Properties

Label 575.4.b.j.24.4
Level $575$
Weight $4$
Character 575.24
Analytic conductor $33.926$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,4,Mod(24,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.24");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 575.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9260982533\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 83x^{12} + 2715x^{10} + 44273x^{8} + 372280x^{6} + 1482448x^{4} + 2136384x^{2} + 746496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 24.4
Root \(-3.74805i\) of defining polynomial
Character \(\chi\) \(=\) 575.24
Dual form 575.4.b.j.24.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.74805i q^{2} +2.78570i q^{3} -6.04789 q^{4} +10.4409 q^{6} +9.96305i q^{7} -7.31660i q^{8} +19.2399 q^{9} -9.93900 q^{11} -16.8476i q^{12} -12.4060i q^{13} +37.3420 q^{14} -75.8061 q^{16} +32.9389i q^{17} -72.1121i q^{18} +51.1489 q^{19} -27.7540 q^{21} +37.2519i q^{22} +23.0000i q^{23} +20.3818 q^{24} -46.4982 q^{26} +128.810i q^{27} -60.2554i q^{28} +101.451 q^{29} +149.814 q^{31} +225.592i q^{32} -27.6871i q^{33} +123.457 q^{34} -116.361 q^{36} +57.2805i q^{37} -191.709i q^{38} +34.5593 q^{39} +297.967 q^{41} +104.024i q^{42} -188.213i q^{43} +60.1100 q^{44} +86.2052 q^{46} +108.166i q^{47} -211.173i q^{48} +243.738 q^{49} -91.7579 q^{51} +75.0300i q^{52} -113.422i q^{53} +482.788 q^{54} +72.8957 q^{56} +142.485i q^{57} -380.244i q^{58} +76.7575 q^{59} +563.750 q^{61} -561.511i q^{62} +191.688i q^{63} +239.083 q^{64} -103.772 q^{66} -690.928i q^{67} -199.211i q^{68} -64.0710 q^{69} +41.4554 q^{71} -140.771i q^{72} +112.320i q^{73} +214.690 q^{74} -309.343 q^{76} -99.0228i q^{77} -129.530i q^{78} +1085.16 q^{79} +160.651 q^{81} -1116.80i q^{82} -432.763i q^{83} +167.853 q^{84} -705.433 q^{86} +282.612i q^{87} +72.7198i q^{88} +278.456 q^{89} +123.601 q^{91} -139.101i q^{92} +417.337i q^{93} +405.414 q^{94} -628.432 q^{96} -447.096i q^{97} -913.542i q^{98} -191.225 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 54 q^{4} - 82 q^{6} - 20 q^{9} - 104 q^{11} + 84 q^{14} - 170 q^{16} + 20 q^{19} - 404 q^{21} + 606 q^{24} - 52 q^{26} + 910 q^{29} - 1380 q^{31} + 1314 q^{34} + 408 q^{36} + 554 q^{39} - 460 q^{41}+ \cdots + 4286 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/575\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 3.74805i − 1.32514i −0.749002 0.662568i \(-0.769466\pi\)
0.749002 0.662568i \(-0.230534\pi\)
\(3\) 2.78570i 0.536108i 0.963404 + 0.268054i \(0.0863805\pi\)
−0.963404 + 0.268054i \(0.913620\pi\)
\(4\) −6.04789 −0.755986
\(5\) 0 0
\(6\) 10.4409 0.710416
\(7\) 9.96305i 0.537954i 0.963147 + 0.268977i \(0.0866856\pi\)
−0.963147 + 0.268977i \(0.913314\pi\)
\(8\) − 7.31660i − 0.323351i
\(9\) 19.2399 0.712589
\(10\) 0 0
\(11\) −9.93900 −0.272429 −0.136215 0.990679i \(-0.543494\pi\)
−0.136215 + 0.990679i \(0.543494\pi\)
\(12\) − 16.8476i − 0.405290i
\(13\) − 12.4060i − 0.264677i −0.991205 0.132338i \(-0.957751\pi\)
0.991205 0.132338i \(-0.0422486\pi\)
\(14\) 37.3420 0.712862
\(15\) 0 0
\(16\) −75.8061 −1.18447
\(17\) 32.9389i 0.469933i 0.972003 + 0.234967i \(0.0754981\pi\)
−0.972003 + 0.234967i \(0.924502\pi\)
\(18\) − 72.1121i − 0.944277i
\(19\) 51.1489 0.617598 0.308799 0.951127i \(-0.400073\pi\)
0.308799 + 0.951127i \(0.400073\pi\)
\(20\) 0 0
\(21\) −27.7540 −0.288401
\(22\) 37.2519i 0.361006i
\(23\) 23.0000i 0.208514i
\(24\) 20.3818 0.173351
\(25\) 0 0
\(26\) −46.4982 −0.350733
\(27\) 128.810i 0.918132i
\(28\) − 60.2554i − 0.406686i
\(29\) 101.451 0.649621 0.324810 0.945779i \(-0.394699\pi\)
0.324810 + 0.945779i \(0.394699\pi\)
\(30\) 0 0
\(31\) 149.814 0.867981 0.433991 0.900917i \(-0.357105\pi\)
0.433991 + 0.900917i \(0.357105\pi\)
\(32\) 225.592i 1.24623i
\(33\) − 27.6871i − 0.146051i
\(34\) 123.457 0.622726
\(35\) 0 0
\(36\) −116.361 −0.538707
\(37\) 57.2805i 0.254510i 0.991870 + 0.127255i \(0.0406166\pi\)
−0.991870 + 0.127255i \(0.959383\pi\)
\(38\) − 191.709i − 0.818401i
\(39\) 34.5593 0.141895
\(40\) 0 0
\(41\) 297.967 1.13499 0.567496 0.823376i \(-0.307912\pi\)
0.567496 + 0.823376i \(0.307912\pi\)
\(42\) 104.024i 0.382171i
\(43\) − 188.213i − 0.667494i −0.942663 0.333747i \(-0.891687\pi\)
0.942663 0.333747i \(-0.108313\pi\)
\(44\) 60.1100 0.205953
\(45\) 0 0
\(46\) 86.2052 0.276310
\(47\) 108.166i 0.335696i 0.985813 + 0.167848i \(0.0536818\pi\)
−0.985813 + 0.167848i \(0.946318\pi\)
\(48\) − 211.173i − 0.635004i
\(49\) 243.738 0.710606
\(50\) 0 0
\(51\) −91.7579 −0.251935
\(52\) 75.0300i 0.200092i
\(53\) − 113.422i − 0.293958i −0.989140 0.146979i \(-0.953045\pi\)
0.989140 0.146979i \(-0.0469550\pi\)
\(54\) 482.788 1.21665
\(55\) 0 0
\(56\) 72.8957 0.173948
\(57\) 142.485i 0.331099i
\(58\) − 380.244i − 0.860836i
\(59\) 76.7575 0.169372 0.0846862 0.996408i \(-0.473011\pi\)
0.0846862 + 0.996408i \(0.473011\pi\)
\(60\) 0 0
\(61\) 563.750 1.18329 0.591646 0.806198i \(-0.298478\pi\)
0.591646 + 0.806198i \(0.298478\pi\)
\(62\) − 561.511i − 1.15019i
\(63\) 191.688i 0.383340i
\(64\) 239.083 0.466959
\(65\) 0 0
\(66\) −103.772 −0.193538
\(67\) − 690.928i − 1.25985i −0.776654 0.629927i \(-0.783085\pi\)
0.776654 0.629927i \(-0.216915\pi\)
\(68\) − 199.211i − 0.355263i
\(69\) −64.0710 −0.111786
\(70\) 0 0
\(71\) 41.4554 0.0692937 0.0346468 0.999400i \(-0.488969\pi\)
0.0346468 + 0.999400i \(0.488969\pi\)
\(72\) − 140.771i − 0.230416i
\(73\) 112.320i 0.180083i 0.995938 + 0.0900417i \(0.0287000\pi\)
−0.995938 + 0.0900417i \(0.971300\pi\)
\(74\) 214.690 0.337260
\(75\) 0 0
\(76\) −309.343 −0.466896
\(77\) − 99.0228i − 0.146554i
\(78\) − 129.530i − 0.188031i
\(79\) 1085.16 1.54545 0.772724 0.634742i \(-0.218894\pi\)
0.772724 + 0.634742i \(0.218894\pi\)
\(80\) 0 0
\(81\) 160.651 0.220371
\(82\) − 1116.80i − 1.50402i
\(83\) − 432.763i − 0.572313i −0.958183 0.286156i \(-0.907622\pi\)
0.958183 0.286156i \(-0.0923777\pi\)
\(84\) 167.853 0.218027
\(85\) 0 0
\(86\) −705.433 −0.884521
\(87\) 282.612i 0.348267i
\(88\) 72.7198i 0.0880904i
\(89\) 278.456 0.331643 0.165822 0.986156i \(-0.446972\pi\)
0.165822 + 0.986156i \(0.446972\pi\)
\(90\) 0 0
\(91\) 123.601 0.142384
\(92\) − 139.101i − 0.157634i
\(93\) 417.337i 0.465331i
\(94\) 405.414 0.444843
\(95\) 0 0
\(96\) −628.432 −0.668116
\(97\) − 447.096i − 0.467997i −0.972237 0.233999i \(-0.924819\pi\)
0.972237 0.233999i \(-0.0751811\pi\)
\(98\) − 913.542i − 0.941649i
\(99\) −191.225 −0.194130
\(100\) 0 0
\(101\) −457.028 −0.450258 −0.225129 0.974329i \(-0.572280\pi\)
−0.225129 + 0.974329i \(0.572280\pi\)
\(102\) 343.913i 0.333848i
\(103\) 374.787i 0.358532i 0.983801 + 0.179266i \(0.0573723\pi\)
−0.983801 + 0.179266i \(0.942628\pi\)
\(104\) −90.7696 −0.0855836
\(105\) 0 0
\(106\) −425.113 −0.389534
\(107\) − 558.564i − 0.504658i −0.967642 0.252329i \(-0.918803\pi\)
0.967642 0.252329i \(-0.0811965\pi\)
\(108\) − 779.031i − 0.694095i
\(109\) 1540.07 1.35332 0.676662 0.736294i \(-0.263426\pi\)
0.676662 + 0.736294i \(0.263426\pi\)
\(110\) 0 0
\(111\) −159.566 −0.136444
\(112\) − 755.260i − 0.637191i
\(113\) 793.720i 0.660769i 0.943846 + 0.330385i \(0.107178\pi\)
−0.943846 + 0.330385i \(0.892822\pi\)
\(114\) 534.042 0.438751
\(115\) 0 0
\(116\) −613.566 −0.491105
\(117\) − 238.690i − 0.188606i
\(118\) − 287.691i − 0.224442i
\(119\) −328.172 −0.252802
\(120\) 0 0
\(121\) −1232.22 −0.925782
\(122\) − 2112.96i − 1.56802i
\(123\) 830.046i 0.608478i
\(124\) −906.060 −0.656182
\(125\) 0 0
\(126\) 718.456 0.507978
\(127\) 680.815i 0.475690i 0.971303 + 0.237845i \(0.0764410\pi\)
−0.971303 + 0.237845i \(0.923559\pi\)
\(128\) 908.644i 0.627449i
\(129\) 524.305 0.357849
\(130\) 0 0
\(131\) −831.977 −0.554887 −0.277443 0.960742i \(-0.589487\pi\)
−0.277443 + 0.960742i \(0.589487\pi\)
\(132\) 167.448i 0.110413i
\(133\) 509.599i 0.332239i
\(134\) −2589.63 −1.66948
\(135\) 0 0
\(136\) 241.001 0.151953
\(137\) − 77.4758i − 0.0483153i −0.999708 0.0241577i \(-0.992310\pi\)
0.999708 0.0241577i \(-0.00769037\pi\)
\(138\) 240.142i 0.148132i
\(139\) 11.3426 0.00692137 0.00346069 0.999994i \(-0.498898\pi\)
0.00346069 + 0.999994i \(0.498898\pi\)
\(140\) 0 0
\(141\) −301.319 −0.179969
\(142\) − 155.377i − 0.0918236i
\(143\) 123.303i 0.0721057i
\(144\) −1458.50 −0.844041
\(145\) 0 0
\(146\) 420.982 0.238635
\(147\) 678.979i 0.380961i
\(148\) − 346.426i − 0.192406i
\(149\) −235.762 −0.129627 −0.0648135 0.997897i \(-0.520645\pi\)
−0.0648135 + 0.997897i \(0.520645\pi\)
\(150\) 0 0
\(151\) −2306.45 −1.24302 −0.621510 0.783406i \(-0.713481\pi\)
−0.621510 + 0.783406i \(0.713481\pi\)
\(152\) − 374.236i − 0.199701i
\(153\) 633.742i 0.334869i
\(154\) −371.142 −0.194205
\(155\) 0 0
\(156\) −209.011 −0.107271
\(157\) − 3211.78i − 1.63266i −0.577584 0.816332i \(-0.696004\pi\)
0.577584 0.816332i \(-0.303996\pi\)
\(158\) − 4067.25i − 2.04793i
\(159\) 315.960 0.157593
\(160\) 0 0
\(161\) −229.150 −0.112171
\(162\) − 602.127i − 0.292022i
\(163\) 2763.11i 1.32775i 0.747844 + 0.663875i \(0.231089\pi\)
−0.747844 + 0.663875i \(0.768911\pi\)
\(164\) −1802.07 −0.858038
\(165\) 0 0
\(166\) −1622.02 −0.758393
\(167\) 334.205i 0.154860i 0.996998 + 0.0774299i \(0.0246714\pi\)
−0.996998 + 0.0774299i \(0.975329\pi\)
\(168\) 203.065i 0.0932549i
\(169\) 2043.09 0.929946
\(170\) 0 0
\(171\) 984.099 0.440093
\(172\) 1138.29i 0.504617i
\(173\) − 1610.42i − 0.707735i −0.935296 0.353868i \(-0.884866\pi\)
0.935296 0.353868i \(-0.115134\pi\)
\(174\) 1059.24 0.461501
\(175\) 0 0
\(176\) 753.438 0.322685
\(177\) 213.823i 0.0908019i
\(178\) − 1043.67i − 0.439472i
\(179\) −797.514 −0.333011 −0.166506 0.986041i \(-0.553248\pi\)
−0.166506 + 0.986041i \(0.553248\pi\)
\(180\) 0 0
\(181\) 1686.93 0.692753 0.346377 0.938096i \(-0.387412\pi\)
0.346377 + 0.938096i \(0.387412\pi\)
\(182\) − 463.264i − 0.188678i
\(183\) 1570.44i 0.634371i
\(184\) 168.282 0.0674234
\(185\) 0 0
\(186\) 1564.20 0.616628
\(187\) − 327.380i − 0.128024i
\(188\) − 654.179i − 0.253781i
\(189\) −1283.34 −0.493913
\(190\) 0 0
\(191\) −2026.48 −0.767701 −0.383851 0.923395i \(-0.625402\pi\)
−0.383851 + 0.923395i \(0.625402\pi\)
\(192\) 666.013i 0.250340i
\(193\) 832.542i 0.310506i 0.987875 + 0.155253i \(0.0496193\pi\)
−0.987875 + 0.155253i \(0.950381\pi\)
\(194\) −1675.74 −0.620160
\(195\) 0 0
\(196\) −1474.10 −0.537208
\(197\) 2133.95i 0.771764i 0.922548 + 0.385882i \(0.126103\pi\)
−0.922548 + 0.385882i \(0.873897\pi\)
\(198\) 716.723i 0.257249i
\(199\) 343.656 0.122418 0.0612088 0.998125i \(-0.480504\pi\)
0.0612088 + 0.998125i \(0.480504\pi\)
\(200\) 0 0
\(201\) 1924.71 0.675417
\(202\) 1712.97i 0.596653i
\(203\) 1010.76i 0.349466i
\(204\) 554.942 0.190459
\(205\) 0 0
\(206\) 1404.72 0.475104
\(207\) 442.518i 0.148585i
\(208\) 940.449i 0.313502i
\(209\) −508.369 −0.168252
\(210\) 0 0
\(211\) 406.997 0.132791 0.0663953 0.997793i \(-0.478850\pi\)
0.0663953 + 0.997793i \(0.478850\pi\)
\(212\) 685.966i 0.222228i
\(213\) 115.482i 0.0371489i
\(214\) −2093.53 −0.668741
\(215\) 0 0
\(216\) 942.454 0.296879
\(217\) 1492.61i 0.466934i
\(218\) − 5772.28i − 1.79334i
\(219\) −312.890 −0.0965440
\(220\) 0 0
\(221\) 408.639 0.124380
\(222\) 598.062i 0.180808i
\(223\) − 1248.45i − 0.374898i −0.982274 0.187449i \(-0.939978\pi\)
0.982274 0.187449i \(-0.0600220\pi\)
\(224\) −2247.59 −0.670417
\(225\) 0 0
\(226\) 2974.90 0.875609
\(227\) 2717.71i 0.794628i 0.917683 + 0.397314i \(0.130058\pi\)
−0.917683 + 0.397314i \(0.869942\pi\)
\(228\) − 861.736i − 0.250306i
\(229\) 3805.44 1.09812 0.549062 0.835782i \(-0.314985\pi\)
0.549062 + 0.835782i \(0.314985\pi\)
\(230\) 0 0
\(231\) 275.847 0.0785689
\(232\) − 742.278i − 0.210056i
\(233\) 1650.85i 0.464167i 0.972696 + 0.232083i \(0.0745542\pi\)
−0.972696 + 0.232083i \(0.925446\pi\)
\(234\) −894.621 −0.249928
\(235\) 0 0
\(236\) −464.221 −0.128043
\(237\) 3022.94i 0.828527i
\(238\) 1230.01i 0.334998i
\(239\) −940.473 −0.254536 −0.127268 0.991868i \(-0.540621\pi\)
−0.127268 + 0.991868i \(0.540621\pi\)
\(240\) 0 0
\(241\) 3962.35 1.05908 0.529538 0.848286i \(-0.322365\pi\)
0.529538 + 0.848286i \(0.322365\pi\)
\(242\) 4618.41i 1.22679i
\(243\) 3925.40i 1.03627i
\(244\) −3409.50 −0.894552
\(245\) 0 0
\(246\) 3111.06 0.806316
\(247\) − 634.552i − 0.163464i
\(248\) − 1096.13i − 0.280663i
\(249\) 1205.55 0.306821
\(250\) 0 0
\(251\) 3048.43 0.766595 0.383298 0.923625i \(-0.374788\pi\)
0.383298 + 0.923625i \(0.374788\pi\)
\(252\) − 1159.31i − 0.289800i
\(253\) − 228.597i − 0.0568054i
\(254\) 2551.73 0.630354
\(255\) 0 0
\(256\) 5318.31 1.29842
\(257\) 4307.07i 1.04540i 0.852517 + 0.522699i \(0.175075\pi\)
−0.852517 + 0.522699i \(0.824925\pi\)
\(258\) − 1965.12i − 0.474198i
\(259\) −570.688 −0.136914
\(260\) 0 0
\(261\) 1951.91 0.462913
\(262\) 3118.29i 0.735301i
\(263\) 2477.52i 0.580876i 0.956894 + 0.290438i \(0.0938010\pi\)
−0.956894 + 0.290438i \(0.906199\pi\)
\(264\) −202.575 −0.0472259
\(265\) 0 0
\(266\) 1910.00 0.440262
\(267\) 775.693i 0.177796i
\(268\) 4178.66i 0.952433i
\(269\) −2712.02 −0.614701 −0.307350 0.951596i \(-0.599442\pi\)
−0.307350 + 0.951596i \(0.599442\pi\)
\(270\) 0 0
\(271\) −532.068 −0.119265 −0.0596326 0.998220i \(-0.518993\pi\)
−0.0596326 + 0.998220i \(0.518993\pi\)
\(272\) − 2496.97i − 0.556622i
\(273\) 344.316i 0.0763331i
\(274\) −290.383 −0.0640244
\(275\) 0 0
\(276\) 387.495 0.0845088
\(277\) 3450.11i 0.748364i 0.927355 + 0.374182i \(0.122076\pi\)
−0.927355 + 0.374182i \(0.877924\pi\)
\(278\) − 42.5128i − 0.00917176i
\(279\) 2882.41 0.618514
\(280\) 0 0
\(281\) −5906.65 −1.25396 −0.626978 0.779037i \(-0.715708\pi\)
−0.626978 + 0.779037i \(0.715708\pi\)
\(282\) 1129.36i 0.238484i
\(283\) − 732.420i − 0.153844i −0.997037 0.0769220i \(-0.975491\pi\)
0.997037 0.0769220i \(-0.0245092\pi\)
\(284\) −250.718 −0.0523851
\(285\) 0 0
\(286\) 462.146 0.0955499
\(287\) 2968.66i 0.610573i
\(288\) 4340.38i 0.888052i
\(289\) 3828.03 0.779163
\(290\) 0 0
\(291\) 1245.47 0.250897
\(292\) − 679.300i − 0.136141i
\(293\) 7832.49i 1.56170i 0.624716 + 0.780852i \(0.285215\pi\)
−0.624716 + 0.780852i \(0.714785\pi\)
\(294\) 2544.85 0.504825
\(295\) 0 0
\(296\) 419.099 0.0822960
\(297\) − 1280.25i − 0.250126i
\(298\) 883.650i 0.171773i
\(299\) 285.337 0.0551889
\(300\) 0 0
\(301\) 1875.18 0.359081
\(302\) 8644.69i 1.64717i
\(303\) − 1273.14i − 0.241387i
\(304\) −3877.40 −0.731527
\(305\) 0 0
\(306\) 2375.30 0.443747
\(307\) 4123.87i 0.766651i 0.923613 + 0.383326i \(0.125221\pi\)
−0.923613 + 0.383326i \(0.874779\pi\)
\(308\) 598.879i 0.110793i
\(309\) −1044.04 −0.192212
\(310\) 0 0
\(311\) −9283.00 −1.69257 −0.846287 0.532727i \(-0.821167\pi\)
−0.846287 + 0.532727i \(0.821167\pi\)
\(312\) − 252.857i − 0.0458820i
\(313\) 8609.88i 1.55482i 0.628993 + 0.777411i \(0.283467\pi\)
−0.628993 + 0.777411i \(0.716533\pi\)
\(314\) −12037.9 −2.16350
\(315\) 0 0
\(316\) −6562.95 −1.16834
\(317\) − 2840.16i − 0.503215i −0.967829 0.251607i \(-0.919041\pi\)
0.967829 0.251607i \(-0.0809592\pi\)
\(318\) − 1184.24i − 0.208832i
\(319\) −1008.32 −0.176976
\(320\) 0 0
\(321\) 1555.99 0.270551
\(322\) 858.866i 0.148642i
\(323\) 1684.79i 0.290230i
\(324\) −971.598 −0.166598
\(325\) 0 0
\(326\) 10356.3 1.75945
\(327\) 4290.18i 0.725527i
\(328\) − 2180.11i − 0.367001i
\(329\) −1077.67 −0.180589
\(330\) 0 0
\(331\) −10623.8 −1.76416 −0.882080 0.471099i \(-0.843857\pi\)
−0.882080 + 0.471099i \(0.843857\pi\)
\(332\) 2617.31i 0.432661i
\(333\) 1102.07i 0.181361i
\(334\) 1252.62 0.205210
\(335\) 0 0
\(336\) 2103.93 0.341603
\(337\) − 1759.84i − 0.284465i −0.989833 0.142232i \(-0.954572\pi\)
0.989833 0.142232i \(-0.0454281\pi\)
\(338\) − 7657.61i − 1.23231i
\(339\) −2211.06 −0.354243
\(340\) 0 0
\(341\) −1489.00 −0.236464
\(342\) − 3688.45i − 0.583184i
\(343\) 5845.69i 0.920227i
\(344\) −1377.08 −0.215835
\(345\) 0 0
\(346\) −6035.95 −0.937846
\(347\) − 6665.77i − 1.03123i −0.856820 0.515616i \(-0.827563\pi\)
0.856820 0.515616i \(-0.172437\pi\)
\(348\) − 1709.21i − 0.263285i
\(349\) 4447.06 0.682080 0.341040 0.940049i \(-0.389221\pi\)
0.341040 + 0.940049i \(0.389221\pi\)
\(350\) 0 0
\(351\) 1598.02 0.243008
\(352\) − 2242.16i − 0.339511i
\(353\) − 7023.22i − 1.05895i −0.848326 0.529474i \(-0.822389\pi\)
0.848326 0.529474i \(-0.177611\pi\)
\(354\) 801.420 0.120325
\(355\) 0 0
\(356\) −1684.07 −0.250718
\(357\) − 914.188i − 0.135529i
\(358\) 2989.12i 0.441285i
\(359\) −3348.56 −0.492285 −0.246142 0.969234i \(-0.579163\pi\)
−0.246142 + 0.969234i \(0.579163\pi\)
\(360\) 0 0
\(361\) −4242.79 −0.618573
\(362\) − 6322.69i − 0.917992i
\(363\) − 3432.58i − 0.496319i
\(364\) −747.527 −0.107640
\(365\) 0 0
\(366\) 5886.08 0.840629
\(367\) − 12057.2i − 1.71494i −0.514537 0.857468i \(-0.672036\pi\)
0.514537 0.857468i \(-0.327964\pi\)
\(368\) − 1743.54i − 0.246979i
\(369\) 5732.86 0.808782
\(370\) 0 0
\(371\) 1130.03 0.158136
\(372\) − 2524.01i − 0.351784i
\(373\) − 6505.90i − 0.903118i −0.892241 0.451559i \(-0.850868\pi\)
0.892241 0.451559i \(-0.149132\pi\)
\(374\) −1227.04 −0.169649
\(375\) 0 0
\(376\) 791.411 0.108548
\(377\) − 1258.60i − 0.171940i
\(378\) 4810.04i 0.654502i
\(379\) 2440.64 0.330785 0.165392 0.986228i \(-0.447111\pi\)
0.165392 + 0.986228i \(0.447111\pi\)
\(380\) 0 0
\(381\) −1896.55 −0.255021
\(382\) 7595.35i 1.01731i
\(383\) − 10873.0i − 1.45061i −0.688430 0.725303i \(-0.741700\pi\)
0.688430 0.725303i \(-0.258300\pi\)
\(384\) −2531.21 −0.336380
\(385\) 0 0
\(386\) 3120.41 0.411463
\(387\) − 3621.20i − 0.475649i
\(388\) 2703.99i 0.353799i
\(389\) −806.795 −0.105157 −0.0525786 0.998617i \(-0.516744\pi\)
−0.0525786 + 0.998617i \(0.516744\pi\)
\(390\) 0 0
\(391\) −757.595 −0.0979878
\(392\) − 1783.33i − 0.229775i
\(393\) − 2317.64i − 0.297479i
\(394\) 7998.15 1.02269
\(395\) 0 0
\(396\) 1156.51 0.146760
\(397\) − 7589.48i − 0.959459i −0.877417 0.479729i \(-0.840735\pi\)
0.877417 0.479729i \(-0.159265\pi\)
\(398\) − 1288.04i − 0.162220i
\(399\) −1419.59 −0.178116
\(400\) 0 0
\(401\) −6643.66 −0.827353 −0.413677 0.910424i \(-0.635756\pi\)
−0.413677 + 0.910424i \(0.635756\pi\)
\(402\) − 7213.93i − 0.895020i
\(403\) − 1858.59i − 0.229735i
\(404\) 2764.06 0.340389
\(405\) 0 0
\(406\) 3788.39 0.463090
\(407\) − 569.311i − 0.0693359i
\(408\) 671.356i 0.0814634i
\(409\) −7260.60 −0.877784 −0.438892 0.898540i \(-0.644629\pi\)
−0.438892 + 0.898540i \(0.644629\pi\)
\(410\) 0 0
\(411\) 215.824 0.0259022
\(412\) − 2266.67i − 0.271046i
\(413\) 764.739i 0.0911146i
\(414\) 1658.58 0.196895
\(415\) 0 0
\(416\) 2798.69 0.329849
\(417\) 31.5972i 0.00371060i
\(418\) 1905.39i 0.222957i
\(419\) −12904.8 −1.50463 −0.752313 0.658805i \(-0.771062\pi\)
−0.752313 + 0.658805i \(0.771062\pi\)
\(420\) 0 0
\(421\) −14736.4 −1.70596 −0.852980 0.521944i \(-0.825207\pi\)
−0.852980 + 0.521944i \(0.825207\pi\)
\(422\) − 1525.45i − 0.175966i
\(423\) 2081.11i 0.239213i
\(424\) −829.867 −0.0950517
\(425\) 0 0
\(426\) 432.833 0.0492273
\(427\) 5616.67i 0.636556i
\(428\) 3378.13i 0.381515i
\(429\) −343.485 −0.0386564
\(430\) 0 0
\(431\) 3289.60 0.367644 0.183822 0.982960i \(-0.441153\pi\)
0.183822 + 0.982960i \(0.441153\pi\)
\(432\) − 9764.61i − 1.08750i
\(433\) 7065.41i 0.784161i 0.919931 + 0.392081i \(0.128245\pi\)
−0.919931 + 0.392081i \(0.871755\pi\)
\(434\) 5594.36 0.618751
\(435\) 0 0
\(436\) −9314.20 −1.02309
\(437\) 1176.42i 0.128778i
\(438\) 1172.73i 0.127934i
\(439\) −8786.87 −0.955295 −0.477647 0.878552i \(-0.658510\pi\)
−0.477647 + 0.878552i \(0.658510\pi\)
\(440\) 0 0
\(441\) 4689.49 0.506369
\(442\) − 1531.60i − 0.164821i
\(443\) − 15634.8i − 1.67682i −0.545036 0.838412i \(-0.683484\pi\)
0.545036 0.838412i \(-0.316516\pi\)
\(444\) 965.038 0.103150
\(445\) 0 0
\(446\) −4679.25 −0.496791
\(447\) − 656.763i − 0.0694940i
\(448\) 2382.00i 0.251203i
\(449\) −1326.49 −0.139423 −0.0697116 0.997567i \(-0.522208\pi\)
−0.0697116 + 0.997567i \(0.522208\pi\)
\(450\) 0 0
\(451\) −2961.50 −0.309205
\(452\) − 4800.33i − 0.499533i
\(453\) − 6425.07i − 0.666393i
\(454\) 10186.1 1.05299
\(455\) 0 0
\(456\) 1042.51 0.107061
\(457\) 1577.23i 0.161444i 0.996737 + 0.0807219i \(0.0257226\pi\)
−0.996737 + 0.0807219i \(0.974277\pi\)
\(458\) − 14263.0i − 1.45516i
\(459\) −4242.87 −0.431461
\(460\) 0 0
\(461\) −18592.2 −1.87836 −0.939179 0.343427i \(-0.888412\pi\)
−0.939179 + 0.343427i \(0.888412\pi\)
\(462\) − 1033.89i − 0.104115i
\(463\) 16081.1i 1.61415i 0.590447 + 0.807076i \(0.298951\pi\)
−0.590447 + 0.807076i \(0.701049\pi\)
\(464\) −7690.62 −0.769457
\(465\) 0 0
\(466\) 6187.47 0.615084
\(467\) 4803.27i 0.475951i 0.971271 + 0.237975i \(0.0764837\pi\)
−0.971271 + 0.237975i \(0.923516\pi\)
\(468\) 1443.57i 0.142583i
\(469\) 6883.74 0.677744
\(470\) 0 0
\(471\) 8947.05 0.875283
\(472\) − 561.604i − 0.0547668i
\(473\) 1870.65i 0.181845i
\(474\) 11330.1 1.09791
\(475\) 0 0
\(476\) 1984.75 0.191115
\(477\) − 2182.24i − 0.209471i
\(478\) 3524.94i 0.337295i
\(479\) 2632.36 0.251097 0.125548 0.992087i \(-0.459931\pi\)
0.125548 + 0.992087i \(0.459931\pi\)
\(480\) 0 0
\(481\) 710.620 0.0673627
\(482\) − 14851.1i − 1.40342i
\(483\) − 638.343i − 0.0601358i
\(484\) 7452.31 0.699879
\(485\) 0 0
\(486\) 14712.6 1.37320
\(487\) 7542.18i 0.701784i 0.936416 + 0.350892i \(0.114122\pi\)
−0.936416 + 0.350892i \(0.885878\pi\)
\(488\) − 4124.73i − 0.382619i
\(489\) −7697.17 −0.711816
\(490\) 0 0
\(491\) −9286.81 −0.853580 −0.426790 0.904351i \(-0.640356\pi\)
−0.426790 + 0.904351i \(0.640356\pi\)
\(492\) − 5020.03i − 0.460001i
\(493\) 3341.69i 0.305278i
\(494\) −2378.33 −0.216612
\(495\) 0 0
\(496\) −11356.8 −1.02810
\(497\) 413.022i 0.0372768i
\(498\) − 4518.46i − 0.406580i
\(499\) 7508.65 0.673614 0.336807 0.941574i \(-0.390653\pi\)
0.336807 + 0.941574i \(0.390653\pi\)
\(500\) 0 0
\(501\) −930.994 −0.0830215
\(502\) − 11425.7i − 1.01584i
\(503\) − 18833.3i − 1.66946i −0.550662 0.834728i \(-0.685625\pi\)
0.550662 0.834728i \(-0.314375\pi\)
\(504\) 1402.50 0.123953
\(505\) 0 0
\(506\) −856.794 −0.0752750
\(507\) 5691.43i 0.498551i
\(508\) − 4117.50i − 0.359615i
\(509\) 8379.54 0.729698 0.364849 0.931067i \(-0.381121\pi\)
0.364849 + 0.931067i \(0.381121\pi\)
\(510\) 0 0
\(511\) −1119.05 −0.0968765
\(512\) − 12664.1i − 1.09313i
\(513\) 6588.51i 0.567036i
\(514\) 16143.1 1.38530
\(515\) 0 0
\(516\) −3170.94 −0.270529
\(517\) − 1075.07i − 0.0914534i
\(518\) 2138.97i 0.181430i
\(519\) 4486.15 0.379422
\(520\) 0 0
\(521\) −3590.90 −0.301958 −0.150979 0.988537i \(-0.548243\pi\)
−0.150979 + 0.988537i \(0.548243\pi\)
\(522\) − 7315.86i − 0.613422i
\(523\) 5720.72i 0.478297i 0.970983 + 0.239149i \(0.0768683\pi\)
−0.970983 + 0.239149i \(0.923132\pi\)
\(524\) 5031.71 0.419487
\(525\) 0 0
\(526\) 9285.87 0.769740
\(527\) 4934.72i 0.407893i
\(528\) 2098.85i 0.172994i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) 1476.81 0.120693
\(532\) − 3082.00i − 0.251168i
\(533\) − 3696.57i − 0.300406i
\(534\) 2907.34 0.235604
\(535\) 0 0
\(536\) −5055.24 −0.407376
\(537\) − 2221.63i − 0.178530i
\(538\) 10164.8i 0.814562i
\(539\) −2422.51 −0.193590
\(540\) 0 0
\(541\) −21769.0 −1.72999 −0.864994 0.501783i \(-0.832678\pi\)
−0.864994 + 0.501783i \(0.832678\pi\)
\(542\) 1994.22i 0.158043i
\(543\) 4699.27i 0.371390i
\(544\) −7430.78 −0.585647
\(545\) 0 0
\(546\) 1290.51 0.101152
\(547\) 20471.9i 1.60021i 0.599860 + 0.800105i \(0.295223\pi\)
−0.599860 + 0.800105i \(0.704777\pi\)
\(548\) 468.565i 0.0365257i
\(549\) 10846.5 0.843200
\(550\) 0 0
\(551\) 5189.11 0.401205
\(552\) 468.782i 0.0361462i
\(553\) 10811.5i 0.831380i
\(554\) 12931.2 0.991684
\(555\) 0 0
\(556\) −68.5991 −0.00523246
\(557\) − 4682.95i − 0.356235i −0.984009 0.178117i \(-0.942999\pi\)
0.984009 0.178117i \(-0.0570007\pi\)
\(558\) − 10803.4i − 0.819615i
\(559\) −2334.97 −0.176670
\(560\) 0 0
\(561\) 911.982 0.0686344
\(562\) 22138.4i 1.66166i
\(563\) − 12425.1i − 0.930118i −0.885280 0.465059i \(-0.846033\pi\)
0.885280 0.465059i \(-0.153967\pi\)
\(564\) 1822.34 0.136054
\(565\) 0 0
\(566\) −2745.15 −0.203864
\(567\) 1600.57i 0.118550i
\(568\) − 303.313i − 0.0224062i
\(569\) 21359.2 1.57368 0.786842 0.617155i \(-0.211715\pi\)
0.786842 + 0.617155i \(0.211715\pi\)
\(570\) 0 0
\(571\) 6263.93 0.459085 0.229542 0.973299i \(-0.426277\pi\)
0.229542 + 0.973299i \(0.426277\pi\)
\(572\) − 745.723i − 0.0545109i
\(573\) − 5645.16i − 0.411570i
\(574\) 11126.7 0.809093
\(575\) 0 0
\(576\) 4599.94 0.332750
\(577\) 11385.6i 0.821470i 0.911755 + 0.410735i \(0.134728\pi\)
−0.911755 + 0.410735i \(0.865272\pi\)
\(578\) − 14347.6i − 1.03250i
\(579\) −2319.21 −0.166465
\(580\) 0 0
\(581\) 4311.64 0.307878
\(582\) − 4668.10i − 0.332473i
\(583\) 1127.31i 0.0800827i
\(584\) 821.802 0.0582302
\(585\) 0 0
\(586\) 29356.6 2.06947
\(587\) 20252.6i 1.42405i 0.702155 + 0.712024i \(0.252221\pi\)
−0.702155 + 0.712024i \(0.747779\pi\)
\(588\) − 4106.39i − 0.288001i
\(589\) 7662.83 0.536064
\(590\) 0 0
\(591\) −5944.53 −0.413749
\(592\) − 4342.21i − 0.301459i
\(593\) − 13864.0i − 0.960078i −0.877247 0.480039i \(-0.840622\pi\)
0.877247 0.480039i \(-0.159378\pi\)
\(594\) −4798.43 −0.331451
\(595\) 0 0
\(596\) 1425.87 0.0979962
\(597\) 957.320i 0.0656290i
\(598\) − 1069.46i − 0.0731328i
\(599\) 12357.3 0.842916 0.421458 0.906848i \(-0.361518\pi\)
0.421458 + 0.906848i \(0.361518\pi\)
\(600\) 0 0
\(601\) 8427.54 0.571991 0.285996 0.958231i \(-0.407676\pi\)
0.285996 + 0.958231i \(0.407676\pi\)
\(602\) − 7028.26i − 0.475831i
\(603\) − 13293.4i − 0.897758i
\(604\) 13949.2 0.939707
\(605\) 0 0
\(606\) −4771.80 −0.319870
\(607\) 12024.5i 0.804049i 0.915629 + 0.402024i \(0.131693\pi\)
−0.915629 + 0.402024i \(0.868307\pi\)
\(608\) 11538.8i 0.769672i
\(609\) −2815.68 −0.187351
\(610\) 0 0
\(611\) 1341.91 0.0888509
\(612\) − 3832.80i − 0.253156i
\(613\) − 11845.0i − 0.780447i −0.920720 0.390224i \(-0.872398\pi\)
0.920720 0.390224i \(-0.127602\pi\)
\(614\) 15456.5 1.01592
\(615\) 0 0
\(616\) −724.510 −0.0473886
\(617\) − 6786.50i − 0.442810i −0.975182 0.221405i \(-0.928936\pi\)
0.975182 0.221405i \(-0.0710643\pi\)
\(618\) 3913.12i 0.254707i
\(619\) 8051.54 0.522809 0.261405 0.965229i \(-0.415814\pi\)
0.261405 + 0.965229i \(0.415814\pi\)
\(620\) 0 0
\(621\) −2962.64 −0.191444
\(622\) 34793.2i 2.24289i
\(623\) 2774.27i 0.178409i
\(624\) −2619.81 −0.168071
\(625\) 0 0
\(626\) 32270.3 2.06035
\(627\) − 1416.16i − 0.0902011i
\(628\) 19424.5i 1.23427i
\(629\) −1886.76 −0.119602
\(630\) 0 0
\(631\) −17989.9 −1.13497 −0.567486 0.823383i \(-0.692084\pi\)
−0.567486 + 0.823383i \(0.692084\pi\)
\(632\) − 7939.71i − 0.499723i
\(633\) 1133.77i 0.0711901i
\(634\) −10645.1 −0.666828
\(635\) 0 0
\(636\) −1910.89 −0.119138
\(637\) − 3023.80i − 0.188081i
\(638\) 3779.25i 0.234517i
\(639\) 797.598 0.0493779
\(640\) 0 0
\(641\) 6793.04 0.418579 0.209289 0.977854i \(-0.432885\pi\)
0.209289 + 0.977854i \(0.432885\pi\)
\(642\) − 5831.93i − 0.358517i
\(643\) − 5141.23i − 0.315319i −0.987494 0.157660i \(-0.949605\pi\)
0.987494 0.157660i \(-0.0503949\pi\)
\(644\) 1385.87 0.0847999
\(645\) 0 0
\(646\) 6314.68 0.384594
\(647\) − 23855.9i − 1.44957i −0.688973 0.724787i \(-0.741938\pi\)
0.688973 0.724787i \(-0.258062\pi\)
\(648\) − 1175.42i − 0.0712573i
\(649\) −762.893 −0.0461420
\(650\) 0 0
\(651\) −4157.95 −0.250327
\(652\) − 16711.0i − 1.00376i
\(653\) 13524.4i 0.810490i 0.914208 + 0.405245i \(0.132814\pi\)
−0.914208 + 0.405245i \(0.867186\pi\)
\(654\) 16079.8 0.961423
\(655\) 0 0
\(656\) −22587.7 −1.34436
\(657\) 2161.03i 0.128325i
\(658\) 4039.15i 0.239305i
\(659\) −28598.1 −1.69047 −0.845237 0.534391i \(-0.820541\pi\)
−0.845237 + 0.534391i \(0.820541\pi\)
\(660\) 0 0
\(661\) 16103.2 0.947568 0.473784 0.880641i \(-0.342888\pi\)
0.473784 + 0.880641i \(0.342888\pi\)
\(662\) 39818.6i 2.33775i
\(663\) 1138.35i 0.0666813i
\(664\) −3166.36 −0.185058
\(665\) 0 0
\(666\) 4130.62 0.240328
\(667\) 2333.38i 0.135455i
\(668\) − 2021.24i − 0.117072i
\(669\) 3477.80 0.200986
\(670\) 0 0
\(671\) −5603.11 −0.322363
\(672\) − 6261.10i − 0.359415i
\(673\) − 24118.9i − 1.38145i −0.723117 0.690726i \(-0.757291\pi\)
0.723117 0.690726i \(-0.242709\pi\)
\(674\) −6595.98 −0.376955
\(675\) 0 0
\(676\) −12356.4 −0.703027
\(677\) 2983.70i 0.169384i 0.996407 + 0.0846918i \(0.0269906\pi\)
−0.996407 + 0.0846918i \(0.973009\pi\)
\(678\) 8287.18i 0.469421i
\(679\) 4454.44 0.251761
\(680\) 0 0
\(681\) −7570.70 −0.426006
\(682\) 5580.86i 0.313347i
\(683\) − 9226.11i − 0.516878i −0.966028 0.258439i \(-0.916792\pi\)
0.966028 0.258439i \(-0.0832080\pi\)
\(684\) −5951.73 −0.332705
\(685\) 0 0
\(686\) 21910.0 1.21943
\(687\) 10600.8i 0.588712i
\(688\) 14267.7i 0.790628i
\(689\) −1407.12 −0.0778038
\(690\) 0 0
\(691\) −2176.51 −0.119824 −0.0599120 0.998204i \(-0.519082\pi\)
−0.0599120 + 0.998204i \(0.519082\pi\)
\(692\) 9739.66i 0.535038i
\(693\) − 1905.19i − 0.104433i
\(694\) −24983.7 −1.36652
\(695\) 0 0
\(696\) 2067.76 0.112612
\(697\) 9814.72i 0.533370i
\(698\) − 16667.8i − 0.903849i
\(699\) −4598.77 −0.248843
\(700\) 0 0
\(701\) 34049.9 1.83459 0.917295 0.398208i \(-0.130368\pi\)
0.917295 + 0.398208i \(0.130368\pi\)
\(702\) − 5989.45i − 0.322019i
\(703\) 2929.83i 0.157185i
\(704\) −2376.25 −0.127213
\(705\) 0 0
\(706\) −26323.4 −1.40325
\(707\) − 4553.40i − 0.242218i
\(708\) − 1293.18i − 0.0686450i
\(709\) 1690.56 0.0895491 0.0447745 0.998997i \(-0.485743\pi\)
0.0447745 + 0.998997i \(0.485743\pi\)
\(710\) 0 0
\(711\) 20878.4 1.10127
\(712\) − 2037.35i − 0.107237i
\(713\) 3445.73i 0.180987i
\(714\) −3426.42 −0.179595
\(715\) 0 0
\(716\) 4823.28 0.251752
\(717\) − 2619.87i − 0.136459i
\(718\) 12550.6i 0.652344i
\(719\) −24755.3 −1.28403 −0.642014 0.766693i \(-0.721901\pi\)
−0.642014 + 0.766693i \(0.721901\pi\)
\(720\) 0 0
\(721\) −3734.02 −0.192874
\(722\) 15902.2i 0.819693i
\(723\) 11037.9i 0.567779i
\(724\) −10202.4 −0.523712
\(725\) 0 0
\(726\) −12865.5 −0.657690
\(727\) 11781.4i 0.601031i 0.953777 + 0.300515i \(0.0971586\pi\)
−0.953777 + 0.300515i \(0.902841\pi\)
\(728\) − 904.342i − 0.0460400i
\(729\) −6597.41 −0.335183
\(730\) 0 0
\(731\) 6199.54 0.313678
\(732\) − 9497.83i − 0.479576i
\(733\) − 11652.6i − 0.587172i −0.955933 0.293586i \(-0.905151\pi\)
0.955933 0.293586i \(-0.0948488\pi\)
\(734\) −45191.1 −2.27252
\(735\) 0 0
\(736\) −5188.63 −0.259858
\(737\) 6867.13i 0.343221i
\(738\) − 21487.0i − 1.07175i
\(739\) −22216.1 −1.10586 −0.552931 0.833227i \(-0.686491\pi\)
−0.552931 + 0.833227i \(0.686491\pi\)
\(740\) 0 0
\(741\) 1767.67 0.0876342
\(742\) − 4235.42i − 0.209551i
\(743\) 22539.9i 1.11293i 0.830871 + 0.556466i \(0.187843\pi\)
−0.830871 + 0.556466i \(0.812157\pi\)
\(744\) 3053.49 0.150466
\(745\) 0 0
\(746\) −24384.5 −1.19675
\(747\) − 8326.32i − 0.407824i
\(748\) 1979.96i 0.0967841i
\(749\) 5565.00 0.271483
\(750\) 0 0
\(751\) 34513.6 1.67699 0.838494 0.544911i \(-0.183436\pi\)
0.838494 + 0.544911i \(0.183436\pi\)
\(752\) − 8199.68i − 0.397622i
\(753\) 8492.01i 0.410978i
\(754\) −4717.30 −0.227843
\(755\) 0 0
\(756\) 7761.52 0.373391
\(757\) − 35405.0i − 1.69989i −0.526870 0.849946i \(-0.676634\pi\)
0.526870 0.849946i \(-0.323366\pi\)
\(758\) − 9147.65i − 0.438335i
\(759\) 636.802 0.0304538
\(760\) 0 0
\(761\) 20280.8 0.966069 0.483035 0.875601i \(-0.339534\pi\)
0.483035 + 0.875601i \(0.339534\pi\)
\(762\) 7108.35i 0.337937i
\(763\) 15343.8i 0.728026i
\(764\) 12255.9 0.580372
\(765\) 0 0
\(766\) −40752.4 −1.92225
\(767\) − 952.252i − 0.0448290i
\(768\) 14815.2i 0.696090i
\(769\) 8677.76 0.406928 0.203464 0.979082i \(-0.434780\pi\)
0.203464 + 0.979082i \(0.434780\pi\)
\(770\) 0 0
\(771\) −11998.2 −0.560446
\(772\) − 5035.12i − 0.234738i
\(773\) − 18442.0i − 0.858103i −0.903280 0.429051i \(-0.858848\pi\)
0.903280 0.429051i \(-0.141152\pi\)
\(774\) −13572.5 −0.630300
\(775\) 0 0
\(776\) −3271.22 −0.151327
\(777\) − 1589.76i − 0.0734008i
\(778\) 3023.91i 0.139348i
\(779\) 15240.7 0.700969
\(780\) 0 0
\(781\) −412.026 −0.0188776
\(782\) 2839.51i 0.129847i
\(783\) 13068.0i 0.596438i
\(784\) −18476.8 −0.841692
\(785\) 0 0
\(786\) −8686.62 −0.394200
\(787\) 12802.8i 0.579885i 0.957044 + 0.289942i \(0.0936362\pi\)
−0.957044 + 0.289942i \(0.906364\pi\)
\(788\) − 12905.9i − 0.583443i
\(789\) −6901.62 −0.311412
\(790\) 0 0
\(791\) −7907.87 −0.355463
\(792\) 1399.12i 0.0627722i
\(793\) − 6993.87i − 0.313190i
\(794\) −28445.8 −1.27141
\(795\) 0 0
\(796\) −2078.39 −0.0925460
\(797\) − 28955.6i − 1.28690i −0.765488 0.643450i \(-0.777502\pi\)
0.765488 0.643450i \(-0.222498\pi\)
\(798\) 5320.69i 0.236028i
\(799\) −3562.89 −0.157755
\(800\) 0 0
\(801\) 5357.46 0.236325
\(802\) 24900.8i 1.09636i
\(803\) − 1116.35i − 0.0490600i
\(804\) −11640.5 −0.510606
\(805\) 0 0
\(806\) −6966.09 −0.304430
\(807\) − 7554.85i − 0.329546i
\(808\) 3343.90i 0.145591i
\(809\) −20743.7 −0.901493 −0.450747 0.892652i \(-0.648842\pi\)
−0.450747 + 0.892652i \(0.648842\pi\)
\(810\) 0 0
\(811\) 10421.2 0.451220 0.225610 0.974218i \(-0.427563\pi\)
0.225610 + 0.974218i \(0.427563\pi\)
\(812\) − 6112.98i − 0.264192i
\(813\) − 1482.18i − 0.0639389i
\(814\) −2133.81 −0.0918795
\(815\) 0 0
\(816\) 6955.81 0.298409
\(817\) − 9626.90i − 0.412243i
\(818\) 27213.1i 1.16318i
\(819\) 2378.08 0.101461
\(820\) 0 0
\(821\) 4432.04 0.188404 0.0942018 0.995553i \(-0.469970\pi\)
0.0942018 + 0.995553i \(0.469970\pi\)
\(822\) − 808.919i − 0.0343240i
\(823\) − 6572.80i − 0.278388i −0.990265 0.139194i \(-0.955549\pi\)
0.990265 0.139194i \(-0.0444512\pi\)
\(824\) 2742.17 0.115932
\(825\) 0 0
\(826\) 2866.28 0.120739
\(827\) − 14107.7i − 0.593197i −0.955002 0.296598i \(-0.904148\pi\)
0.955002 0.296598i \(-0.0958523\pi\)
\(828\) − 2676.30i − 0.112328i
\(829\) 46543.8 1.94998 0.974990 0.222250i \(-0.0713400\pi\)
0.974990 + 0.222250i \(0.0713400\pi\)
\(830\) 0 0
\(831\) −9610.95 −0.401203
\(832\) − 2966.06i − 0.123593i
\(833\) 8028.46i 0.333937i
\(834\) 118.428 0.00491705
\(835\) 0 0
\(836\) 3074.56 0.127196
\(837\) 19297.6i 0.796921i
\(838\) 48367.7i 1.99384i
\(839\) −38019.7 −1.56447 −0.782233 0.622986i \(-0.785919\pi\)
−0.782233 + 0.622986i \(0.785919\pi\)
\(840\) 0 0
\(841\) −14096.7 −0.577993
\(842\) 55232.8i 2.26063i
\(843\) − 16454.1i − 0.672255i
\(844\) −2461.47 −0.100388
\(845\) 0 0
\(846\) 7800.11 0.316990
\(847\) − 12276.6i − 0.498028i
\(848\) 8598.12i 0.348185i
\(849\) 2040.30 0.0824769
\(850\) 0 0
\(851\) −1317.45 −0.0530689
\(852\) − 698.424i − 0.0280840i
\(853\) 156.574i 0.00628485i 0.999995 + 0.00314242i \(0.00100027\pi\)
−0.999995 + 0.00314242i \(0.999000\pi\)
\(854\) 21051.6 0.843524
\(855\) 0 0
\(856\) −4086.79 −0.163182
\(857\) − 35179.5i − 1.40223i −0.713050 0.701113i \(-0.752687\pi\)
0.713050 0.701113i \(-0.247313\pi\)
\(858\) 1287.40i 0.0512250i
\(859\) −14183.8 −0.563383 −0.281692 0.959505i \(-0.590895\pi\)
−0.281692 + 0.959505i \(0.590895\pi\)
\(860\) 0 0
\(861\) −8269.79 −0.327333
\(862\) − 12329.6i − 0.487179i
\(863\) 33263.0i 1.31203i 0.754746 + 0.656017i \(0.227760\pi\)
−0.754746 + 0.656017i \(0.772240\pi\)
\(864\) −29058.6 −1.14421
\(865\) 0 0
\(866\) 26481.5 1.03912
\(867\) 10663.7i 0.417715i
\(868\) − 9027.12i − 0.352996i
\(869\) −10785.4 −0.421026
\(870\) 0 0
\(871\) −8571.63 −0.333454
\(872\) − 11268.1i − 0.437599i
\(873\) − 8602.08i − 0.333489i
\(874\) 4409.30 0.170649
\(875\) 0 0
\(876\) 1892.32 0.0729860
\(877\) − 19178.7i − 0.738449i −0.929340 0.369225i \(-0.879623\pi\)
0.929340 0.369225i \(-0.120377\pi\)
\(878\) 32933.6i 1.26590i
\(879\) −21819.0 −0.837241
\(880\) 0 0
\(881\) −33525.0 −1.28205 −0.641026 0.767519i \(-0.721491\pi\)
−0.641026 + 0.767519i \(0.721491\pi\)
\(882\) − 17576.4i − 0.671009i
\(883\) 37557.9i 1.43140i 0.698409 + 0.715699i \(0.253892\pi\)
−0.698409 + 0.715699i \(0.746108\pi\)
\(884\) −2471.41 −0.0940299
\(885\) 0 0
\(886\) −58600.2 −2.22202
\(887\) 7495.92i 0.283753i 0.989884 + 0.141876i \(0.0453135\pi\)
−0.989884 + 0.141876i \(0.954686\pi\)
\(888\) 1167.48i 0.0441195i
\(889\) −6783.00 −0.255899
\(890\) 0 0
\(891\) −1596.71 −0.0600356
\(892\) 7550.48i 0.283418i
\(893\) 5532.60i 0.207325i
\(894\) −2461.58 −0.0920890
\(895\) 0 0
\(896\) −9052.86 −0.337539
\(897\) 794.863i 0.0295872i
\(898\) 4971.76i 0.184755i
\(899\) 15198.8 0.563859
\(900\) 0 0
\(901\) 3736.01 0.138141
\(902\) 11099.8i 0.409739i
\(903\) 5223.68i 0.192506i
\(904\) 5807.34 0.213661
\(905\) 0 0
\(906\) −24081.5 −0.883061
\(907\) 25397.1i 0.929764i 0.885373 + 0.464882i \(0.153903\pi\)
−0.885373 + 0.464882i \(0.846097\pi\)
\(908\) − 16436.4i − 0.600728i
\(909\) −8793.18 −0.320849
\(910\) 0 0
\(911\) 21732.9 0.790387 0.395193 0.918598i \(-0.370678\pi\)
0.395193 + 0.918598i \(0.370678\pi\)
\(912\) − 10801.3i − 0.392177i
\(913\) 4301.24i 0.155915i
\(914\) 5911.55 0.213935
\(915\) 0 0
\(916\) −23014.9 −0.830166
\(917\) − 8289.02i − 0.298504i
\(918\) 15902.5i 0.571744i
\(919\) −13684.9 −0.491211 −0.245605 0.969370i \(-0.578987\pi\)
−0.245605 + 0.969370i \(0.578987\pi\)
\(920\) 0 0
\(921\) −11487.9 −0.411008
\(922\) 69684.4i 2.48908i
\(923\) − 514.295i − 0.0183404i
\(924\) −1668.29 −0.0593970
\(925\) 0 0
\(926\) 60272.8 2.13897
\(927\) 7210.86i 0.255486i
\(928\) 22886.6i 0.809580i
\(929\) 46187.0 1.63116 0.815580 0.578645i \(-0.196418\pi\)
0.815580 + 0.578645i \(0.196418\pi\)
\(930\) 0 0
\(931\) 12466.9 0.438869
\(932\) − 9984.17i − 0.350904i
\(933\) − 25859.6i − 0.907402i
\(934\) 18002.9 0.630700
\(935\) 0 0
\(936\) −1746.40 −0.0609859
\(937\) 37728.4i 1.31540i 0.753278 + 0.657702i \(0.228472\pi\)
−0.753278 + 0.657702i \(0.771528\pi\)
\(938\) − 25800.6i − 0.898103i
\(939\) −23984.5 −0.833551
\(940\) 0 0
\(941\) 33366.7 1.15592 0.577962 0.816064i \(-0.303848\pi\)
0.577962 + 0.816064i \(0.303848\pi\)
\(942\) − 33534.0i − 1.15987i
\(943\) 6853.25i 0.236662i
\(944\) −5818.69 −0.200617
\(945\) 0 0
\(946\) 7011.30 0.240969
\(947\) − 38414.4i − 1.31816i −0.752072 0.659081i \(-0.770946\pi\)
0.752072 0.659081i \(-0.229054\pi\)
\(948\) − 18282.4i − 0.626355i
\(949\) 1393.44 0.0476639
\(950\) 0 0
\(951\) 7911.82 0.269777
\(952\) 2401.11i 0.0817440i
\(953\) 47050.2i 1.59927i 0.600487 + 0.799635i \(0.294974\pi\)
−0.600487 + 0.799635i \(0.705026\pi\)
\(954\) −8179.13 −0.277578
\(955\) 0 0
\(956\) 5687.88 0.192426
\(957\) − 2808.88i − 0.0948781i
\(958\) − 9866.20i − 0.332738i
\(959\) 771.895 0.0259914
\(960\) 0 0
\(961\) −7346.71 −0.246608
\(962\) − 2663.44i − 0.0892648i
\(963\) − 10746.7i − 0.359614i
\(964\) −23963.8 −0.800647
\(965\) 0 0
\(966\) −2392.54 −0.0796881
\(967\) 15040.7i 0.500182i 0.968222 + 0.250091i \(0.0804605\pi\)
−0.968222 + 0.250091i \(0.919540\pi\)
\(968\) 9015.64i 0.299353i
\(969\) −4693.31 −0.155594
\(970\) 0 0
\(971\) 54555.9 1.80307 0.901536 0.432703i \(-0.142440\pi\)
0.901536 + 0.432703i \(0.142440\pi\)
\(972\) − 23740.4i − 0.783409i
\(973\) 113.007i 0.00372338i
\(974\) 28268.5 0.929959
\(975\) 0 0
\(976\) −42735.7 −1.40157
\(977\) − 43553.2i − 1.42619i −0.701066 0.713096i \(-0.747292\pi\)
0.701066 0.713096i \(-0.252708\pi\)
\(978\) 28849.4i 0.943254i
\(979\) −2767.57 −0.0903493
\(980\) 0 0
\(981\) 29630.9 0.964363
\(982\) 34807.4i 1.13111i
\(983\) 38375.8i 1.24516i 0.782554 + 0.622582i \(0.213916\pi\)
−0.782554 + 0.622582i \(0.786084\pi\)
\(984\) 6073.12 0.196752
\(985\) 0 0
\(986\) 12524.8 0.404536
\(987\) − 3002.06i − 0.0968151i
\(988\) 3837.70i 0.123576i
\(989\) 4328.90 0.139182
\(990\) 0 0
\(991\) 28505.2 0.913722 0.456861 0.889538i \(-0.348974\pi\)
0.456861 + 0.889538i \(0.348974\pi\)
\(992\) 33797.0i 1.08171i
\(993\) − 29594.7i − 0.945780i
\(994\) 1548.03 0.0493969
\(995\) 0 0
\(996\) −7291.02 −0.231953
\(997\) − 35545.6i − 1.12913i −0.825389 0.564565i \(-0.809044\pi\)
0.825389 0.564565i \(-0.190956\pi\)
\(998\) − 28142.8i − 0.892630i
\(999\) −7378.32 −0.233673
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.4.b.j.24.4 14
5.2 odd 4 575.4.a.l.1.6 7
5.3 odd 4 575.4.a.m.1.2 yes 7
5.4 even 2 inner 575.4.b.j.24.11 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
575.4.a.l.1.6 7 5.2 odd 4
575.4.a.m.1.2 yes 7 5.3 odd 4
575.4.b.j.24.4 14 1.1 even 1 trivial
575.4.b.j.24.11 14 5.4 even 2 inner