Properties

Label 575.4.b.b
Level $575$
Weight $4$
Character orbit 575.b
Analytic conductor $33.926$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,4,Mod(24,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.24");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 575.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9260982533\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{2} - 5 i q^{3} + 4 q^{4} + 10 q^{6} + 8 i q^{7} + 24 i q^{8} + 2 q^{9} + 34 q^{11} - 20 i q^{12} - 57 i q^{13} - 16 q^{14} - 16 q^{16} + 80 i q^{17} + 4 i q^{18} + 70 q^{19} + 40 q^{21} + 68 i q^{22} + \cdots + 68 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{4} + 20 q^{6} + 4 q^{9} + 68 q^{11} - 32 q^{14} - 32 q^{16} + 140 q^{19} + 80 q^{21} + 240 q^{24} + 228 q^{26} - 490 q^{29} + 206 q^{31} - 320 q^{34} + 16 q^{36} - 570 q^{39} + 190 q^{41} + 272 q^{44}+ \cdots + 136 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/575\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
24.1
1.00000i
1.00000i
2.00000i 5.00000i 4.00000 0 10.0000 8.00000i 24.0000i 2.00000 0
24.2 2.00000i 5.00000i 4.00000 0 10.0000 8.00000i 24.0000i 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 575.4.b.b 2
5.b even 2 1 inner 575.4.b.b 2
5.c odd 4 1 23.4.a.a 1
5.c odd 4 1 575.4.a.g 1
15.e even 4 1 207.4.a.a 1
20.e even 4 1 368.4.a.d 1
35.f even 4 1 1127.4.a.a 1
40.i odd 4 1 1472.4.a.h 1
40.k even 4 1 1472.4.a.c 1
115.e even 4 1 529.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
23.4.a.a 1 5.c odd 4 1
207.4.a.a 1 15.e even 4 1
368.4.a.d 1 20.e even 4 1
529.4.a.a 1 115.e even 4 1
575.4.a.g 1 5.c odd 4 1
575.4.b.b 2 1.a even 1 1 trivial
575.4.b.b 2 5.b even 2 1 inner
1127.4.a.a 1 35.f even 4 1
1472.4.a.c 1 40.k even 4 1
1472.4.a.h 1 40.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(575, [\chi])\):

\( T_{2}^{2} + 4 \) Copy content Toggle raw display
\( T_{3}^{2} + 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} + 25 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 64 \) Copy content Toggle raw display
$11$ \( (T - 34)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 3249 \) Copy content Toggle raw display
$17$ \( T^{2} + 6400 \) Copy content Toggle raw display
$19$ \( (T - 70)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 529 \) Copy content Toggle raw display
$29$ \( (T + 245)^{2} \) Copy content Toggle raw display
$31$ \( (T - 103)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 88804 \) Copy content Toggle raw display
$41$ \( (T - 95)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 7744 \) Copy content Toggle raw display
$47$ \( T^{2} + 127449 \) Copy content Toggle raw display
$53$ \( T^{2} + 171396 \) Copy content Toggle raw display
$59$ \( (T - 408)^{2} \) Copy content Toggle raw display
$61$ \( (T - 822)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 857476 \) Copy content Toggle raw display
$71$ \( (T - 335)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 808201 \) Copy content Toggle raw display
$79$ \( (T - 1322)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 1296 \) Copy content Toggle raw display
$89$ \( (T - 460)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 929296 \) Copy content Toggle raw display
show more
show less