 + 65.3752i −1.76911 + 2.75279i
\(565\) 0 0
\(566\) 25.1961 85.8101i 1.05907 3.60687i
\(567\) 10.8425 + 8.11658i 0.455341 + 0.340864i
\(568\) 65.9747 + 4.71860i 2.76823 + 0.197988i
\(569\) 12.6740 + 27.7522i 0.531321 + 1.16343i 0.964973 + 0.262350i \(0.0844977\pi\)
−0.433651 + 0.901081i \(0.642775\pi\)
\(570\) 0 0
\(571\) 1.89474 + 0.865299i 0.0792924 + 0.0362116i 0.454666 0.890662i \(-0.349758\pi\)
−0.375374 + 0.926873i \(0.622486\pi\)
\(572\) 5.35848 + 7.15809i 0.224049 + 0.299295i
\(573\) 2.90995 + 0.633022i 0.121565 + 0.0264449i
\(574\) 35.1522 1.46722
\(575\) 0 0
\(576\) −99.9764 −4.16568
\(577\) −0.132742 0.0288762i −0.00552612 0.00120213i 0.209801 0.977744i \(-0.432718\pi\)
−0.215327 + 0.976542i \(0.569082\pi\)
\(578\) −26.9647 36.0206i −1.12158 1.49826i
\(579\) −45.7687 20.9019i −1.90208 0.868652i
\(580\) 0 0
\(581\) −0.0346860 0.0759517i −0.00143902 0.00315101i
\(582\) −72.3414 5.17396i −2.99865 0.214467i
\(583\) −3.31742 2.48339i −0.137393 0.102851i
\(584\) 18.8345 64.1445i 0.779378 2.65432i
\(585\) 0 0
\(586\) −28.7080 + 44.6705i −1.18592 + 1.84532i
\(587\) −4.15144 19.0839i −0.171348 0.787676i −0.979938 0.199303i \(-0.936132\pi\)
0.808590 0.588373i \(-0.200231\pi\)
\(588\) 3.41502 + 47.7483i 0.140833 + 1.96911i
\(589\) 4.96048 + 1.45653i 0.204393 + 0.0600152i
\(590\) 0 0
\(591\) −9.47624 10.9362i −0.389800 0.449854i
\(592\) 3.65334 + 1.36263i 0.150151 + 0.0560036i
\(593\) 8.80591 16.1268i 0.361616 0.662249i −0.632012 0.774958i \(-0.717771\pi\)
0.993628 + 0.112709i \(0.0359527\pi\)
\(594\) −0.930763 + 2.03809i −0.0381897 + 0.0836237i
\(595\) 0 0
\(596\) −33.8161 52.6189i −1.38516 2.15535i
\(597\) 24.7974 24.7974i 1.01489 1.01489i
\(598\) −27.2030 + 21.0221i −1.11241 + 0.859656i
\(599\) 30.0593i 1.22819i −0.789232 0.614095i \(-0.789521\pi\)
0.789232 0.614095i \(-0.210479\pi\)
\(600\) 0 0
\(601\) −1.70361 + 11.8489i −0.0694919 + 0.483327i 0.925121 + 0.379671i \(0.123963\pi\)
−0.994613 + 0.103655i \(0.966946\pi\)
\(602\) −56.0434 + 20.9031i −2.28416 + 0.851947i
\(603\) −43.5096 23.7580i −1.77185 0.967502i
\(604\) 93.1825 42.5550i 3.79154 1.73154i
\(605\) 0 0
\(606\) 1.21614 + 8.45846i 0.0494025 + 0.343602i
\(607\) 16.8553 + 30.8683i 0.684137 + 1.25290i 0.956787 + 0.290791i \(0.0939183\pi\)
−0.272649 + 0.962113i \(0.587900\pi\)
\(608\) 19.0143 1.35993i 0.771132 0.0551524i
\(609\) −1.26879 0.815401i −0.0514139 0.0330417i
\(610\) 0 0
\(611\) −9.65663 + 11.1443i −0.390665 + 0.450852i
\(612\) 11.7597 6.42129i 0.475358 0.259565i
\(613\) −1.65805 + 2.21490i −0.0669680 + 0.0894588i −0.832775 0.553612i \(-0.813249\pi\)
0.765807 + 0.643071i \(0.222340\pi\)
\(614\) −59.3426 + 51.4206i −2.39487 + 2.07517i
\(615\) 0 0
\(616\) −10.5776 + 3.10587i −0.426185 + 0.125139i
\(617\) −13.3328 35.7466i −0.536758 1.43910i −0.868479 0.495727i \(-0.834902\pi\)
0.331720 0.943378i \(-0.392371\pi\)
\(618\) 15.3411 11.4842i 0.617108 0.461961i
\(619\) 18.7737 12.0651i 0.754577 0.484937i −0.105931 0.994373i \(-0.533782\pi\)
0.860508 + 0.509436i \(0.170146\pi\)
\(620\) 0 0
\(621\) −5.76630 2.52731i −0.231394 0.101417i
\(622\) −12.2739 12.2739i −0.492138 0.492138i
\(623\) 1.90926 8.77673i 0.0764929 0.351632i
\(624\) −97.1739 13.9715i −3.89007 0.559308i
\(625\) 0 0
\(626\) 25.5369 + 86.9707i 1.02066 + 3.47605i
\(627\) 0.502944 1.34844i 0.0200856 0.0538517i
\(628\) −6.42733 + 89.8658i −0.256478 + 3.58604i
\(629\) −0.185274 + 0.0266384i −0.00738737 + 0.00106214i
\(630\) 0 0
\(631\) 6.26642 + 5.42988i 0.249462 + 0.216160i 0.770611 0.637305i \(-0.219951\pi\)
−0.521149 + 0.853466i \(0.674496\pi\)
\(632\) −86.6420 + 18.8478i −3.44644 + 0.749726i
\(633\) −40.8443 + 8.88513i −1.62341 + 0.353152i
\(634\) 44.8844 + 38.8925i 1.78259 + 1.54462i
\(635\) 0 0
\(636\) 90.7920 13.0539i 3.60014 0.517622i
\(637\) −0.648013 + 9.06041i −0.0256752 + 0.358987i
\(638\) −0.187166 + 0.501813i −0.00740999 + 0.0198669i
\(639\) 7.00423 + 23.8542i 0.277083 + 0.943658i
\(640\) 0 0
\(641\) −35.5107 5.10566i −1.40259 0.201662i −0.600861 0.799353i \(-0.705176\pi\)
−0.801726 + 0.597692i \(0.796085\pi\)
\(642\) −22.6633 + 104.182i −0.894450 + 4.11172i
\(643\) 23.2345 + 23.2345i 0.916279 + 0.916279i 0.996756 0.0804779i \(-0.0256446\pi\)
−0.0804779 + 0.996756i \(0.525645\pi\)
\(644\) −14.5354 46.8354i −0.572775 1.84557i
\(645\) 0 0
\(646\) −1.44992 + 0.931806i −0.0570463 + 0.0366614i
\(647\) 21.6292 16.1914i 0.850333 0.636551i −0.0826075 0.996582i \(-0.526325\pi\)
0.932940 + 0.360031i \(0.117234\pi\)
\(648\) 23.5009 + 63.0083i 0.923201 + 2.47520i
\(649\) −1.77766 + 0.521969i −0.0697794 + 0.0204891i
\(650\) 0 0
\(651\) 20.8523 18.0686i 0.817266 0.708165i
\(652\) −23.1080 + 30.8686i −0.904978 + 1.20891i
\(653\) −20.4573 + 11.1705i −0.800555 + 0.437136i −0.826784 0.562520i \(-0.809832\pi\)
0.0262286 + 0.999656i \(0.491650\pi\)
\(654\) −29.6255 + 34.1897i −1.15845 + 1.33692i
\(655\) 0 0
\(656\) 84.2625 + 54.1522i 3.28990 + 2.11429i
\(657\) 25.0639 1.79260i 0.977834 0.0699361i
\(658\) −13.7934 25.2607i −0.537722 0.984764i
\(659\) 3.25005 + 22.6046i 0.126604 + 0.880550i 0.949814 + 0.312814i \(0.101272\pi\)
−0.823211 + 0.567736i \(0.807819\pi\)
\(660\) 0 0
\(661\) −8.22561 + 3.75651i −0.319939 + 0.146111i −0.568910 0.822400i \(-0.692635\pi\)
0.248971 + 0.968511i \(0.419908\pi\)
\(662\) 20.5802 + 11.2377i 0.799874 + 0.436764i
\(663\) 4.41564 1.64695i 0.171489 0.0639622i
\(664\) 0.0590009 0.410360i 0.00228968 0.0159251i
\(665\) 0 0
\(666\) 2.55384i 0.0989591i
\(667\) −1.41795 0.504254i −0.0549034 0.0195248i
\(668\) 18.5219 18.5219i 0.716635 0.716635i
\(669\) 26.0663 + 40.5600i 1.00778 + 1.56814i
\(670\) 0 0
\(671\) 2.37120 5.19221i 0.0915392 0.200443i
\(672\) 48.7578 89.2932i 1.88087 3.44456i
\(673\) −14.7227 5.49127i −0.567517 0.211673i 0.0492939 0.998784i \(-0.484303\pi\)
−0.616811 + 0.787111i \(0.711576\pi\)
\(674\) −11.8166 13.6371i −0.455160 0.525283i
\(675\) 0 0
\(676\) 31.6974 + 9.30720i 1.21913 + 0.357969i
\(677\) 0.478597 + 6.69166i 0.0183940 + 0.257181i 0.998325 + 0.0578469i \(0.0184235\pi\)
−0.979931 + 0.199335i \(0.936122\pi\)
\(678\) −28.5162 131.087i −1.09516 5.03436i
\(679\) 10.6131 16.5142i 0.407292 0.633758i
\(680\) 0 0
\(681\) −9.88554 + 33.6671i −0.378815 + 1.29013i
\(682\) −7.84373 5.87174i −0.300352 0.224841i
\(683\) 4.97112 + 0.355542i 0.190215 + 0.0136044i 0.166122 0.986105i \(-0.446876\pi\)
0.0240933 + 0.999710i \(0.492330\pi\)
\(684\) 7.13915 + 15.6326i 0.272972 + 0.597726i
\(685\) 0 0
\(686\) −48.8108 22.2911i −1.86360 0.851079i
\(687\) −13.4795 18.0064i −0.514273 0.686989i
\(688\) −166.542 36.2290i −6.34935 1.38122i
\(689\) 17.4053 0.663089
\(690\) 0 0
\(691\) −24.3053 −0.924617 −0.462308 0.886719i \(-0.652979\pi\)
−0.462308 + 0.886719i \(0.652979\pi\)
\(692\) 85.6365 + 18.6291i 3.25541 + 0.708171i
\(693\) −2.48320 3.31717i −0.0943291 0.126009i
\(694\) 23.7473 + 10.8450i 0.901435 + 0.411672i
\(695\) 0 0
\(696\) −3.11087 6.81185i −0.117917 0.258202i
\(697\) −4.79606 0.343021i −0.181664 0.0129928i
\(698\) 38.2351 + 28.6224i 1.44722 + 1.08338i
\(699\) 3.99031 13.5898i 0.150928 0.514012i
\(700\) 0 0
\(701\) 11.0877 17.2529i 0.418778 0.651632i −0.566208 0.824262i \(-0.691590\pi\)
0.984987 + 0.172630i \(0.0552266\pi\)
\(702\) −2.00039 9.19563i −0.0754997 0.347067i
\(703\) −0.0171273 0.239472i −0.000645970 0.00903184i
\(704\) −17.0909 5.01834i −0.644138 0.189136i
\(705\) 0 0
\(706\) −3.98250 4.59605i −0.149883 0.172975i
\(707\) −2.16714 0.808303i −0.0815038 0.0303994i
\(708\) 19.6536 35.9930i 0.738629 1.35270i
\(709\) −4.12217 + 9.02630i −0.154811 + 0.338990i −0.971107 0.238645i \(-0.923297\pi\)
0.816295 + 0.577635i \(0.196024\pi\)
\(710\) 0 0
\(711\) −18.0184 28.0371i −0.675742 1.05147i
\(712\) 31.5351 31.5351i 1.18183 1.18183i
\(713\) 16.1595 22.2906i 0.605178 0.834790i
\(714\) 9.19836i 0.344240i
\(715\) 0 0
\(716\) 6.04510 42.0446i 0.225916 1.57128i
\(717\) −10.2812 + 3.83468i −0.383958 + 0.143209i
\(718\) 10.4749 + 5.71973i 0.390920 + 0.213459i
\(719\) −9.55228 + 4.36238i −0.356240 + 0.162689i −0.585493 0.810678i \(-0.699099\pi\)
0.229253 + 0.973367i \(0.426372\pi\)
\(720\) 0 0
\(721\) 0.738174 + 5.13411i 0.0274910 + 0.191204i
\(722\) 23.7612 + 43.5153i 0.884299 + 1.61947i
\(723\) −0.408049 + 0.0291842i −0.0151755 + 0.00108537i
\(724\) −3.31433 2.12999i −0.123176 0.0791605i
\(725\) 0 0
\(726\) 48.3296 55.7754i 1.79368 2.07002i
\(727\) 20.0762 10.9624i 0.744586 0.406575i −0.0617047 0.998094i \(-0.519654\pi\)
0.806290 + 0.591520i \(0.201472\pi\)
\(728\) 27.7485 37.0676i 1.02843 1.37382i
\(729\) −26.6995 + 23.1352i −0.988870 + 0.856860i
\(730\) 0 0
\(731\) 7.85037 2.30508i 0.290356 0.0852563i
\(732\) 44.1533 + 118.380i 1.63195 + 4.37543i
\(733\) 5.37537 4.02395i 0.198544 0.148628i −0.495380 0.868676i \(-0.664971\pi\)
0.693924 + 0.720048i \(0.255880\pi\)
\(734\) −46.3012 + 29.7560i −1.70901 + 1.09831i
\(735\) 0 0
\(736\) 27.1047 97.8323i 0.999092 3.60615i
\(737\) −6.24540 6.24540i −0.230052 0.230052i
\(738\) −13.9450 + 64.1042i −0.513323 + 2.35971i
\(739\) 3.53564 + 0.508349i 0.130061 + 0.0186999i 0.207038 0.978333i \(-0.433618\pi\)
−0.0769770 + 0.997033i \(0.524527\pi\)
\(740\) 0 0
\(741\) 1.70301 + 5.79993i 0.0625618 + 0.213066i
\(742\) −11.8718 + 31.8295i −0.435828 + 1.16850i
\(743\) 1.53174 21.4165i 0.0561941 0.785696i −0.888735 0.458421i \(-0.848415\pi\)
0.944929 0.327275i \(-0.106130\pi\)
\(744\) 135.603 19.4968i 4.97145 0.714786i
\(745\) 0 0
\(746\) −33.7993 29.2873i −1.23748 1.07228i
\(747\) 0.152267 0.0331237i 0.00557116 0.00121193i
\(748\) 2.33263 0.507433i 0.0852895 0.0185536i
\(749\) −21.8095 18.8980i −0.796902 0.690520i
\(750\) 0 0
\(751\) −34.8402 + 5.00927i −1.27134 + 0.182791i −0.744758 0.667334i \(-0.767435\pi\)
−0.526580 + 0.850125i \(0.676526\pi\)
\(752\) 5.85050 81.8007i 0.213346 2.98296i
\(753\) 12.7673 34.2303i 0.465265 1.24742i
\(754\) −0.633763 2.15840i −0.0230803 0.0786042i
\(755\) 0 0
\(756\) 13.2869 + 1.91037i 0.483241 + 0.0694796i
\(757\) 10.0712 46.2968i 0.366046 1.68268i −0.313927 0.949447i \(-0.601645\pi\)
0.679973 0.733237i \(-0.261992\pi\)
\(758\) 9.24397 + 9.24397i 0.335756 + 0.335756i
\(759\) −5.86849 4.92966i −0.213013 0.178935i
\(760\) 0 0
\(761\) −21.3031 + 13.6907i −0.772237 + 0.496286i −0.866449 0.499266i \(-0.833603\pi\)
0.0942122 + 0.995552i \(0.469967\pi\)
\(762\) −14.1934 + 10.6251i −0.514174 + 0.384905i
\(763\) −4.27914 11.4728i −0.154915 0.415344i
\(764\) −6.07913 + 1.78500i −0.219935 + 0.0645789i
\(765\) 0 0
\(766\) −27.2775 + 23.6360i −0.985574 + 0.854005i
\(767\) 4.66337 6.22954i 0.168385 0.224936i
\(768\) 87.5361 47.7983i 3.15869 1.72477i
\(769\) −22.6888 + 26.1843i −0.818179 + 0.944228i −0.999230 0.0392453i \(-0.987505\pi\)
0.181051 + 0.983474i \(0.442050\pi\)
\(770\) 0 0
\(771\) 46.7622 + 30.0523i 1.68410 + 1.08231i
\(772\) 106.775 7.63668i 3.84291 0.274850i
\(773\) 16.3948 + 30.0247i 0.589678 + 1.07992i 0.986768 + 0.162136i \(0.0518382\pi\)
−0.397090 + 0.917780i \(0.629980\pi\)
\(774\) −15.8867 110.494i −0.571034 3.97163i
\(775\) 0 0
\(776\) 88.6612 40.4902i 3.18275 1.45351i
\(777\) −1.12458 0.614069i −0.0403442 0.0220296i
\(778\) 33.7174 12.5759i 1.20883 0.450869i
\(779\) 0.877700 6.10453i 0.0314469 0.218718i
\(780\) 0 0
\(781\) 4.42944i 0.158498i
\(782\) 2.08824 + 8.93774i 0.0746753 + 0.319613i
\(783\) 0.291294 0.291294i 0.0104100 0.0104100i
\(784\) −27.3120 42.4983i −0.975427 1.51779i
\(785\) 0 0
\(786\) −33.2068 + 72.7127i −1.18445 + 2.59358i
\(787\) 12.3341 22.5883i 0.439664 0.805185i −0.560065 0.828449i \(-0.689224\pi\)
0.999729 + 0.0232634i \(0.00740563\pi\)
\(788\) 28.8454 + 10.7588i 1.02758 + 0.383266i
\(789\) −39.5670 45.6628i −1.40862 1.62564i
\(790\) 0 0
\(791\) 34.8399 + 10.2299i 1.23877 + 0.363734i
\(792\) −1.46774 20.5217i −0.0521538 0.729206i
\(793\) 5.09616 + 23.4267i 0.180970 + 0.831905i
\(794\) 21.4008 33.3002i 0.759485 1.18178i
\(795\) 0 0
\(796\) −21.0199 + 71.5873i −0.745031 + 2.53734i
\(797\) −30.6870 22.9720i −1.08699 0.813711i −0.103492 0.994630i \(-0.533002\pi\)
−0.983498 + 0.180920i \(0.942093\pi\)
\(798\) −11.7681 0.841671i −0.416586 0.0297948i
\(799\) 1.63543 + 3.58109i 0.0578573 + 0.126690i
\(800\) 0 0
\(801\) 15.2480 + 6.96353i 0.538762 + 0.246044i
\(802\) −26.6173 35.5565i −0.939889 1.25554i
\(803\) 4.37463 + 0.951643i 0.154377 + 0.0335827i
\(804\) 195.501 6.89479
\(805\) 0 0
\(806\) 41.1532 1.44956
\(807\) −42.7012 9.28907i −1.50315 0.326991i
\(808\) −6.88234 9.19373i −0.242120 0.323434i
\(809\) 22.1760 + 10.1275i 0.779668 + 0.356062i 0.765167 0.643832i \(-0.222657\pi\)
0.0145015 + 0.999895i \(0.495384\pi\)
\(810\) 0 0
\(811\) −1.71142 3.74749i −0.0600961 0.131592i 0.877201 0.480123i \(-0.159408\pi\)
−0.937297 + 0.348531i \(0.886681\pi\)
\(812\) 3.20058 + 0.228910i 0.112318 + 0.00803316i
\(813\) 33.1973 + 24.8512i 1.16428 + 0.871568i
\(814\) −0.128190 + 0.436577i −0.00449307 + 0.0153020i
\(815\) 0 0
\(816\) −14.1702 + 22.0492i −0.496055 + 0.771876i
\(817\) 2.23071 + 10.2544i 0.0780428 + 0.358757i
\(818\) −1.12099 15.6734i −0.0391944 0.548009i
\(819\) 16.6990 + 4.90327i 0.583510 + 0.171334i
\(820\) 0 0
\(821\) −30.6809 35.4076i −1.07077 1.23573i −0.970583 0.240766i \(-0.922601\pi\)
−0.100187 0.994969i \(-0.531944\pi\)
\(822\) −50.5601 18.8579i −1.76349 0.657746i
\(823\) −9.20092 + 16.8502i −0.320724 + 0.587362i −0.987448 0.157942i \(-0.949514\pi\)
0.666724 + 0.745304i \(0.267696\pi\)
\(824\) −10.6986 + 23.4267i −0.372703 + 0.816107i
\(825\) 0 0
\(826\) 8.21134 + 12.7771i 0.285709 + 0.444572i
\(827\) −37.9205 + 37.9205i −1.31862 + 1.31862i −0.403760 + 0.914865i \(0.632297\pi\)
−0.914865 + 0.403760i \(0.867703\pi\)
\(828\) 91.1763 7.92721i 3.16859 0.275490i
\(829\) 43.7742i 1.52034i −0.649723 0.760171i \(-0.725115\pi\)
0.649723 0.760171i \(-0.274885\pi\)
\(830\) 0 0
\(831\) −1.02938 + 7.15948i −0.0357087 + 0.248360i
\(832\) 70.0977 26.1451i 2.43020 0.906418i
\(833\) 2.12846 + 1.16222i 0.0737466 + 0.0402687i
\(834\) −41.0441 + 18.7442i −1.42124 + 0.649059i
\(835\) 0 0
\(836\) 0.435753 + 3.03073i 0.0150708 + 0.104820i
\(837\) 3.61178 + 6.61448i 0.124841 + 0.228630i
\(838\) −82.4390 + 5.89615i −2.84781 + 0.203679i
\(839\) 9.16913 + 5.89264i 0.316553 + 0.203436i 0.689262 0.724512i \(-0.257935\pi\)
−0.372709 + 0.927948i \(0.621571\pi\)
\(840\) 0 0
\(841\) −18.9265 + 21.8423i −0.652637 + 0.753183i
\(842\) 39.9100 21.7925i 1.37539 0.751019i
\(843\) −3.81951 + 5.10227i −0.131551 + 0.175732i
\(844\) 67.2083 58.2363i 2.31340 2.00458i
\(845\) 0 0
\(846\) 51.5378 15.1329i 1.77191 0.520278i
\(847\) 6.98078 + 18.7162i 0.239862 + 0.643096i
\(848\) −77.4913 + 58.0093i −2.66106 + 1.99205i
\(849\) −70.4468 + 45.2734i −2.41773 + 1.55378i
\(850\) 0 0
\(851\) −1.23213 0.341364i −0.0422368 0.0117018i
\(852\) −69.3279 69.3279i −2.37513 2.37513i
\(853\) −9.82595 + 45.1692i −0.336434 + 1.54656i 0.429153 + 0.903232i \(0.358812\pi\)
−0.765588 + 0.643332i \(0.777552\pi\)
\(854\) −46.3170 6.65938i −1.58494 0.227879i
\(855\) 0 0
\(856\) −40.3684 137.482i −1.37976 4.69904i
\(857\) −13.2985 + 35.6548i −0.454269 + 1.21794i 0.484924 + 0.874556i \(0.338847\pi\)
−0.939194 + 0.343387i \(0.888426\pi\)
\(858\) 0.817271 11.4269i 0.0279012 0.390109i
\(859\) −15.3761 + 2.21075i −0.524626 + 0.0754298i −0.399539 0.916716i \(-0.630830\pi\)
−0.125087 + 0.992146i \(0.539921\pi\)
\(860\) 0 0
\(861\) −24.8753 21.5545i −0.847747 0.734577i
\(862\) 58.9766 12.8296i 2.00875 0.436977i
\(863\) −28.8468 + 6.27524i −0.981957 + 0.213612i −0.674762 0.738035i \(-0.735754\pi\)
−0.307194 + 0.951647i \(0.599390\pi\)
\(864\) 21.0012 + 18.1977i 0.714476 + 0.619097i
\(865\) 0 0
\(866\) −61.0696 + 8.78048i −2.07523 + 0.298373i
\(867\) −3.00561 + 42.0239i −0.102076 + 1.42721i
\(868\) −20.5141 + 55.0004i −0.696294 + 1.86684i
\(869\) −1.67290 5.69737i −0.0567492 0.193270i
\(870\) 0 0
\(871\) 36.7195 + 5.27946i 1.24419 + 0.178888i
\(872\) 12.9236 59.4087i 0.437648 2.01183i
\(873\) 25.9054 + 25.9054i 0.876766 + 0.876766i
\(874\) −11.6257 + 1.85380i −0.393246 + 0.0627058i
\(875\) 0 0
\(876\) −83.3648 + 53.5753i −2.81664 + 1.81014i
\(877\) −9.55912 + 7.15587i −0.322788 + 0.241636i −0.748367 0.663285i \(-0.769162\pi\)
0.425578 + 0.904922i \(0.360071\pi\)
\(878\) 25.5023 + 68.3743i 0.860660 + 2.30752i
\(879\) 47.7060 14.0078i 1.60908 0.472470i
\(880\) 0 0
\(881\) 21.0560 18.2451i 0.709394 0.614693i −0.223559 0.974690i \(-0.571768\pi\)
0.932954 + 0.359997i \(0.117222\pi\)
\(882\) 19.8286 26.4879i 0.667663 0.891893i
\(883\) −1.42224 + 0.776599i −0.0478620 + 0.0261347i −0.503002 0.864285i \(-0.667771\pi\)
0.455140 + 0.890420i \(0.349589\pi\)
\(884\) −6.56599 + 7.57756i −0.220838 + 0.254861i
\(885\) 0 0
\(886\) 37.5477 + 24.1304i 1.26144 + 0.810678i
\(887\) 34.3749 2.45854i 1.15420 0.0825498i 0.518912 0.854828i \(-0.326337\pi\)
0.635285 + 0.772278i \(0.280883\pi\)
\(888\) −3.04897 5.58378i −0.102317 0.187379i
\(889\) −0.682952 4.75004i −0.0229055 0.159311i
\(890\) 0 0
\(891\) −4.09648 + 1.87080i −0.137237 + 0.0626741i
\(892\) −90.0286 49.1593i −3.01438 1.64598i
\(893\) −4.73118 + 1.76464i −0.158323 + 0.0590514i
\(894\) −11.4048 + 79.3223i −0.381435 + 2.65294i
\(895\) 0 0
\(896\) 66.3010i 2.21496i
\(897\) 32.1404 + 1.80413i 1.07314 + 0.0602381i
\(898\) 25.5905 25.5905i 0.853966 0.853966i
\(899\) 0.973951 + 1.51550i 0.0324831 + 0.0505447i
\(900\) 0 0
\(901\) 1.93035 4.22688i 0.0643093 0.140818i
\(902\) −5.60162 + 10.2586i −0.186514 + 0.341574i
\(903\) 52.4762 + 19.5726i 1.74630 + 0.651335i
\(904\) 118.065 + 136.254i 3.92678 + 4.53175i
\(905\) 0 0
\(906\) −125.932 36.9768i −4.18379 1.22847i
\(907\) 2.18781 + 30.5895i 0.0726449 + 1.01571i 0.894806 + 0.446454i \(0.147313\pi\)
−0.822162 + 0.569254i \(0.807232\pi\)
\(908\) −15.8683 72.9452i −0.526607 2.42077i
\(909\) 2.33375 3.63139i 0.0774057 0.120446i
\(910\) 0 0
\(911\) −10.1960 + 34.7242i −0.337807 + 1.15047i 0.599038 + 0.800721i \(0.295550\pi\)
−0.936845 + 0.349745i \(0.886268\pi\)
\(912\) −26.9124 20.1464i −0.891160 0.667114i
\(913\) 0.0276926 + 0.00198062i 0.000916492 + 6.55488e-5i
\(914\) −6.47006 14.1674i −0.214010 0.468617i
\(915\) 0 0
\(916\) 43.5295 + 19.8793i 1.43826 + 0.656829i
\(917\) −12.9661 17.3207i −0.428178 0.571979i
\(918\) −2.45502 0.534056i −0.0810276 0.0176265i
\(919\) −28.2597 −0.932202 −0.466101 0.884732i \(-0.654342\pi\)
−0.466101 + 0.884732i \(0.654342\pi\)
\(920\) 0 0
\(921\) 73.5235 2.42268
\(922\) −106.994 23.2750i −3.52364 0.766522i
\(923\) −11.1491 14.8935i −0.366978 0.490226i
\(924\) 14.8645 + 6.78839i 0.489006 + 0.223321i
\(925\) 0 0
\(926\) 20.4017 + 44.6736i 0.670443 + 1.46807i
\(927\) −9.65550 0.690575i −0.317128 0.0226815i
\(928\) 5.31763 + 3.98073i 0.174560 + 0.130674i
\(929\) −3.41489 + 11.6300i −0.112039 + 0.381570i −0.996353 0.0853222i \(-0.972808\pi\)
0.884314 + 0.466892i \(0.154626\pi\)
\(930\) 0 0
\(931\) −1.68167 + 2.61673i −0.0551146 + 0.0857599i
\(932\) 6.40525 + 29.4445i 0.209811 + 0.964485i
\(933\) 1.15948 + 16.2116i 0.0379596 + 0.530745i
\(934\) −60.3156 17.7102i −1.97359 0.579497i
\(935\) 0 0
\(936\) 56.5893 + 65.3075i 1.84968 + 2.13464i
\(937\) 5.00361 + 1.86625i 0.163461 + 0.0609677i 0.429862 0.902894i \(-0.358562\pi\)
−0.266402 + 0.963862i \(0.585835\pi\)
\(938\) −34.7004 + 63.5489i −1.13301 + 2.07495i
\(939\) 35.2575 77.2031i 1.15058 2.51943i
\(940\) 0 0
\(941\) −14.6570 22.8067i −0.477803 0.743476i 0.515763 0.856731i \(-0.327509\pi\)
−0.993566 + 0.113255i \(0.963872\pi\)
\(942\) 81.6229 81.6229i 2.65942 2.65942i
\(943\) −29.0638 15.2966i −0.946448 0.498125i
\(944\) 43.2773i 1.40856i
\(945\) 0 0
\(946\) 2.83047 19.6864i 0.0920265 0.640059i
\(947\) 22.1918 8.27712i 0.721137 0.268970i 0.0380178 0.999277i \(-0.487896\pi\)
0.683119 + 0.730307i \(0.260623\pi\)
\(948\) 115.357 + 62.9895i 3.74661 + 2.04580i
\(949\) −17.1046 + 7.81139i −0.555237 + 0.253568i
\(950\) 0 0
\(951\) −7.91416 55.0442i −0.256634 1.78493i
\(952\) −5.92441 10.8497i −0.192011 0.351642i
\(953\) 17.6298 1.26091i 0.571085 0.0408448i 0.217189 0.976130i \(-0.430311\pi\)
0.353896 + 0.935285i \(0.384857\pi\)
\(954\) −53.3354 34.2766i −1.72680 1.10975i
\(955\) 0 0
\(956\) 15.2880 17.6432i 0.494448 0.570623i
\(957\) 0.440148 0.240339i 0.0142280 0.00776905i
\(958\) 51.6697 69.0226i 1.66937 2.23002i
\(959\) 11.0384 9.56483i 0.356449 0.308864i
\(960\) 0 0
\(961\) −1.87729 + 0.551223i −0.0605579 + 0.0177814i
\(962\) −0.667861 1.79060i −0.0215327 0.0577314i
\(963\) 43.1148 32.2753i 1.38935 1.04006i
\(964\) 0.732185 0.470547i 0.0235821 0.0151553i
\(965\) 0 0
\(966\) −25.2216 + 57.5454i −0.811491 + 1.85149i
\(967\) 35.9237 + 35.9237i 1.15523 + 1.15523i 0.985489 + 0.169739i \(0.0542924\pi\)
0.169739 + 0.985489i \(0.445708\pi\)
\(968\) −21.0829 + 96.9165i −0.677630 + 3.11501i
\(969\) 1.59739 + 0.229670i 0.0513156 + 0.00737806i
\(970\) 0 0
\(971\) 1.34882 + 4.59367i 0.0432858 + 0.147418i 0.978300 0.207191i \(-0.0664322\pi\)
−0.935015 + 0.354609i \(0.884614\pi\)
\(972\) 42.3090 113.435i 1.35706 3.63842i
\(973\) 0.871264 12.1819i 0.0279314 0.390532i
\(974\) 35.1393 5.05226i 1.12593 0.161885i
\(975\) 0 0
\(976\) −100.767 87.3148i −3.22546 2.79488i
\(977\) −6.81062 + 1.48156i −0.217891 + 0.0473993i −0.320186 0.947355i \(-0.603745\pi\)
0.102294 + 0.994754i \(0.467382\pi\)
\(978\) 48.2745 10.5015i 1.54365 0.335800i
\(979\) 2.25710 + 1.95579i 0.0721373 + 0.0625073i
\(980\) 0 0
\(981\) 22.6196 3.25221i 0.722189 0.103835i
\(982\) −2.13371 + 29.8331i −0.0680893 + 0.952013i
\(983\) 8.34134 22.3640i 0.266047 0.713301i −0.733392 0.679806i \(-0.762064\pi\)
0.999439 0.0334941i \(-0.0106635\pi\)
\(984\) −46.0430 156.808i −1.46780 4.99885i
\(985\) 0 0
\(986\) −0.594456 0.0854699i −0.0189313 0.00272191i
\(987\) −5.72848 + 26.3334i −0.182340 + 0.838202i
\(988\) −9.09368 9.09368i −0.289308 0.289308i
\(989\) 55.4327 + 7.10475i 1.76266 + 0.225918i
\(990\) 0 0
\(991\) 11.9433 7.67552i 0.379393 0.243821i −0.337020 0.941497i \(-0.609419\pi\)
0.716413 + 0.697676i \(0.245783\pi\)
\(992\) −97.2819 + 72.8243i −3.08870 + 2.31217i
\(993\) −7.67282 20.5716i −0.243490 0.652821i
\(994\) 34.8408 10.2302i 1.10508 0.324482i
\(995\) 0 0
\(996\) −0.464434 + 0.402435i −0.0147162 + 0.0127516i
\(997\) −13.3288 + 17.8053i −0.422129 + 0.563898i −0.960311 0.278930i \(-0.910020\pi\)
0.538183 + 0.842828i \(0.319111\pi\)
\(998\) −82.5760 + 45.0899i −2.61390 + 1.42730i
\(999\) 0.229187 0.264495i 0.00725114 0.00836826i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.2.r.b.57.10 200
5.2 odd 4 115.2.l.a.103.1 yes 200
5.3 odd 4 inner 575.2.r.b.218.10 200
5.4 even 2 115.2.l.a.57.1 200
23.21 odd 22 inner 575.2.r.b.182.10 200
115.44 odd 22 115.2.l.a.67.1 yes 200
115.67 even 44 115.2.l.a.113.1 yes 200
115.113 even 44 inner 575.2.r.b.343.10 200
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
115.2.l.a.57.1 200 5.4 even 2
115.2.l.a.67.1 yes 200 115.44 odd 22
115.2.l.a.103.1 yes 200 5.2 odd 4
115.2.l.a.113.1 yes 200 115.67 even 44
575.2.r.b.57.10 200 1.1 even 1 trivial
575.2.r.b.182.10 200 23.21 odd 22 inner
575.2.r.b.218.10 200 5.3 odd 4 inner
575.2.r.b.343.10 200 115.113 even 44 inner