Properties

Label 576.2.a.c.1.1
Level 576576
Weight 22
Character 576.1
Self dual yes
Analytic conductor 4.5994.599
Analytic rank 11
Dimension 11
CM discriminant -4
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,2,Mod(1,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 576=2632 576 = 2^{6} \cdot 3^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 576.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 4.599383156434.59938315643
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 32)
Fricke sign: +1+1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

Embedding invariants

Embedding label 1.1
Character χ\chi == 576.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.00000q56.00000q132.00000q171.00000q2510.0000q29+2.00000q3710.0000q417.00000q49+14.0000q53+10.0000q61+12.0000q656.00000q73+4.00000q8510.0000q89+18.0000q97+O(q100)q-2.00000 q^{5} -6.00000 q^{13} -2.00000 q^{17} -1.00000 q^{25} -10.0000 q^{29} +2.00000 q^{37} -10.0000 q^{41} -7.00000 q^{49} +14.0000 q^{53} +10.0000 q^{61} +12.0000 q^{65} -6.00000 q^{73} +4.00000 q^{85} -10.0000 q^{89} +18.0000 q^{97} +O(q^{100})

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 −2.00000 −0.894427 −0.447214 0.894427i 0.647584π-0.647584\pi
−0.447214 + 0.894427i 0.647584π0.647584\pi
66 0 0
77 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
88 0 0
99 0 0
1010 0 0
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 0 0
1313 −6.00000 −1.66410 −0.832050 0.554700i 0.812833π-0.812833\pi
−0.832050 + 0.554700i 0.812833π0.812833\pi
1414 0 0
1515 0 0
1616 0 0
1717 −2.00000 −0.485071 −0.242536 0.970143i 0.577979π-0.577979\pi
−0.242536 + 0.970143i 0.577979π0.577979\pi
1818 0 0
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 −1.00000 −0.200000
2626 0 0
2727 0 0
2828 0 0
2929 −10.0000 −1.85695 −0.928477 0.371391i 0.878881π-0.878881\pi
−0.928477 + 0.371391i 0.878881π0.878881\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 2.00000 0.328798 0.164399 0.986394i 0.447432π-0.447432\pi
0.164399 + 0.986394i 0.447432π0.447432\pi
3838 0 0
3939 0 0
4040 0 0
4141 −10.0000 −1.56174 −0.780869 0.624695i 0.785223π-0.785223\pi
−0.780869 + 0.624695i 0.785223π0.785223\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 0 0
4949 −7.00000 −1.00000
5050 0 0
5151 0 0
5252 0 0
5353 14.0000 1.92305 0.961524 0.274721i 0.0885855π-0.0885855\pi
0.961524 + 0.274721i 0.0885855π0.0885855\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 10.0000 1.28037 0.640184 0.768221i 0.278858π-0.278858\pi
0.640184 + 0.768221i 0.278858π0.278858\pi
6262 0 0
6363 0 0
6464 0 0
6565 12.0000 1.48842
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 −6.00000 −0.702247 −0.351123 0.936329i 0.614200π-0.614200\pi
−0.351123 + 0.936329i 0.614200π0.614200\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 0 0
8181 0 0
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 4.00000 0.433861
8686 0 0
8787 0 0
8888 0 0
8989 −10.0000 −1.06000 −0.529999 0.847998i 0.677808π-0.677808\pi
−0.529999 + 0.847998i 0.677808π0.677808\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 18.0000 1.82762 0.913812 0.406138i 0.133125π-0.133125\pi
0.913812 + 0.406138i 0.133125π0.133125\pi
9898 0 0
9999 0 0
100100 0 0
101101 −2.00000 −0.199007 −0.0995037 0.995037i 0.531726π-0.531726\pi
−0.0995037 + 0.995037i 0.531726π0.531726\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 −6.00000 −0.574696 −0.287348 0.957826i 0.592774π-0.592774\pi
−0.287348 + 0.957826i 0.592774π0.592774\pi
110110 0 0
111111 0 0
112112 0 0
113113 14.0000 1.31701 0.658505 0.752577i 0.271189π-0.271189\pi
0.658505 + 0.752577i 0.271189π0.271189\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −11.0000 −1.00000
122122 0 0
123123 0 0
124124 0 0
125125 12.0000 1.07331
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 22.0000 1.87959 0.939793 0.341743i 0.111017π-0.111017\pi
0.939793 + 0.341743i 0.111017π0.111017\pi
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 20.0000 1.66091
146146 0 0
147147 0 0
148148 0 0
149149 14.0000 1.14692 0.573462 0.819232i 0.305600π-0.305600\pi
0.573462 + 0.819232i 0.305600π0.305600\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −22.0000 −1.75579 −0.877896 0.478852i 0.841053π-0.841053\pi
−0.877896 + 0.478852i 0.841053π0.841053\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 23.0000 1.76923
170170 0 0
171171 0 0
172172 0 0
173173 −26.0000 −1.97674 −0.988372 0.152057i 0.951410π-0.951410\pi
−0.988372 + 0.152057i 0.951410π0.951410\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 18.0000 1.33793 0.668965 0.743294i 0.266738π-0.266738\pi
0.668965 + 0.743294i 0.266738π0.266738\pi
182182 0 0
183183 0 0
184184 0 0
185185 −4.00000 −0.294086
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 −14.0000 −1.00774 −0.503871 0.863779i 0.668091π-0.668091\pi
−0.503871 + 0.863779i 0.668091π0.668091\pi
194194 0 0
195195 0 0
196196 0 0
197197 −2.00000 −0.142494 −0.0712470 0.997459i 0.522698π-0.522698\pi
−0.0712470 + 0.997459i 0.522698π0.522698\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 20.0000 1.39686
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 12.0000 0.807207
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 −30.0000 −1.98246 −0.991228 0.132164i 0.957808π-0.957808\pi
−0.991228 + 0.132164i 0.957808π0.957808\pi
230230 0 0
231231 0 0
232232 0 0
233233 −26.0000 −1.70332 −0.851658 0.524097i 0.824403π-0.824403\pi
−0.851658 + 0.524097i 0.824403π0.824403\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 −30.0000 −1.93247 −0.966235 0.257663i 0.917048π-0.917048\pi
−0.966235 + 0.257663i 0.917048π0.917048\pi
242242 0 0
243243 0 0
244244 0 0
245245 14.0000 0.894427
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 −2.00000 −0.124757 −0.0623783 0.998053i 0.519869π-0.519869\pi
−0.0623783 + 0.998053i 0.519869π0.519869\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 −28.0000 −1.72003
266266 0 0
267267 0 0
268268 0 0
269269 −26.0000 −1.58525 −0.792624 0.609711i 0.791286π-0.791286\pi
−0.792624 + 0.609711i 0.791286π0.791286\pi
270270 0 0
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 18.0000 1.08152 0.540758 0.841178i 0.318138π-0.318138\pi
0.540758 + 0.841178i 0.318138π0.318138\pi
278278 0 0
279279 0 0
280280 0 0
281281 −10.0000 −0.596550 −0.298275 0.954480i 0.596411π-0.596411\pi
−0.298275 + 0.954480i 0.596411π0.596411\pi
282282 0 0
283283 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −13.0000 −0.764706
290290 0 0
291291 0 0
292292 0 0
293293 −34.0000 −1.98630 −0.993151 0.116841i 0.962723π-0.962723\pi
−0.993151 + 0.116841i 0.962723π0.962723\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −20.0000 −1.14520
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 26.0000 1.46961 0.734803 0.678280i 0.237274π-0.237274\pi
0.734803 + 0.678280i 0.237274π0.237274\pi
314314 0 0
315315 0 0
316316 0 0
317317 22.0000 1.23564 0.617822 0.786318i 0.288015π-0.288015\pi
0.617822 + 0.786318i 0.288015π0.288015\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 6.00000 0.332820
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 18.0000 0.980522 0.490261 0.871576i 0.336901π-0.336901\pi
0.490261 + 0.871576i 0.336901π0.336901\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 10.0000 0.535288 0.267644 0.963518i 0.413755π-0.413755\pi
0.267644 + 0.963518i 0.413755π0.413755\pi
350350 0 0
351351 0 0
352352 0 0
353353 −34.0000 −1.80964 −0.904819 0.425797i 0.859994π-0.859994\pi
−0.904819 + 0.425797i 0.859994π0.859994\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 −19.0000 −1.00000
362362 0 0
363363 0 0
364364 0 0
365365 12.0000 0.628109
366366 0 0
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 −14.0000 −0.724893 −0.362446 0.932005i 0.618058π-0.618058\pi
−0.362446 + 0.932005i 0.618058π0.618058\pi
374374 0 0
375375 0 0
376376 0 0
377377 60.0000 3.09016
378378 0 0
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 −34.0000 −1.72387 −0.861934 0.507020i 0.830747π-0.830747\pi
−0.861934 + 0.507020i 0.830747π0.830747\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −38.0000 −1.90717 −0.953583 0.301131i 0.902636π-0.902636\pi
−0.953583 + 0.301131i 0.902636π0.902636\pi
398398 0 0
399399 0 0
400400 0 0
401401 −2.00000 −0.0998752 −0.0499376 0.998752i 0.515902π-0.515902\pi
−0.0499376 + 0.998752i 0.515902π0.515902\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −6.00000 −0.296681 −0.148340 0.988936i 0.547393π-0.547393\pi
−0.148340 + 0.988936i 0.547393π0.547393\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 −30.0000 −1.46211 −0.731055 0.682318i 0.760972π-0.760972\pi
−0.731055 + 0.682318i 0.760972π0.760972\pi
422422 0 0
423423 0 0
424424 0 0
425425 2.00000 0.0970143
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 34.0000 1.63394 0.816968 0.576683i 0.195653π-0.195653\pi
0.816968 + 0.576683i 0.195653π0.195653\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 0 0
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 20.0000 0.948091
446446 0 0
447447 0 0
448448 0 0
449449 14.0000 0.660701 0.330350 0.943858i 0.392833π-0.392833\pi
0.330350 + 0.943858i 0.392833π0.392833\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 42.0000 1.96468 0.982339 0.187112i 0.0599128π-0.0599128\pi
0.982339 + 0.187112i 0.0599128π0.0599128\pi
458458 0 0
459459 0 0
460460 0 0
461461 38.0000 1.76984 0.884918 0.465746i 0.154214π-0.154214\pi
0.884918 + 0.465746i 0.154214π0.154214\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 −12.0000 −0.547153
482482 0 0
483483 0 0
484484 0 0
485485 −36.0000 −1.63468
486486 0 0
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 20.0000 0.900755
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 4.00000 0.177998
506506 0 0
507507 0 0
508508 0 0
509509 −10.0000 −0.443242 −0.221621 0.975133i 0.571135π-0.571135\pi
−0.221621 + 0.975133i 0.571135π0.571135\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 22.0000 0.963837 0.481919 0.876216i 0.339940π-0.339940\pi
0.481919 + 0.876216i 0.339940π0.339940\pi
522522 0 0
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −23.0000 −1.00000
530530 0 0
531531 0 0
532532 0 0
533533 60.0000 2.59889
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 42.0000 1.80572 0.902861 0.429934i 0.141463π-0.141463\pi
0.902861 + 0.429934i 0.141463π0.141463\pi
542542 0 0
543543 0 0
544544 0 0
545545 12.0000 0.514024
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 38.0000 1.61011 0.805056 0.593199i 0.202135π-0.202135\pi
0.805056 + 0.593199i 0.202135π0.202135\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 −28.0000 −1.17797
566566 0 0
567567 0 0
568568 0 0
569569 −26.0000 −1.08998 −0.544988 0.838444i 0.683466π-0.683466\pi
−0.544988 + 0.838444i 0.683466π0.683466\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 2.00000 0.0832611 0.0416305 0.999133i 0.486745π-0.486745\pi
0.0416305 + 0.999133i 0.486745π0.486745\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 46.0000 1.88899 0.944497 0.328521i 0.106550π-0.106550\pi
0.944497 + 0.328521i 0.106550π0.106550\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 10.0000 0.407909 0.203954 0.978980i 0.434621π-0.434621\pi
0.203954 + 0.978980i 0.434621π0.434621\pi
602602 0 0
603603 0 0
604604 0 0
605605 22.0000 0.894427
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 34.0000 1.37325 0.686624 0.727013i 0.259092π-0.259092\pi
0.686624 + 0.727013i 0.259092π0.259092\pi
614614 0 0
615615 0 0
616616 0 0
617617 38.0000 1.52982 0.764911 0.644136i 0.222783π-0.222783\pi
0.764911 + 0.644136i 0.222783π0.222783\pi
618618 0 0
619619 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −19.0000 −0.760000
626626 0 0
627627 0 0
628628 0 0
629629 −4.00000 −0.159490
630630 0 0
631631 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 42.0000 1.66410
638638 0 0
639639 0 0
640640 0 0
641641 −50.0000 −1.97488 −0.987441 0.157991i 0.949498π-0.949498\pi
−0.987441 + 0.157991i 0.949498π0.949498\pi
642642 0 0
643643 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −26.0000 −1.01746 −0.508729 0.860927i 0.669885π-0.669885\pi
−0.508729 + 0.860927i 0.669885π0.669885\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 50.0000 1.94477 0.972387 0.233373i 0.0749763π-0.0749763\pi
0.972387 + 0.233373i 0.0749763π0.0749763\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −46.0000 −1.77317 −0.886585 0.462566i 0.846929π-0.846929\pi
−0.886585 + 0.462566i 0.846929π0.846929\pi
674674 0 0
675675 0 0
676676 0 0
677677 −2.00000 −0.0768662 −0.0384331 0.999261i 0.512237π-0.512237\pi
−0.0384331 + 0.999261i 0.512237π0.512237\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 −44.0000 −1.68115
686686 0 0
687687 0 0
688688 0 0
689689 −84.0000 −3.20015
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 20.0000 0.757554
698698 0 0
699699 0 0
700700 0 0
701701 −10.0000 −0.377695 −0.188847 0.982006i 0.560475π-0.560475\pi
−0.188847 + 0.982006i 0.560475π0.560475\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −30.0000 −1.12667 −0.563337 0.826227i 0.690483π-0.690483\pi
−0.563337 + 0.826227i 0.690483π0.690483\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 10.0000 0.371391
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 −54.0000 −1.99454 −0.997268 0.0738717i 0.976464π-0.976464\pi
−0.997268 + 0.0738717i 0.976464π0.976464\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 −28.0000 −1.02584
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 18.0000 0.654221 0.327111 0.944986i 0.393925π-0.393925\pi
0.327111 + 0.944986i 0.393925π0.393925\pi
758758 0 0
759759 0 0
760760 0 0
761761 38.0000 1.37750 0.688749 0.724999i 0.258160π-0.258160\pi
0.688749 + 0.724999i 0.258160π0.258160\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 50.0000 1.80305 0.901523 0.432731i 0.142450π-0.142450\pi
0.901523 + 0.432731i 0.142450π0.142450\pi
770770 0 0
771771 0 0
772772 0 0
773773 −34.0000 −1.22290 −0.611448 0.791285i 0.709412π-0.709412\pi
−0.611448 + 0.791285i 0.709412π0.709412\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 44.0000 1.57043
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 −60.0000 −2.13066
794794 0 0
795795 0 0
796796 0 0
797797 22.0000 0.779280 0.389640 0.920967i 0.372599π-0.372599\pi
0.389640 + 0.920967i 0.372599π0.372599\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −10.0000 −0.351581 −0.175791 0.984428i 0.556248π-0.556248\pi
−0.175791 + 0.984428i 0.556248π0.556248\pi
810810 0 0
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 −50.0000 −1.74501 −0.872506 0.488603i 0.837507π-0.837507\pi
−0.872506 + 0.488603i 0.837507π0.837507\pi
822822 0 0
823823 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 −54.0000 −1.87550 −0.937749 0.347314i 0.887094π-0.887094\pi
−0.937749 + 0.347314i 0.887094π0.887094\pi
830830 0 0
831831 0 0
832832 0 0
833833 14.0000 0.485071
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 71.0000 2.44828
842842 0 0
843843 0 0
844844 0 0
845845 −46.0000 −1.58245
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 −46.0000 −1.57501 −0.787505 0.616308i 0.788628π-0.788628\pi
−0.787505 + 0.616308i 0.788628π0.788628\pi
854854 0 0
855855 0 0
856856 0 0
857857 −58.0000 −1.98124 −0.990621 0.136637i 0.956370π-0.956370\pi
−0.990621 + 0.136637i 0.956370π0.956370\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 52.0000 1.76805
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 58.0000 1.95852 0.979260 0.202606i 0.0649409π-0.0649409\pi
0.979260 + 0.202606i 0.0649409π0.0649409\pi
878878 0 0
879879 0 0
880880 0 0
881881 −50.0000 −1.68454 −0.842271 0.539054i 0.818782π-0.818782\pi
−0.842271 + 0.539054i 0.818782π0.818782\pi
882882 0 0
883883 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 −28.0000 −0.932815
902902 0 0
903903 0 0
904904 0 0
905905 −36.0000 −1.19668
906906 0 0
907907 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 −2.00000 −0.0657596
926926 0 0
927927 0 0
928928 0 0
929929 46.0000 1.50921 0.754606 0.656179i 0.227828π-0.227828\pi
0.754606 + 0.656179i 0.227828π0.227828\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −38.0000 −1.24141 −0.620703 0.784046i 0.713153π-0.713153\pi
−0.620703 + 0.784046i 0.713153π0.713153\pi
938938 0 0
939939 0 0
940940 0 0
941941 −58.0000 −1.89075 −0.945373 0.325991i 0.894302π-0.894302\pi
−0.945373 + 0.325991i 0.894302π0.894302\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 36.0000 1.16861
950950 0 0
951951 0 0
952952 0 0
953953 −26.0000 −0.842223 −0.421111 0.907009i 0.638360π-0.638360\pi
−0.421111 + 0.907009i 0.638360π0.638360\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −31.0000 −1.00000
962962 0 0
963963 0 0
964964 0 0
965965 28.0000 0.901352
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 62.0000 1.98356 0.991778 0.127971i 0.0408466π-0.0408466\pi
0.991778 + 0.127971i 0.0408466π0.0408466\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 4.00000 0.127451
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −62.0000 −1.96356 −0.981780 0.190022i 0.939144π-0.939144\pi
−0.981780 + 0.190022i 0.939144π0.939144\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.2.a.c.1.1 1
3.2 odd 2 64.2.a.a.1.1 1
4.3 odd 2 CM 576.2.a.c.1.1 1
8.3 odd 2 288.2.a.d.1.1 1
8.5 even 2 288.2.a.d.1.1 1
12.11 even 2 64.2.a.a.1.1 1
15.2 even 4 1600.2.c.l.449.2 2
15.8 even 4 1600.2.c.l.449.1 2
15.14 odd 2 1600.2.a.n.1.1 1
16.3 odd 4 2304.2.d.j.1153.2 2
16.5 even 4 2304.2.d.j.1153.1 2
16.11 odd 4 2304.2.d.j.1153.1 2
16.13 even 4 2304.2.d.j.1153.2 2
21.20 even 2 3136.2.a.m.1.1 1
24.5 odd 2 32.2.a.a.1.1 1
24.11 even 2 32.2.a.a.1.1 1
33.32 even 2 7744.2.a.v.1.1 1
40.3 even 4 7200.2.f.m.6049.2 2
40.13 odd 4 7200.2.f.m.6049.2 2
40.19 odd 2 7200.2.a.v.1.1 1
40.27 even 4 7200.2.f.m.6049.1 2
40.29 even 2 7200.2.a.v.1.1 1
40.37 odd 4 7200.2.f.m.6049.1 2
48.5 odd 4 256.2.b.b.129.2 2
48.11 even 4 256.2.b.b.129.2 2
48.29 odd 4 256.2.b.b.129.1 2
48.35 even 4 256.2.b.b.129.1 2
60.23 odd 4 1600.2.c.l.449.1 2
60.47 odd 4 1600.2.c.l.449.2 2
60.59 even 2 1600.2.a.n.1.1 1
72.5 odd 6 2592.2.i.t.865.1 2
72.11 even 6 2592.2.i.t.1729.1 2
72.13 even 6 2592.2.i.e.865.1 2
72.29 odd 6 2592.2.i.t.1729.1 2
72.43 odd 6 2592.2.i.e.1729.1 2
72.59 even 6 2592.2.i.t.865.1 2
72.61 even 6 2592.2.i.e.1729.1 2
72.67 odd 6 2592.2.i.e.865.1 2
84.83 odd 2 3136.2.a.m.1.1 1
96.5 odd 8 1024.2.e.j.769.2 4
96.11 even 8 1024.2.e.j.769.1 4
96.29 odd 8 1024.2.e.j.257.1 4
96.35 even 8 1024.2.e.j.257.1 4
96.53 odd 8 1024.2.e.j.769.1 4
96.59 even 8 1024.2.e.j.769.2 4
96.77 odd 8 1024.2.e.j.257.2 4
96.83 even 8 1024.2.e.j.257.2 4
120.29 odd 2 800.2.a.d.1.1 1
120.53 even 4 800.2.c.e.449.2 2
120.59 even 2 800.2.a.d.1.1 1
120.77 even 4 800.2.c.e.449.1 2
120.83 odd 4 800.2.c.e.449.2 2
120.107 odd 4 800.2.c.e.449.1 2
132.131 odd 2 7744.2.a.v.1.1 1
168.5 even 6 1568.2.i.f.1537.1 2
168.11 even 6 1568.2.i.g.961.1 2
168.53 odd 6 1568.2.i.g.961.1 2
168.59 odd 6 1568.2.i.f.961.1 2
168.83 odd 2 1568.2.a.e.1.1 1
168.101 even 6 1568.2.i.f.961.1 2
168.107 even 6 1568.2.i.g.1537.1 2
168.125 even 2 1568.2.a.e.1.1 1
168.131 odd 6 1568.2.i.f.1537.1 2
168.149 odd 6 1568.2.i.g.1537.1 2
264.131 odd 2 3872.2.a.f.1.1 1
264.197 even 2 3872.2.a.f.1.1 1
312.77 odd 2 5408.2.a.g.1.1 1
312.155 even 2 5408.2.a.g.1.1 1
408.101 odd 2 9248.2.a.f.1.1 1
408.203 even 2 9248.2.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.2.a.a.1.1 1 24.5 odd 2
32.2.a.a.1.1 1 24.11 even 2
64.2.a.a.1.1 1 3.2 odd 2
64.2.a.a.1.1 1 12.11 even 2
256.2.b.b.129.1 2 48.29 odd 4
256.2.b.b.129.1 2 48.35 even 4
256.2.b.b.129.2 2 48.5 odd 4
256.2.b.b.129.2 2 48.11 even 4
288.2.a.d.1.1 1 8.3 odd 2
288.2.a.d.1.1 1 8.5 even 2
576.2.a.c.1.1 1 1.1 even 1 trivial
576.2.a.c.1.1 1 4.3 odd 2 CM
800.2.a.d.1.1 1 120.29 odd 2
800.2.a.d.1.1 1 120.59 even 2
800.2.c.e.449.1 2 120.77 even 4
800.2.c.e.449.1 2 120.107 odd 4
800.2.c.e.449.2 2 120.53 even 4
800.2.c.e.449.2 2 120.83 odd 4
1024.2.e.j.257.1 4 96.29 odd 8
1024.2.e.j.257.1 4 96.35 even 8
1024.2.e.j.257.2 4 96.77 odd 8
1024.2.e.j.257.2 4 96.83 even 8
1024.2.e.j.769.1 4 96.11 even 8
1024.2.e.j.769.1 4 96.53 odd 8
1024.2.e.j.769.2 4 96.5 odd 8
1024.2.e.j.769.2 4 96.59 even 8
1568.2.a.e.1.1 1 168.83 odd 2
1568.2.a.e.1.1 1 168.125 even 2
1568.2.i.f.961.1 2 168.59 odd 6
1568.2.i.f.961.1 2 168.101 even 6
1568.2.i.f.1537.1 2 168.5 even 6
1568.2.i.f.1537.1 2 168.131 odd 6
1568.2.i.g.961.1 2 168.11 even 6
1568.2.i.g.961.1 2 168.53 odd 6
1568.2.i.g.1537.1 2 168.107 even 6
1568.2.i.g.1537.1 2 168.149 odd 6
1600.2.a.n.1.1 1 15.14 odd 2
1600.2.a.n.1.1 1 60.59 even 2
1600.2.c.l.449.1 2 15.8 even 4
1600.2.c.l.449.1 2 60.23 odd 4
1600.2.c.l.449.2 2 15.2 even 4
1600.2.c.l.449.2 2 60.47 odd 4
2304.2.d.j.1153.1 2 16.5 even 4
2304.2.d.j.1153.1 2 16.11 odd 4
2304.2.d.j.1153.2 2 16.3 odd 4
2304.2.d.j.1153.2 2 16.13 even 4
2592.2.i.e.865.1 2 72.13 even 6
2592.2.i.e.865.1 2 72.67 odd 6
2592.2.i.e.1729.1 2 72.43 odd 6
2592.2.i.e.1729.1 2 72.61 even 6
2592.2.i.t.865.1 2 72.5 odd 6
2592.2.i.t.865.1 2 72.59 even 6
2592.2.i.t.1729.1 2 72.11 even 6
2592.2.i.t.1729.1 2 72.29 odd 6
3136.2.a.m.1.1 1 21.20 even 2
3136.2.a.m.1.1 1 84.83 odd 2
3872.2.a.f.1.1 1 264.131 odd 2
3872.2.a.f.1.1 1 264.197 even 2
5408.2.a.g.1.1 1 312.77 odd 2
5408.2.a.g.1.1 1 312.155 even 2
7200.2.a.v.1.1 1 40.19 odd 2
7200.2.a.v.1.1 1 40.29 even 2
7200.2.f.m.6049.1 2 40.27 even 4
7200.2.f.m.6049.1 2 40.37 odd 4
7200.2.f.m.6049.2 2 40.3 even 4
7200.2.f.m.6049.2 2 40.13 odd 4
7744.2.a.v.1.1 1 33.32 even 2
7744.2.a.v.1.1 1 132.131 odd 2
9248.2.a.f.1.1 1 408.101 odd 2
9248.2.a.f.1.1 1 408.203 even 2