Properties

Label 576.2.bd.b.37.12
Level $576$
Weight $2$
Character 576.37
Analytic conductor $4.599$
Analytic rank $0$
Dimension $128$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,2,Mod(37,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([0, 9, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.bd (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59938315643\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 192)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 37.12
Character \(\chi\) \(=\) 576.37
Dual form 576.2.bd.b.109.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.899186 + 1.09154i) q^{2} +(-0.382930 + 1.96300i) q^{4} +(-0.713613 + 3.58757i) q^{5} +(-0.499893 + 1.20685i) q^{7} +(-2.48702 + 1.34712i) q^{8} +(-4.55766 + 2.44696i) q^{10} +(-0.165075 + 0.110300i) q^{11} +(-0.763008 - 3.83590i) q^{13} +(-1.76682 + 0.539527i) q^{14} +(-3.70673 - 1.50338i) q^{16} +(3.40067 - 3.40067i) q^{17} +(1.60520 - 0.319294i) q^{19} +(-6.76914 - 2.77461i) q^{20} +(-0.268830 - 0.0810065i) q^{22} +(-5.45175 + 2.25819i) q^{23} +(-7.74204 - 3.20686i) q^{25} +(3.50096 - 4.28204i) q^{26} +(-2.17762 - 1.44343i) q^{28} +(4.85792 + 3.24596i) q^{29} +7.27965i q^{31} +(-1.69203 - 5.39787i) q^{32} +(6.76981 + 0.654141i) q^{34} +(-3.97293 - 2.65462i) q^{35} +(10.9804 + 2.18414i) q^{37} +(1.79190 + 1.46504i) q^{38} +(-3.05811 - 9.88369i) q^{40} +(-4.05331 + 1.67894i) q^{41} +(4.87955 + 7.30276i) q^{43} +(-0.153306 - 0.366279i) q^{44} +(-7.36704 - 3.92028i) q^{46} +(-7.45854 + 7.45854i) q^{47} +(3.74316 + 3.74316i) q^{49} +(-3.46111 - 11.3343i) q^{50} +(7.82205 - 0.0289041i) q^{52} +(-6.21917 + 4.15552i) q^{53} +(-0.277908 - 0.670930i) q^{55} +(-0.382521 - 3.67487i) q^{56} +(0.825071 + 8.22134i) q^{58} +(1.52940 - 7.68882i) q^{59} +(-0.775973 + 1.16133i) q^{61} +(-7.94605 + 6.54576i) q^{62} +(4.37055 - 6.70062i) q^{64} +14.3061 q^{65} +(-2.61387 + 3.91193i) q^{67} +(5.37330 + 7.97773i) q^{68} +(-0.674764 - 6.72362i) q^{70} +(3.70757 - 8.95087i) q^{71} +(-0.717326 - 1.73178i) q^{73} +(7.48937 + 13.9496i) q^{74} +(0.0120954 + 3.27328i) q^{76} +(-0.0505950 - 0.254358i) q^{77} +(-7.84113 - 7.84113i) q^{79} +(8.03866 - 12.2253i) q^{80} +(-5.47731 - 2.91469i) q^{82} +(8.03366 - 1.59800i) q^{83} +(9.77339 + 14.6269i) q^{85} +(-3.58365 + 11.8928i) q^{86} +(0.261959 - 0.496693i) q^{88} +(9.80970 + 4.06331i) q^{89} +(5.01077 + 0.996705i) q^{91} +(-2.34518 - 11.5665i) q^{92} +(-14.8479 - 1.43470i) q^{94} +5.98663i q^{95} -6.53575i q^{97} +(-0.720021 + 7.45161i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q - 16 q^{22} + 80 q^{26} - 80 q^{28} + 80 q^{32} - 80 q^{34} + 80 q^{38} - 80 q^{40} + 16 q^{44} - 48 q^{50} + 48 q^{52} - 64 q^{55} - 112 q^{56} + 128 q^{59} - 96 q^{62} + 96 q^{64} - 32 q^{67} - 96 q^{68}+ \cdots - 96 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{9}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.899186 + 1.09154i 0.635820 + 0.771837i
\(3\) 0 0
\(4\) −0.382930 + 1.96300i −0.191465 + 0.981499i
\(5\) −0.713613 + 3.58757i −0.319137 + 1.60441i 0.404706 + 0.914447i \(0.367374\pi\)
−0.723843 + 0.689965i \(0.757626\pi\)
\(6\) 0 0
\(7\) −0.499893 + 1.20685i −0.188942 + 0.456146i −0.989756 0.142767i \(-0.954400\pi\)
0.800815 + 0.598912i \(0.204400\pi\)
\(8\) −2.48702 + 1.34712i −0.879295 + 0.476278i
\(9\) 0 0
\(10\) −4.55766 + 2.44696i −1.44126 + 0.773796i
\(11\) −0.165075 + 0.110300i −0.0497720 + 0.0332566i −0.580207 0.814469i \(-0.697028\pi\)
0.530435 + 0.847725i \(0.322028\pi\)
\(12\) 0 0
\(13\) −0.763008 3.83590i −0.211620 1.06389i −0.929810 0.368040i \(-0.880029\pi\)
0.718190 0.695848i \(-0.244971\pi\)
\(14\) −1.76682 + 0.539527i −0.472203 + 0.144195i
\(15\) 0 0
\(16\) −3.70673 1.50338i −0.926682 0.375845i
\(17\) 3.40067 3.40067i 0.824784 0.824784i −0.162006 0.986790i \(-0.551796\pi\)
0.986790 + 0.162006i \(0.0517964\pi\)
\(18\) 0 0
\(19\) 1.60520 0.319294i 0.368258 0.0732512i −0.00749226 0.999972i \(-0.502385\pi\)
0.375751 + 0.926721i \(0.377385\pi\)
\(20\) −6.76914 2.77461i −1.51363 0.620421i
\(21\) 0 0
\(22\) −0.268830 0.0810065i −0.0573147 0.0172706i
\(23\) −5.45175 + 2.25819i −1.13677 + 0.470865i −0.870076 0.492917i \(-0.835930\pi\)
−0.266691 + 0.963782i \(0.585930\pi\)
\(24\) 0 0
\(25\) −7.74204 3.20686i −1.54841 0.641372i
\(26\) 3.50096 4.28204i 0.686595 0.839778i
\(27\) 0 0
\(28\) −2.17762 1.44343i −0.411531 0.272782i
\(29\) 4.85792 + 3.24596i 0.902092 + 0.602759i 0.917767 0.397118i \(-0.129990\pi\)
−0.0156751 + 0.999877i \(0.504990\pi\)
\(30\) 0 0
\(31\) 7.27965i 1.30746i 0.756726 + 0.653732i \(0.226798\pi\)
−0.756726 + 0.653732i \(0.773202\pi\)
\(32\) −1.69203 5.39787i −0.299112 0.954218i
\(33\) 0 0
\(34\) 6.76981 + 0.654141i 1.16101 + 0.112184i
\(35\) −3.97293 2.65462i −0.671547 0.448714i
\(36\) 0 0
\(37\) 10.9804 + 2.18414i 1.80517 + 0.359071i 0.978922 0.204233i \(-0.0654699\pi\)
0.826250 + 0.563304i \(0.190470\pi\)
\(38\) 1.79190 + 1.46504i 0.290684 + 0.237661i
\(39\) 0 0
\(40\) −3.05811 9.88369i −0.483530 1.56275i
\(41\) −4.05331 + 1.67894i −0.633021 + 0.262206i −0.676036 0.736868i \(-0.736304\pi\)
0.0430149 + 0.999074i \(0.486304\pi\)
\(42\) 0 0
\(43\) 4.87955 + 7.30276i 0.744124 + 1.11366i 0.989542 + 0.144244i \(0.0460749\pi\)
−0.245418 + 0.969417i \(0.578925\pi\)
\(44\) −0.153306 0.366279i −0.0231117 0.0552186i
\(45\) 0 0
\(46\) −7.36704 3.92028i −1.08621 0.578014i
\(47\) −7.45854 + 7.45854i −1.08794 + 1.08794i −0.0921995 + 0.995741i \(0.529390\pi\)
−0.995741 + 0.0921995i \(0.970610\pi\)
\(48\) 0 0
\(49\) 3.74316 + 3.74316i 0.534737 + 0.534737i
\(50\) −3.46111 11.3343i −0.489475 1.60292i
\(51\) 0 0
\(52\) 7.82205 0.0289041i 1.08472 0.00400827i
\(53\) −6.21917 + 4.15552i −0.854269 + 0.570804i −0.903794 0.427968i \(-0.859229\pi\)
0.0495244 + 0.998773i \(0.484229\pi\)
\(54\) 0 0
\(55\) −0.277908 0.670930i −0.0374731 0.0904681i
\(56\) −0.382521 3.67487i −0.0511166 0.491075i
\(57\) 0 0
\(58\) 0.825071 + 8.22134i 0.108337 + 1.07951i
\(59\) 1.52940 7.68882i 0.199111 1.00100i −0.743913 0.668276i \(-0.767032\pi\)
0.943024 0.332723i \(-0.107968\pi\)
\(60\) 0 0
\(61\) −0.775973 + 1.16133i −0.0993531 + 0.148692i −0.877816 0.478999i \(-0.841000\pi\)
0.778463 + 0.627691i \(0.216000\pi\)
\(62\) −7.94605 + 6.54576i −1.00915 + 0.831312i
\(63\) 0 0
\(64\) 4.37055 6.70062i 0.546319 0.837577i
\(65\) 14.3061 1.77445
\(66\) 0 0
\(67\) −2.61387 + 3.91193i −0.319335 + 0.477919i −0.956059 0.293173i \(-0.905289\pi\)
0.636724 + 0.771091i \(0.280289\pi\)
\(68\) 5.37330 + 7.97773i 0.651608 + 0.967442i
\(69\) 0 0
\(70\) −0.674764 6.72362i −0.0806497 0.803626i
\(71\) 3.70757 8.95087i 0.440008 1.06227i −0.535938 0.844257i \(-0.680042\pi\)
0.975945 0.218015i \(-0.0699582\pi\)
\(72\) 0 0
\(73\) −0.717326 1.73178i −0.0839566 0.202689i 0.876326 0.481719i \(-0.159987\pi\)
−0.960283 + 0.279029i \(0.909987\pi\)
\(74\) 7.48937 + 13.9496i 0.870621 + 1.62160i
\(75\) 0 0
\(76\) 0.0120954 + 3.27328i 0.00138744 + 0.375471i
\(77\) −0.0505950 0.254358i −0.00576584 0.0289868i
\(78\) 0 0
\(79\) −7.84113 7.84113i −0.882196 0.882196i 0.111561 0.993758i \(-0.464415\pi\)
−0.993758 + 0.111561i \(0.964415\pi\)
\(80\) 8.03866 12.2253i 0.898749 1.36683i
\(81\) 0 0
\(82\) −5.47731 2.91469i −0.604868 0.321873i
\(83\) 8.03366 1.59800i 0.881809 0.175403i 0.266638 0.963797i \(-0.414087\pi\)
0.615171 + 0.788394i \(0.289087\pi\)
\(84\) 0 0
\(85\) 9.77339 + 14.6269i 1.06007 + 1.58651i
\(86\) −3.58365 + 11.8928i −0.386435 + 1.28243i
\(87\) 0 0
\(88\) 0.261959 0.496693i 0.0279249 0.0529476i
\(89\) 9.80970 + 4.06331i 1.03983 + 0.430710i 0.836250 0.548349i \(-0.184743\pi\)
0.203576 + 0.979059i \(0.434743\pi\)
\(90\) 0 0
\(91\) 5.01077 + 0.996705i 0.525272 + 0.104483i
\(92\) −2.34518 11.5665i −0.244502 1.20589i
\(93\) 0 0
\(94\) −14.8479 1.43470i −1.53145 0.147978i
\(95\) 5.98663i 0.614215i
\(96\) 0 0
\(97\) 6.53575i 0.663605i −0.943349 0.331802i \(-0.892343\pi\)
0.943349 0.331802i \(-0.107657\pi\)
\(98\) −0.720021 + 7.45161i −0.0727331 + 0.752726i
\(99\) 0 0
\(100\) 9.25972 13.9696i 0.925972 1.39696i
\(101\) 12.0391 + 2.39472i 1.19793 + 0.238284i 0.753452 0.657503i \(-0.228387\pi\)
0.444483 + 0.895787i \(0.353387\pi\)
\(102\) 0 0
\(103\) −3.02423 1.25268i −0.297986 0.123430i 0.228681 0.973501i \(-0.426559\pi\)
−0.526667 + 0.850072i \(0.676559\pi\)
\(104\) 7.06503 + 8.51211i 0.692783 + 0.834681i
\(105\) 0 0
\(106\) −10.1281 3.05191i −0.983730 0.296428i
\(107\) −5.92917 8.87362i −0.573194 0.857846i 0.425700 0.904864i \(-0.360028\pi\)
−0.998894 + 0.0470188i \(0.985028\pi\)
\(108\) 0 0
\(109\) 9.42819 1.87538i 0.903056 0.179629i 0.278342 0.960482i \(-0.410215\pi\)
0.624715 + 0.780853i \(0.285215\pi\)
\(110\) 0.482457 0.906639i 0.0460005 0.0864446i
\(111\) 0 0
\(112\) 3.66732 3.72193i 0.346529 0.351689i
\(113\) −3.00161 3.00161i −0.282368 0.282368i 0.551685 0.834053i \(-0.313985\pi\)
−0.834053 + 0.551685i \(0.813985\pi\)
\(114\) 0 0
\(115\) −4.21098 21.1700i −0.392676 1.97411i
\(116\) −8.23205 + 8.29311i −0.764326 + 0.769996i
\(117\) 0 0
\(118\) 9.76790 5.24427i 0.899208 0.482775i
\(119\) 2.40412 + 5.80407i 0.220386 + 0.532058i
\(120\) 0 0
\(121\) −4.19443 + 10.1263i −0.381312 + 0.920569i
\(122\) −1.96538 + 0.197240i −0.177937 + 0.0178573i
\(123\) 0 0
\(124\) −14.2899 2.78759i −1.28328 0.250333i
\(125\) 6.86868 10.2797i 0.614353 0.919445i
\(126\) 0 0
\(127\) 8.30918 0.737321 0.368660 0.929564i \(-0.379817\pi\)
0.368660 + 0.929564i \(0.379817\pi\)
\(128\) 11.2439 1.25446i 0.993834 0.110879i
\(129\) 0 0
\(130\) 12.8638 + 15.6157i 1.12823 + 1.36959i
\(131\) 0.0841669 0.125965i 0.00735370 0.0110056i −0.827775 0.561061i \(-0.810393\pi\)
0.835128 + 0.550055i \(0.185393\pi\)
\(132\) 0 0
\(133\) −0.417089 + 2.09685i −0.0361662 + 0.181820i
\(134\) −6.62039 + 0.664405i −0.571915 + 0.0573958i
\(135\) 0 0
\(136\) −3.87644 + 13.0386i −0.332402 + 1.11805i
\(137\) −7.53903 18.2008i −0.644103 1.55500i −0.821096 0.570790i \(-0.806637\pi\)
0.176993 0.984212i \(-0.443363\pi\)
\(138\) 0 0
\(139\) 5.12863 3.42684i 0.435005 0.290661i −0.318723 0.947848i \(-0.603254\pi\)
0.753728 + 0.657187i \(0.228254\pi\)
\(140\) 6.73238 6.78232i 0.568990 0.573210i
\(141\) 0 0
\(142\) 13.1040 4.00152i 1.09967 0.335800i
\(143\) 0.549052 + 0.549052i 0.0459140 + 0.0459140i
\(144\) 0 0
\(145\) −15.1118 + 15.1118i −1.25496 + 1.25496i
\(146\) 1.24530 2.34018i 0.103062 0.193675i
\(147\) 0 0
\(148\) −8.49221 + 20.7182i −0.698055 + 1.70303i
\(149\) 3.31602 + 4.96278i 0.271659 + 0.406567i 0.942066 0.335427i \(-0.108881\pi\)
−0.670407 + 0.741993i \(0.733881\pi\)
\(150\) 0 0
\(151\) −15.2579 + 6.32003i −1.24167 + 0.514317i −0.904236 0.427033i \(-0.859559\pi\)
−0.337434 + 0.941349i \(0.609559\pi\)
\(152\) −3.56204 + 2.95649i −0.288920 + 0.239803i
\(153\) 0 0
\(154\) 0.232149 0.283942i 0.0187071 0.0228807i
\(155\) −26.1163 5.19485i −2.09771 0.417261i
\(156\) 0 0
\(157\) 2.68759 + 1.79579i 0.214493 + 0.143320i 0.658176 0.752864i \(-0.271328\pi\)
−0.443683 + 0.896184i \(0.646328\pi\)
\(158\) 1.50829 15.6096i 0.119993 1.24183i
\(159\) 0 0
\(160\) 20.5727 2.21831i 1.62642 0.175373i
\(161\) 7.70828i 0.607498i
\(162\) 0 0
\(163\) −9.67619 6.46543i −0.757898 0.506411i 0.115566 0.993300i \(-0.463132\pi\)
−0.873464 + 0.486888i \(0.838132\pi\)
\(164\) −1.74362 8.59957i −0.136154 0.671513i
\(165\) 0 0
\(166\) 8.96804 + 7.33219i 0.696055 + 0.569088i
\(167\) 18.0933 + 7.49447i 1.40010 + 0.579940i 0.949777 0.312927i \(-0.101310\pi\)
0.450321 + 0.892867i \(0.351310\pi\)
\(168\) 0 0
\(169\) −2.12152 + 0.878764i −0.163194 + 0.0675972i
\(170\) −7.17780 + 23.8204i −0.550512 + 1.82694i
\(171\) 0 0
\(172\) −16.2038 + 6.78211i −1.23553 + 0.517131i
\(173\) 13.6336 2.71189i 1.03654 0.206181i 0.352645 0.935757i \(-0.385282\pi\)
0.683900 + 0.729576i \(0.260282\pi\)
\(174\) 0 0
\(175\) 7.74038 7.74038i 0.585118 0.585118i
\(176\) 0.777710 0.160680i 0.0586221 0.0121117i
\(177\) 0 0
\(178\) 4.38547 + 14.3614i 0.328705 + 1.07643i
\(179\) 4.72336 + 23.7459i 0.353040 + 1.77485i 0.594148 + 0.804356i \(0.297489\pi\)
−0.241107 + 0.970498i \(0.577511\pi\)
\(180\) 0 0
\(181\) 17.1020 11.4272i 1.27118 0.849374i 0.277401 0.960754i \(-0.410527\pi\)
0.993778 + 0.111380i \(0.0355271\pi\)
\(182\) 3.41767 + 6.36569i 0.253335 + 0.471857i
\(183\) 0 0
\(184\) 10.5166 12.9603i 0.775292 0.955446i
\(185\) −15.6716 + 37.8345i −1.15220 + 2.78165i
\(186\) 0 0
\(187\) −0.186273 + 0.936458i −0.0136216 + 0.0684806i
\(188\) −11.7850 17.4972i −0.859510 1.27611i
\(189\) 0 0
\(190\) −6.53466 + 5.38309i −0.474074 + 0.390531i
\(191\) −2.23266 −0.161550 −0.0807749 0.996732i \(-0.525739\pi\)
−0.0807749 + 0.996732i \(0.525739\pi\)
\(192\) 0 0
\(193\) 19.2570 1.38615 0.693074 0.720867i \(-0.256256\pi\)
0.693074 + 0.720867i \(0.256256\pi\)
\(194\) 7.13405 5.87685i 0.512195 0.421933i
\(195\) 0 0
\(196\) −8.78118 + 5.91445i −0.627227 + 0.422461i
\(197\) 2.96931 14.9277i 0.211554 1.06356i −0.718329 0.695703i \(-0.755093\pi\)
0.929884 0.367853i \(-0.119907\pi\)
\(198\) 0 0
\(199\) −7.09511 + 17.1291i −0.502959 + 1.21425i 0.444906 + 0.895577i \(0.353237\pi\)
−0.947865 + 0.318673i \(0.896763\pi\)
\(200\) 23.5746 2.45391i 1.66698 0.173518i
\(201\) 0 0
\(202\) 8.21144 + 15.2945i 0.577755 + 1.07612i
\(203\) −6.34581 + 4.24014i −0.445389 + 0.297599i
\(204\) 0 0
\(205\) −3.13082 15.7397i −0.218666 1.09931i
\(206\) −1.35199 4.42746i −0.0941978 0.308476i
\(207\) 0 0
\(208\) −2.93856 + 15.3657i −0.203752 + 1.06542i
\(209\) −0.229761 + 0.229761i −0.0158929 + 0.0158929i
\(210\) 0 0
\(211\) 4.58044 0.911106i 0.315330 0.0627231i −0.0348879 0.999391i \(-0.511107\pi\)
0.350218 + 0.936668i \(0.386107\pi\)
\(212\) −5.77577 13.7995i −0.396682 0.947754i
\(213\) 0 0
\(214\) 4.35452 14.4510i 0.297669 0.987848i
\(215\) −29.6813 + 12.2944i −2.02425 + 0.838471i
\(216\) 0 0
\(217\) −8.78544 3.63905i −0.596394 0.247035i
\(218\) 10.5248 + 8.60495i 0.712826 + 0.582801i
\(219\) 0 0
\(220\) 1.42345 0.288615i 0.0959692 0.0194584i
\(221\) −15.6394 10.4499i −1.05202 0.702936i
\(222\) 0 0
\(223\) 10.0197i 0.670969i 0.942046 + 0.335485i \(0.108900\pi\)
−0.942046 + 0.335485i \(0.891100\pi\)
\(224\) 7.36025 + 0.656328i 0.491777 + 0.0438528i
\(225\) 0 0
\(226\) 0.577380 5.97540i 0.0384067 0.397477i
\(227\) 4.13349 + 2.76191i 0.274349 + 0.183314i 0.685132 0.728419i \(-0.259745\pi\)
−0.410783 + 0.911733i \(0.634745\pi\)
\(228\) 0 0
\(229\) −6.49438 1.29181i −0.429161 0.0853654i −0.0242164 0.999707i \(-0.507709\pi\)
−0.404944 + 0.914341i \(0.632709\pi\)
\(230\) 19.3215 23.6322i 1.27402 1.55826i
\(231\) 0 0
\(232\) −16.4544 1.52858i −1.08029 0.100356i
\(233\) −10.0645 + 4.16886i −0.659349 + 0.273111i −0.687165 0.726502i \(-0.741145\pi\)
0.0278157 + 0.999613i \(0.491145\pi\)
\(234\) 0 0
\(235\) −21.4356 32.0806i −1.39830 2.09271i
\(236\) 14.5075 + 5.94649i 0.944358 + 0.387084i
\(237\) 0 0
\(238\) −4.17363 + 7.84314i −0.270536 + 0.508395i
\(239\) 18.9787 18.9787i 1.22763 1.22763i 0.262772 0.964858i \(-0.415363\pi\)
0.964858 0.262772i \(-0.0846366\pi\)
\(240\) 0 0
\(241\) −7.41861 7.41861i −0.477875 0.477875i 0.426577 0.904451i \(-0.359719\pi\)
−0.904451 + 0.426577i \(0.859719\pi\)
\(242\) −14.8248 + 4.52699i −0.952975 + 0.291006i
\(243\) 0 0
\(244\) −1.98254 1.96794i −0.126919 0.125984i
\(245\) −16.1000 + 10.7577i −1.02859 + 0.687283i
\(246\) 0 0
\(247\) −2.44956 5.91377i −0.155862 0.376284i
\(248\) −9.80654 18.1047i −0.622716 1.14965i
\(249\) 0 0
\(250\) 17.3969 1.74591i 1.10028 0.110421i
\(251\) 3.96207 19.9187i 0.250084 1.25725i −0.627798 0.778377i \(-0.716044\pi\)
0.877881 0.478878i \(-0.158956\pi\)
\(252\) 0 0
\(253\) 0.650870 0.974095i 0.0409198 0.0612408i
\(254\) 7.47150 + 9.06983i 0.468804 + 0.569091i
\(255\) 0 0
\(256\) 11.4797 + 11.1453i 0.717481 + 0.696578i
\(257\) 1.37931 0.0860393 0.0430196 0.999074i \(-0.486302\pi\)
0.0430196 + 0.999074i \(0.486302\pi\)
\(258\) 0 0
\(259\) −8.12497 + 12.1599i −0.504861 + 0.755578i
\(260\) −5.47822 + 28.0828i −0.339745 + 1.74162i
\(261\) 0 0
\(262\) 0.213178 0.0213939i 0.0131702 0.00132172i
\(263\) −1.86485 + 4.50216i −0.114992 + 0.277615i −0.970888 0.239532i \(-0.923006\pi\)
0.855897 + 0.517147i \(0.173006\pi\)
\(264\) 0 0
\(265\) −10.4701 25.2772i −0.643176 1.55276i
\(266\) −2.66384 + 1.43019i −0.163330 + 0.0876903i
\(267\) 0 0
\(268\) −6.67819 6.62902i −0.407935 0.404932i
\(269\) −0.807880 4.06149i −0.0492573 0.247633i 0.948310 0.317346i \(-0.102792\pi\)
−0.997567 + 0.0697128i \(0.977792\pi\)
\(270\) 0 0
\(271\) 4.86041 + 4.86041i 0.295249 + 0.295249i 0.839150 0.543901i \(-0.183053\pi\)
−0.543901 + 0.839150i \(0.683053\pi\)
\(272\) −17.7179 + 7.49286i −1.07430 + 0.454322i
\(273\) 0 0
\(274\) 13.0880 24.5951i 0.790675 1.48584i
\(275\) 1.63173 0.324572i 0.0983972 0.0195724i
\(276\) 0 0
\(277\) −9.49029 14.2032i −0.570216 0.853389i 0.428526 0.903529i \(-0.359033\pi\)
−0.998742 + 0.0501407i \(0.984033\pi\)
\(278\) 8.35214 + 2.51675i 0.500928 + 0.150945i
\(279\) 0 0
\(280\) 13.4568 + 1.25011i 0.804200 + 0.0747085i
\(281\) −4.37830 1.81355i −0.261187 0.108187i 0.248247 0.968697i \(-0.420145\pi\)
−0.509435 + 0.860509i \(0.670145\pi\)
\(282\) 0 0
\(283\) −4.66157 0.927244i −0.277102 0.0551189i 0.0545831 0.998509i \(-0.482617\pi\)
−0.331685 + 0.943390i \(0.607617\pi\)
\(284\) 16.1508 + 10.7055i 0.958374 + 0.635255i
\(285\) 0 0
\(286\) −0.105614 + 1.09301i −0.00624507 + 0.0646312i
\(287\) 5.73102i 0.338292i
\(288\) 0 0
\(289\) 6.12913i 0.360537i
\(290\) −30.0834 2.90685i −1.76656 0.170696i
\(291\) 0 0
\(292\) 3.67416 0.744961i 0.215014 0.0435955i
\(293\) 6.99926 + 1.39224i 0.408901 + 0.0813355i 0.395255 0.918571i \(-0.370656\pi\)
0.0136460 + 0.999907i \(0.495656\pi\)
\(294\) 0 0
\(295\) 26.4928 + 10.9737i 1.54247 + 0.638913i
\(296\) −30.2509 + 9.35992i −1.75830 + 0.544034i
\(297\) 0 0
\(298\) −2.43536 + 8.08204i −0.141077 + 0.468180i
\(299\) 12.8219 + 19.1893i 0.741510 + 1.10975i
\(300\) 0 0
\(301\) −11.2526 + 2.23828i −0.648588 + 0.129012i
\(302\) −20.6183 10.9718i −1.18645 0.631354i
\(303\) 0 0
\(304\) −6.43007 1.22969i −0.368790 0.0705276i
\(305\) −3.61259 3.61259i −0.206857 0.206857i
\(306\) 0 0
\(307\) −3.43935 17.2908i −0.196294 0.986838i −0.945778 0.324815i \(-0.894698\pi\)
0.749484 0.662023i \(-0.230302\pi\)
\(308\) 0.518680 0.00191663i 0.0295545 0.000109210i
\(309\) 0 0
\(310\) −17.8130 33.1782i −1.01171 1.88439i
\(311\) −0.364148 0.879131i −0.0206489 0.0498509i 0.913219 0.407470i \(-0.133589\pi\)
−0.933868 + 0.357619i \(0.883589\pi\)
\(312\) 0 0
\(313\) 11.4921 27.7444i 0.649571 1.56820i −0.163822 0.986490i \(-0.552382\pi\)
0.813394 0.581714i \(-0.197618\pi\)
\(314\) 0.456462 + 4.54837i 0.0257597 + 0.256680i
\(315\) 0 0
\(316\) 18.3947 12.3895i 1.03478 0.696966i
\(317\) 12.2103 18.2741i 0.685801 1.02637i −0.311302 0.950311i \(-0.600765\pi\)
0.997103 0.0760631i \(-0.0242351\pi\)
\(318\) 0 0
\(319\) −1.15995 −0.0649446
\(320\) 20.9201 + 20.4613i 1.16947 + 1.14382i
\(321\) 0 0
\(322\) 8.41392 6.93118i 0.468889 0.386259i
\(323\) 4.37295 6.54458i 0.243317 0.364150i
\(324\) 0 0
\(325\) −6.39395 + 32.1446i −0.354673 + 1.78306i
\(326\) −1.64341 16.3756i −0.0910201 0.906960i
\(327\) 0 0
\(328\) 7.81895 9.63584i 0.431729 0.532050i
\(329\) −5.27286 12.7298i −0.290702 0.701817i
\(330\) 0 0
\(331\) −9.80351 + 6.55049i −0.538849 + 0.360048i −0.795019 0.606584i \(-0.792539\pi\)
0.256170 + 0.966632i \(0.417539\pi\)
\(332\) 0.0605348 + 16.3820i 0.00332228 + 0.899079i
\(333\) 0 0
\(334\) 8.08867 + 26.4885i 0.442592 + 1.44939i
\(335\) −12.1691 12.1691i −0.664866 0.664866i
\(336\) 0 0
\(337\) −20.0178 + 20.0178i −1.09044 + 1.09044i −0.0949600 + 0.995481i \(0.530272\pi\)
−0.995481 + 0.0949600i \(0.969728\pi\)
\(338\) −2.86685 1.52556i −0.155936 0.0829795i
\(339\) 0 0
\(340\) −32.4551 + 13.5841i −1.76013 + 0.736700i
\(341\) −0.802942 1.20169i −0.0434818 0.0650751i
\(342\) 0 0
\(343\) −14.8365 + 6.14550i −0.801098 + 0.331826i
\(344\) −21.9732 11.5888i −1.18472 0.624826i
\(345\) 0 0
\(346\) 15.2193 + 12.4432i 0.818195 + 0.668949i
\(347\) −20.6727 4.11207i −1.10977 0.220747i −0.394020 0.919102i \(-0.628916\pi\)
−0.715752 + 0.698355i \(0.753916\pi\)
\(348\) 0 0
\(349\) 2.15070 + 1.43705i 0.115125 + 0.0769238i 0.611800 0.791013i \(-0.290446\pi\)
−0.496675 + 0.867937i \(0.665446\pi\)
\(350\) 15.4090 + 1.48891i 0.823646 + 0.0795858i
\(351\) 0 0
\(352\) 0.874695 + 0.704423i 0.0466214 + 0.0375459i
\(353\) 2.31496i 0.123213i −0.998101 0.0616065i \(-0.980378\pi\)
0.998101 0.0616065i \(-0.0196224\pi\)
\(354\) 0 0
\(355\) 29.4661 + 19.6886i 1.56390 + 1.04496i
\(356\) −11.7327 + 17.7005i −0.621832 + 0.938123i
\(357\) 0 0
\(358\) −21.6725 + 26.5078i −1.14543 + 1.40098i
\(359\) −7.38180 3.05764i −0.389596 0.161376i 0.179282 0.983798i \(-0.442622\pi\)
−0.568878 + 0.822422i \(0.692622\pi\)
\(360\) 0 0
\(361\) −15.0790 + 6.24592i −0.793631 + 0.328733i
\(362\) 27.8511 + 8.39237i 1.46382 + 0.441093i
\(363\) 0 0
\(364\) −3.87530 + 9.45447i −0.203121 + 0.495549i
\(365\) 6.72477 1.33764i 0.351991 0.0700153i
\(366\) 0 0
\(367\) 9.81262 9.81262i 0.512214 0.512214i −0.402990 0.915204i \(-0.632029\pi\)
0.915204 + 0.402990i \(0.132029\pi\)
\(368\) 23.6031 0.174439i 1.23039 0.00909325i
\(369\) 0 0
\(370\) −55.3896 + 16.9141i −2.87957 + 0.879320i
\(371\) −1.90616 9.58291i −0.0989629 0.497520i
\(372\) 0 0
\(373\) −0.177392 + 0.118530i −0.00918504 + 0.00613724i −0.560154 0.828388i \(-0.689258\pi\)
0.550969 + 0.834526i \(0.314258\pi\)
\(374\) −1.18968 + 0.638725i −0.0615168 + 0.0330277i
\(375\) 0 0
\(376\) 8.50203 28.5971i 0.438458 1.47478i
\(377\) 8.74454 21.1112i 0.450366 1.08728i
\(378\) 0 0
\(379\) 5.76906 29.0030i 0.296337 1.48979i −0.489855 0.871804i \(-0.662950\pi\)
0.786192 0.617982i \(-0.212050\pi\)
\(380\) −11.7518 2.29246i −0.602852 0.117601i
\(381\) 0 0
\(382\) −2.00758 2.43705i −0.102717 0.124690i
\(383\) −12.8505 −0.656630 −0.328315 0.944568i \(-0.606481\pi\)
−0.328315 + 0.944568i \(0.606481\pi\)
\(384\) 0 0
\(385\) 0.948635 0.0483469
\(386\) 17.3156 + 21.0198i 0.881341 + 1.06988i
\(387\) 0 0
\(388\) 12.8297 + 2.50273i 0.651328 + 0.127057i
\(389\) −5.91554 + 29.7394i −0.299930 + 1.50785i 0.477362 + 0.878707i \(0.341593\pi\)
−0.777291 + 0.629141i \(0.783407\pi\)
\(390\) 0 0
\(391\) −10.8602 + 26.2189i −0.549226 + 1.32595i
\(392\) −14.3518 4.26684i −0.724875 0.215508i
\(393\) 0 0
\(394\) 18.9642 10.1817i 0.955403 0.512945i
\(395\) 33.7262 22.5351i 1.69695 1.13386i
\(396\) 0 0
\(397\) 0.547363 + 2.75178i 0.0274713 + 0.138108i 0.992087 0.125552i \(-0.0400703\pi\)
−0.964616 + 0.263660i \(0.915070\pi\)
\(398\) −25.0770 + 7.65764i −1.25700 + 0.383843i
\(399\) 0 0
\(400\) 23.8765 + 23.5262i 1.19383 + 1.17631i
\(401\) −5.30890 + 5.30890i −0.265114 + 0.265114i −0.827128 0.562014i \(-0.810027\pi\)
0.562014 + 0.827128i \(0.310027\pi\)
\(402\) 0 0
\(403\) 27.9240 5.55443i 1.39099 0.276686i
\(404\) −9.31097 + 22.7157i −0.463238 + 1.13015i
\(405\) 0 0
\(406\) −10.3344 3.11405i −0.512885 0.154548i
\(407\) −2.05350 + 0.850589i −0.101788 + 0.0421622i
\(408\) 0 0
\(409\) 31.4593 + 13.0309i 1.55556 + 0.644336i 0.984312 0.176438i \(-0.0564576\pi\)
0.571253 + 0.820774i \(0.306458\pi\)
\(410\) 14.3653 17.5703i 0.709453 0.867736i
\(411\) 0 0
\(412\) 3.61707 5.45687i 0.178200 0.268840i
\(413\) 8.51471 + 5.68935i 0.418981 + 0.279954i
\(414\) 0 0
\(415\) 29.9617i 1.47076i
\(416\) −19.4147 + 10.6091i −0.951882 + 0.520154i
\(417\) 0 0
\(418\) −0.457391 0.0441959i −0.0223717 0.00216169i
\(419\) 20.2970 + 13.5620i 0.991575 + 0.662549i 0.941787 0.336211i \(-0.109145\pi\)
0.0497881 + 0.998760i \(0.484145\pi\)
\(420\) 0 0
\(421\) −13.5127 2.68784i −0.658567 0.130997i −0.145517 0.989356i \(-0.546484\pi\)
−0.513050 + 0.858359i \(0.671484\pi\)
\(422\) 5.11318 + 4.18049i 0.248906 + 0.203503i
\(423\) 0 0
\(424\) 9.86925 18.7128i 0.479293 0.908775i
\(425\) −37.2336 + 15.4227i −1.80610 + 0.748109i
\(426\) 0 0
\(427\) −1.01364 1.51702i −0.0490535 0.0734137i
\(428\) 19.6894 8.24097i 0.951722 0.398343i
\(429\) 0 0
\(430\) −40.1089 21.3435i −1.93422 1.02927i
\(431\) 20.9078 20.9078i 1.00709 1.00709i 0.00711650 0.999975i \(-0.497735\pi\)
0.999975 0.00711650i \(-0.00226527\pi\)
\(432\) 0 0
\(433\) −0.457834 0.457834i −0.0220021 0.0220021i 0.696020 0.718022i \(-0.254952\pi\)
−0.718022 + 0.696020i \(0.754952\pi\)
\(434\) −3.92757 12.8619i −0.188529 0.617389i
\(435\) 0 0
\(436\) 0.0710428 + 19.2257i 0.00340233 + 0.920742i
\(437\) −8.03012 + 5.36556i −0.384133 + 0.256669i
\(438\) 0 0
\(439\) 6.59677 + 15.9260i 0.314847 + 0.760107i 0.999512 + 0.0312490i \(0.00994849\pi\)
−0.684665 + 0.728858i \(0.740052\pi\)
\(440\) 1.59498 + 1.29424i 0.0760379 + 0.0617005i
\(441\) 0 0
\(442\) −2.65620 26.4674i −0.126343 1.25893i
\(443\) −2.90152 + 14.5869i −0.137856 + 0.693047i 0.848602 + 0.529031i \(0.177445\pi\)
−0.986458 + 0.164015i \(0.947555\pi\)
\(444\) 0 0
\(445\) −21.5777 + 32.2934i −1.02288 + 1.53085i
\(446\) −10.9369 + 9.00958i −0.517879 + 0.426616i
\(447\) 0 0
\(448\) 5.90182 + 8.62418i 0.278835 + 0.407454i
\(449\) −15.4273 −0.728058 −0.364029 0.931388i \(-0.618599\pi\)
−0.364029 + 0.931388i \(0.618599\pi\)
\(450\) 0 0
\(451\) 0.483915 0.724229i 0.0227866 0.0341026i
\(452\) 7.04157 4.74276i 0.331208 0.223081i
\(453\) 0 0
\(454\) 0.702034 + 6.99535i 0.0329481 + 0.328308i
\(455\) −7.15150 + 17.2653i −0.335268 + 0.809408i
\(456\) 0 0
\(457\) 4.44301 + 10.7264i 0.207835 + 0.501758i 0.993082 0.117425i \(-0.0374639\pi\)
−0.785247 + 0.619183i \(0.787464\pi\)
\(458\) −4.42959 8.25047i −0.206981 0.385519i
\(459\) 0 0
\(460\) 43.1692 0.159519i 2.01277 0.00743762i
\(461\) 1.96662 + 9.88687i 0.0915946 + 0.460477i 0.999175 + 0.0405999i \(0.0129269\pi\)
−0.907581 + 0.419877i \(0.862073\pi\)
\(462\) 0 0
\(463\) −20.2792 20.2792i −0.942453 0.942453i 0.0559787 0.998432i \(-0.482172\pi\)
−0.998432 + 0.0559787i \(0.982172\pi\)
\(464\) −13.1271 19.3352i −0.609409 0.897613i
\(465\) 0 0
\(466\) −13.6004 7.23727i −0.630025 0.335260i
\(467\) 6.72549 1.33778i 0.311219 0.0619053i −0.0370098 0.999315i \(-0.511783\pi\)
0.348229 + 0.937410i \(0.386783\pi\)
\(468\) 0 0
\(469\) −3.41445 5.11009i −0.157665 0.235962i
\(470\) 15.7428 52.2442i 0.726159 2.40985i
\(471\) 0 0
\(472\) 6.55409 + 21.1826i 0.301676 + 0.975006i
\(473\) −1.61098 0.667291i −0.0740731 0.0306821i
\(474\) 0 0
\(475\) −13.4515 2.67566i −0.617196 0.122768i
\(476\) −12.3140 + 2.49674i −0.564411 + 0.114438i
\(477\) 0 0
\(478\) 37.7814 + 3.65068i 1.72808 + 0.166978i
\(479\) 23.5713i 1.07700i −0.842626 0.538500i \(-0.818991\pi\)
0.842626 0.538500i \(-0.181009\pi\)
\(480\) 0 0
\(481\) 43.7864i 1.99649i
\(482\) 1.42702 14.7684i 0.0649989 0.672684i
\(483\) 0 0
\(484\) −18.2717 12.1113i −0.830530 0.550514i
\(485\) 23.4475 + 4.66399i 1.06470 + 0.211781i
\(486\) 0 0
\(487\) −16.3288 6.76359i −0.739927 0.306488i −0.0193027 0.999814i \(-0.506145\pi\)
−0.720624 + 0.693326i \(0.756145\pi\)
\(488\) 0.365420 3.93357i 0.0165418 0.178064i
\(489\) 0 0
\(490\) −26.2194 7.90069i −1.18447 0.356917i
\(491\) −4.13695 6.19138i −0.186698 0.279413i 0.726300 0.687378i \(-0.241238\pi\)
−0.912997 + 0.407965i \(0.866238\pi\)
\(492\) 0 0
\(493\) 27.5586 5.48175i 1.24118 0.246885i
\(494\) 4.25252 7.99138i 0.191330 0.359549i
\(495\) 0 0
\(496\) 10.9441 26.9837i 0.491404 1.21160i
\(497\) 8.94895 + 8.94895i 0.401415 + 0.401415i
\(498\) 0 0
\(499\) 2.64752 + 13.3100i 0.118519 + 0.595836i 0.993703 + 0.112045i \(0.0357402\pi\)
−0.875184 + 0.483790i \(0.839260\pi\)
\(500\) 17.5488 + 17.4196i 0.784807 + 0.779029i
\(501\) 0 0
\(502\) 25.3047 13.5858i 1.12940 0.606365i
\(503\) −2.32837 5.62119i −0.103817 0.250636i 0.863432 0.504465i \(-0.168310\pi\)
−0.967249 + 0.253828i \(0.918310\pi\)
\(504\) 0 0
\(505\) −17.1825 + 41.4822i −0.764611 + 1.84593i
\(506\) 1.64852 0.165441i 0.0732856 0.00735474i
\(507\) 0 0
\(508\) −3.18183 + 16.3109i −0.141171 + 0.723680i
\(509\) −11.8294 + 17.7040i −0.524330 + 0.784716i −0.995239 0.0974662i \(-0.968926\pi\)
0.470908 + 0.882182i \(0.343926\pi\)
\(510\) 0 0
\(511\) 2.44858 0.108319
\(512\) −1.84314 + 22.5522i −0.0814561 + 0.996677i
\(513\) 0 0
\(514\) 1.24026 + 1.50558i 0.0547055 + 0.0664083i
\(515\) 6.65219 9.95571i 0.293131 0.438701i
\(516\) 0 0
\(517\) 0.408545 2.05389i 0.0179678 0.0903301i
\(518\) −20.5789 + 2.06524i −0.904184 + 0.0907415i
\(519\) 0 0
\(520\) −35.5795 + 19.2719i −1.56026 + 0.845131i
\(521\) 1.46823 + 3.54461i 0.0643242 + 0.155292i 0.952773 0.303683i \(-0.0982165\pi\)
−0.888449 + 0.458976i \(0.848217\pi\)
\(522\) 0 0
\(523\) 23.2525 15.5368i 1.01676 0.679378i 0.0687557 0.997634i \(-0.478097\pi\)
0.948005 + 0.318256i \(0.103097\pi\)
\(524\) 0.215039 + 0.213455i 0.00939400 + 0.00932483i
\(525\) 0 0
\(526\) −6.59115 + 2.01271i −0.287388 + 0.0877583i
\(527\) 24.7557 + 24.7557i 1.07838 + 1.07838i
\(528\) 0 0
\(529\) 8.35867 8.35867i 0.363420 0.363420i
\(530\) 18.1765 34.1575i 0.789537 1.48371i
\(531\) 0 0
\(532\) −3.95639 1.62169i −0.171531 0.0703092i
\(533\) 9.53295 + 14.2671i 0.412918 + 0.617975i
\(534\) 0 0
\(535\) 36.0659 14.9390i 1.55927 0.645869i
\(536\) 1.23092 13.2502i 0.0531676 0.572324i
\(537\) 0 0
\(538\) 3.70685 4.53387i 0.159814 0.195469i
\(539\) −1.03077 0.205033i −0.0443984 0.00883139i
\(540\) 0 0
\(541\) −10.5737 7.06514i −0.454600 0.303754i 0.307108 0.951675i \(-0.400639\pi\)
−0.761708 + 0.647921i \(0.775639\pi\)
\(542\) −0.934932 + 9.67576i −0.0401588 + 0.415610i
\(543\) 0 0
\(544\) −24.1104 12.6023i −1.03373 0.540320i
\(545\) 35.1626i 1.50620i
\(546\) 0 0
\(547\) 33.6594 + 22.4905i 1.43917 + 0.961623i 0.997935 + 0.0642313i \(0.0204595\pi\)
0.441235 + 0.897391i \(0.354540\pi\)
\(548\) 38.6151 7.82947i 1.64956 0.334459i
\(549\) 0 0
\(550\) 1.82151 + 1.48925i 0.0776696 + 0.0635020i
\(551\) 8.83435 + 3.65931i 0.376356 + 0.155892i
\(552\) 0 0
\(553\) 13.3828 5.54333i 0.569094 0.235726i
\(554\) 6.96988 23.1304i 0.296122 0.982716i
\(555\) 0 0
\(556\) 4.76299 + 11.3797i 0.201996 + 0.482609i
\(557\) −32.9955 + 6.56322i −1.39807 + 0.278092i −0.835877 0.548917i \(-0.815040\pi\)
−0.562188 + 0.827009i \(0.690040\pi\)
\(558\) 0 0
\(559\) 24.2895 24.2895i 1.02734 1.02734i
\(560\) 10.7357 + 15.8128i 0.453664 + 0.668213i
\(561\) 0 0
\(562\) −1.95734 6.40981i −0.0825652 0.270382i
\(563\) 4.55918 + 22.9206i 0.192147 + 0.965986i 0.949688 + 0.313199i \(0.101401\pi\)
−0.757541 + 0.652788i \(0.773599\pi\)
\(564\) 0 0
\(565\) 12.9105 8.62652i 0.543149 0.362920i
\(566\) −3.17949 5.92207i −0.133644 0.248923i
\(567\) 0 0
\(568\) 2.83706 + 27.2555i 0.119040 + 1.14362i
\(569\) 8.28246 19.9956i 0.347219 0.838261i −0.649727 0.760168i \(-0.725117\pi\)
0.996946 0.0780932i \(-0.0248832\pi\)
\(570\) 0 0
\(571\) −8.18055 + 41.1264i −0.342345 + 1.72109i 0.299364 + 0.954139i \(0.403225\pi\)
−0.641710 + 0.766948i \(0.721775\pi\)
\(572\) −1.28804 + 0.867540i −0.0538555 + 0.0362737i
\(573\) 0 0
\(574\) 6.25566 5.15326i 0.261106 0.215093i
\(575\) 49.4493 2.06218
\(576\) 0 0
\(577\) 12.5421 0.522135 0.261068 0.965321i \(-0.415925\pi\)
0.261068 + 0.965321i \(0.415925\pi\)
\(578\) 6.69020 5.51122i 0.278276 0.229237i
\(579\) 0 0
\(580\) −23.8777 35.4511i −0.991466 1.47203i
\(581\) −2.08743 + 10.4942i −0.0866014 + 0.435374i
\(582\) 0 0
\(583\) 0.568278 1.37194i 0.0235357 0.0568201i
\(584\) 4.11691 + 3.34065i 0.170359 + 0.138237i
\(585\) 0 0
\(586\) 4.77395 + 8.89187i 0.197210 + 0.367320i
\(587\) 2.09167 1.39761i 0.0863325 0.0576855i −0.511655 0.859191i \(-0.670967\pi\)
0.597987 + 0.801506i \(0.295967\pi\)
\(588\) 0 0
\(589\) 2.32435 + 11.6853i 0.0957733 + 0.481485i
\(590\) 11.8437 + 38.7854i 0.487599 + 1.59677i
\(591\) 0 0
\(592\) −37.4179 24.6038i −1.53787 1.01121i
\(593\) 23.0604 23.0604i 0.946976 0.946976i −0.0516877 0.998663i \(-0.516460\pi\)
0.998663 + 0.0516877i \(0.0164600\pi\)
\(594\) 0 0
\(595\) −22.5381 + 4.48311i −0.923973 + 0.183790i
\(596\) −11.0117 + 4.60895i −0.451058 + 0.188790i
\(597\) 0 0
\(598\) −9.41670 + 31.2504i −0.385078 + 1.27793i
\(599\) −19.8116 + 8.20624i −0.809480 + 0.335298i −0.748747 0.662856i \(-0.769344\pi\)
−0.0607337 + 0.998154i \(0.519344\pi\)
\(600\) 0 0
\(601\) −16.8700 6.98779i −0.688142 0.285038i 0.0110839 0.999939i \(-0.496472\pi\)
−0.699226 + 0.714901i \(0.746472\pi\)
\(602\) −12.5613 10.2700i −0.511962 0.418576i
\(603\) 0 0
\(604\) −6.56351 32.3714i −0.267065 1.31717i
\(605\) −33.3355 22.2741i −1.35528 0.905570i
\(606\) 0 0
\(607\) 26.2051i 1.06363i −0.846860 0.531815i \(-0.821510\pi\)
0.846860 0.531815i \(-0.178490\pi\)
\(608\) −4.43957 8.12441i −0.180048 0.329489i
\(609\) 0 0
\(610\) 0.694906 7.19169i 0.0281359 0.291183i
\(611\) 34.3012 + 22.9193i 1.38768 + 0.927216i
\(612\) 0 0
\(613\) −15.9508 3.17282i −0.644248 0.128149i −0.137856 0.990452i \(-0.544021\pi\)
−0.506392 + 0.862303i \(0.669021\pi\)
\(614\) 15.7810 19.3018i 0.636870 0.778959i
\(615\) 0 0
\(616\) 0.468481 + 0.564437i 0.0188757 + 0.0227418i
\(617\) 12.3333 5.10860i 0.496518 0.205665i −0.120349 0.992732i \(-0.538401\pi\)
0.616868 + 0.787067i \(0.288401\pi\)
\(618\) 0 0
\(619\) 8.00890 + 11.9862i 0.321905 + 0.481765i 0.956765 0.290862i \(-0.0939422\pi\)
−0.634860 + 0.772627i \(0.718942\pi\)
\(620\) 20.1982 49.2770i 0.811179 1.97901i
\(621\) 0 0
\(622\) 0.632172 1.18799i 0.0253478 0.0476339i
\(623\) −9.80760 + 9.80760i −0.392933 + 0.392933i
\(624\) 0 0
\(625\) 2.35010 + 2.35010i 0.0940039 + 0.0940039i
\(626\) 40.6177 12.4032i 1.62341 0.495733i
\(627\) 0 0
\(628\) −4.55430 + 4.58808i −0.181736 + 0.183084i
\(629\) 44.7684 29.9133i 1.78503 1.19272i
\(630\) 0 0
\(631\) −1.25822 3.03762i −0.0500891 0.120926i 0.896854 0.442326i \(-0.145847\pi\)
−0.946943 + 0.321400i \(0.895847\pi\)
\(632\) 30.0640 + 8.93814i 1.19588 + 0.355540i
\(633\) 0 0
\(634\) 30.9263 3.10368i 1.22824 0.123263i
\(635\) −5.92954 + 29.8098i −0.235307 + 1.18297i
\(636\) 0 0
\(637\) 11.5023 17.2144i 0.455739 0.682061i
\(638\) −1.04301 1.26613i −0.0412931 0.0501266i
\(639\) 0 0
\(640\) −3.52336 + 41.2337i −0.139273 + 1.62990i
\(641\) 4.48078 0.176980 0.0884902 0.996077i \(-0.471796\pi\)
0.0884902 + 0.996077i \(0.471796\pi\)
\(642\) 0 0
\(643\) 16.9882 25.4247i 0.669950 1.00265i −0.328361 0.944552i \(-0.606496\pi\)
0.998311 0.0580984i \(-0.0185037\pi\)
\(644\) 15.1313 + 2.95173i 0.596259 + 0.116314i
\(645\) 0 0
\(646\) 11.0758 1.11153i 0.435771 0.0437327i
\(647\) −4.54775 + 10.9792i −0.178791 + 0.431639i −0.987713 0.156276i \(-0.950051\pi\)
0.808923 + 0.587915i \(0.200051\pi\)
\(648\) 0 0
\(649\) 0.595608 + 1.43792i 0.0233797 + 0.0564435i
\(650\) −40.8365 + 21.9247i −1.60174 + 0.859956i
\(651\) 0 0
\(652\) 16.3969 16.5186i 0.642153 0.646917i
\(653\) −3.94799 19.8479i −0.154497 0.776707i −0.977871 0.209208i \(-0.932911\pi\)
0.823374 0.567498i \(-0.192089\pi\)
\(654\) 0 0
\(655\) 0.391845 + 0.391845i 0.0153107 + 0.0153107i
\(656\) 17.5486 0.129693i 0.685159 0.00506367i
\(657\) 0 0
\(658\) 9.15384 17.2020i 0.356854 0.670604i
\(659\) 12.1097 2.40876i 0.471725 0.0938320i 0.0464977 0.998918i \(-0.485194\pi\)
0.425228 + 0.905086i \(0.360194\pi\)
\(660\) 0 0
\(661\) −7.87981 11.7930i −0.306489 0.458693i 0.645969 0.763364i \(-0.276454\pi\)
−0.952458 + 0.304671i \(0.901454\pi\)
\(662\) −15.9653 4.81083i −0.620510 0.186978i
\(663\) 0 0
\(664\) −17.8272 + 14.7965i −0.691830 + 0.574217i
\(665\) −7.22496 2.99267i −0.280172 0.116051i
\(666\) 0 0
\(667\) −33.8141 6.72604i −1.30929 0.260433i
\(668\) −21.6401 + 32.6472i −0.837280 + 1.26316i
\(669\) 0 0
\(670\) 2.34080 24.2253i 0.0904329 0.935904i
\(671\) 0.277295i 0.0107049i
\(672\) 0 0
\(673\) 4.98171i 0.192031i −0.995380 0.0960155i \(-0.969390\pi\)
0.995380 0.0960155i \(-0.0306098\pi\)
\(674\) −39.8501 3.85056i −1.53497 0.148318i
\(675\) 0 0
\(676\) −0.912618 4.50105i −0.0351007 0.173117i
\(677\) −34.8922 6.94050i −1.34102 0.266745i −0.528129 0.849164i \(-0.677106\pi\)
−0.812889 + 0.582419i \(0.802106\pi\)
\(678\) 0 0
\(679\) 7.88766 + 3.26717i 0.302700 + 0.125383i
\(680\) −44.0108 23.2116i −1.68774 0.890123i
\(681\) 0 0
\(682\) 0.589699 1.95699i 0.0225807 0.0749369i
\(683\) −20.6276 30.8714i −0.789294 1.18126i −0.979879 0.199592i \(-0.936038\pi\)
0.190585 0.981671i \(-0.438962\pi\)
\(684\) 0 0
\(685\) 70.6768 14.0585i 2.70042 0.537147i
\(686\) −20.0489 10.6688i −0.765470 0.407335i
\(687\) 0 0
\(688\) −7.10834 34.4052i −0.271003 1.31169i
\(689\) 20.6854 + 20.6854i 0.788053 + 0.788053i
\(690\) 0 0
\(691\) 3.38609 + 17.0230i 0.128813 + 0.647587i 0.990202 + 0.139641i \(0.0445949\pi\)
−0.861389 + 0.507946i \(0.830405\pi\)
\(692\) 0.102731 + 27.8012i 0.00390526 + 1.05684i
\(693\) 0 0
\(694\) −14.1001 26.2627i −0.535234 0.996918i
\(695\) 8.63420 + 20.8448i 0.327514 + 0.790688i
\(696\) 0 0
\(697\) −8.07447 + 19.4935i −0.305842 + 0.738369i
\(698\) 0.365277 + 3.63976i 0.0138259 + 0.137767i
\(699\) 0 0
\(700\) 12.2303 + 18.1584i 0.462264 + 0.686323i
\(701\) −7.68353 + 11.4992i −0.290203 + 0.434319i −0.947712 0.319127i \(-0.896610\pi\)
0.657509 + 0.753447i \(0.271610\pi\)
\(702\) 0 0
\(703\) 18.3232 0.691072
\(704\) 0.0176065 + 1.58817i 0.000663571 + 0.0598566i
\(705\) 0 0
\(706\) 2.52688 2.08158i 0.0951003 0.0783413i
\(707\) −8.90833 + 13.3323i −0.335032 + 0.501411i
\(708\) 0 0
\(709\) −7.70005 + 38.7108i −0.289182 + 1.45381i 0.513851 + 0.857879i \(0.328218\pi\)
−0.803033 + 0.595935i \(0.796782\pi\)
\(710\) 5.00454 + 49.8673i 0.187817 + 1.87149i
\(711\) 0 0
\(712\) −29.8707 + 3.10927i −1.11945 + 0.116525i
\(713\) −16.4388 39.6868i −0.615638 1.48628i
\(714\) 0 0
\(715\) −2.36157 + 1.57795i −0.0883178 + 0.0590121i
\(716\) −48.4220 + 0.178929i −1.80961 + 0.00668689i
\(717\) 0 0
\(718\) −3.30006 10.8069i −0.123157 0.403311i
\(719\) 18.6339 + 18.6339i 0.694926 + 0.694926i 0.963312 0.268385i \(-0.0864900\pi\)
−0.268385 + 0.963312i \(0.586490\pi\)
\(720\) 0 0
\(721\) 3.02358 3.02358i 0.112604 0.112604i
\(722\) −20.3765 10.8431i −0.758335 0.403539i
\(723\) 0 0
\(724\) 15.8827 + 37.9469i 0.590274 + 1.41029i
\(725\) −27.2009 40.7090i −1.01021 1.51189i
\(726\) 0 0
\(727\) −13.3918 + 5.54705i −0.496673 + 0.205729i −0.616936 0.787013i \(-0.711626\pi\)
0.120263 + 0.992742i \(0.461626\pi\)
\(728\) −13.8046 + 4.27127i −0.511632 + 0.158304i
\(729\) 0 0
\(730\) 7.50691 + 6.13758i 0.277843 + 0.227162i
\(731\) 41.4280 + 8.24055i 1.53227 + 0.304788i
\(732\) 0 0
\(733\) −14.4510 9.65582i −0.533758 0.356646i 0.259295 0.965798i \(-0.416510\pi\)
−0.793053 + 0.609152i \(0.791510\pi\)
\(734\) 19.5343 + 1.88752i 0.721022 + 0.0696697i
\(735\) 0 0
\(736\) 21.4139 + 25.6069i 0.789329 + 0.943883i
\(737\) 0.934071i 0.0344069i
\(738\) 0 0
\(739\) 27.1683 + 18.1533i 0.999401 + 0.667779i 0.943746 0.330671i \(-0.107275\pi\)
0.0556553 + 0.998450i \(0.482275\pi\)
\(740\) −68.2679 45.2512i −2.50958 1.66347i
\(741\) 0 0
\(742\) 8.74616 10.6975i 0.321082 0.392717i
\(743\) 1.39715 + 0.578718i 0.0512564 + 0.0212311i 0.408164 0.912908i \(-0.366169\pi\)
−0.356908 + 0.934140i \(0.616169\pi\)
\(744\) 0 0
\(745\) −20.1707 + 8.35497i −0.738997 + 0.306102i
\(746\) −0.288889 0.0870510i −0.0105770 0.00318717i
\(747\) 0 0
\(748\) −1.76694 0.724251i −0.0646056 0.0264813i
\(749\) 13.6731 2.71974i 0.499603 0.0993772i
\(750\) 0 0
\(751\) −14.2852 + 14.2852i −0.521274 + 0.521274i −0.917956 0.396682i \(-0.870162\pi\)
0.396682 + 0.917956i \(0.370162\pi\)
\(752\) 38.8598 16.4338i 1.41707 0.599278i
\(753\) 0 0
\(754\) 30.9067 9.43784i 1.12556 0.343706i
\(755\) −11.7853 59.2489i −0.428912 2.15629i
\(756\) 0 0
\(757\) −7.91280 + 5.28717i −0.287596 + 0.192165i −0.690997 0.722858i \(-0.742828\pi\)
0.403401 + 0.915023i \(0.367828\pi\)
\(758\) 36.8455 19.7820i 1.33829 0.718513i
\(759\) 0 0
\(760\) −8.06469 14.8889i −0.292537 0.540076i
\(761\) 8.41830 20.3236i 0.305163 0.736729i −0.694685 0.719314i \(-0.744456\pi\)
0.999848 0.0174150i \(-0.00554366\pi\)
\(762\) 0 0
\(763\) −2.44978 + 12.3159i −0.0886880 + 0.445865i
\(764\) 0.854952 4.38271i 0.0309311 0.158561i
\(765\) 0 0
\(766\) −11.5550 14.0269i −0.417498 0.506811i
\(767\) −30.6605 −1.10709
\(768\) 0 0
\(769\) 23.8552 0.860241 0.430120 0.902772i \(-0.358471\pi\)
0.430120 + 0.902772i \(0.358471\pi\)
\(770\) 0.852999 + 1.03547i 0.0307399 + 0.0373159i
\(771\) 0 0
\(772\) −7.37407 + 37.8014i −0.265398 + 1.36050i
\(773\) −5.32227 + 26.7568i −0.191429 + 0.962377i 0.758919 + 0.651186i \(0.225728\pi\)
−0.950347 + 0.311191i \(0.899272\pi\)
\(774\) 0 0
\(775\) 23.3448 56.3594i 0.838571 2.02449i
\(776\) 8.80442 + 16.2545i 0.316060 + 0.583504i
\(777\) 0 0
\(778\) −37.7810 + 20.2842i −1.35451 + 0.727224i
\(779\) −5.97031 + 3.98923i −0.213909 + 0.142929i
\(780\) 0 0
\(781\) 0.375250 + 1.88651i 0.0134275 + 0.0675045i
\(782\) −38.3845 + 11.7213i −1.37263 + 0.419152i
\(783\) 0 0
\(784\) −8.24748 19.5023i −0.294553 0.696509i
\(785\) −8.36044 + 8.36044i −0.298397 + 0.298397i
\(786\) 0 0
\(787\) −34.0492 + 6.77280i −1.21372 + 0.241424i −0.760122 0.649781i \(-0.774861\pi\)
−0.453601 + 0.891205i \(0.649861\pi\)
\(788\) 28.1661 + 11.5450i 1.00337 + 0.411274i
\(789\) 0 0
\(790\) 54.9241 + 16.5503i 1.95411 + 0.588833i
\(791\) 5.12298 2.12201i 0.182152 0.0754499i
\(792\) 0 0
\(793\) 5.04680 + 2.09045i 0.179217 + 0.0742342i
\(794\) −2.51150 + 3.07183i −0.0891298 + 0.109015i
\(795\) 0 0
\(796\) −30.9075 20.4869i −1.09549 0.726140i
\(797\) −31.6098 21.1210i −1.11968 0.748143i −0.149072 0.988826i \(-0.547629\pi\)
−0.970604 + 0.240683i \(0.922629\pi\)
\(798\) 0 0
\(799\) 50.7281i 1.79463i
\(800\) −4.21041 + 47.2167i −0.148860 + 1.66936i
\(801\) 0 0
\(802\) −10.5686 1.02120i −0.373190 0.0360599i
\(803\) 0.309427 + 0.206752i 0.0109194 + 0.00729613i
\(804\) 0 0
\(805\) 27.6540 + 5.50073i 0.974676 + 0.193875i
\(806\) 31.1718 + 25.4858i 1.09798 + 0.897699i
\(807\) 0 0
\(808\) −33.1675 + 10.2623i −1.16683 + 0.361028i
\(809\) 9.19116 3.80710i 0.323144 0.133851i −0.215214 0.976567i \(-0.569045\pi\)
0.538358 + 0.842716i \(0.319045\pi\)
\(810\) 0 0
\(811\) 14.2202 + 21.2820i 0.499339 + 0.747314i 0.992450 0.122653i \(-0.0391402\pi\)
−0.493110 + 0.869967i \(0.664140\pi\)
\(812\) −5.89338 14.0805i −0.206817 0.494129i
\(813\) 0 0
\(814\) −2.77494 1.47665i −0.0972615 0.0517565i
\(815\) 30.1002 30.1002i 1.05437 1.05437i
\(816\) 0 0
\(817\) 10.1644 + 10.1644i 0.355607 + 0.355607i
\(818\) 14.0640 + 46.0564i 0.491737 + 1.61032i
\(819\) 0 0
\(820\) 32.0958 0.118601i 1.12084 0.00414172i
\(821\) −7.65208 + 5.11296i −0.267059 + 0.178443i −0.681889 0.731456i \(-0.738841\pi\)
0.414829 + 0.909899i \(0.363841\pi\)
\(822\) 0 0
\(823\) −21.4961 51.8962i −0.749307 1.80899i −0.562922 0.826510i \(-0.690323\pi\)
−0.186385 0.982477i \(-0.559677\pi\)
\(824\) 9.20882 0.958555i 0.320804 0.0333929i
\(825\) 0 0
\(826\) 1.44614 + 14.4099i 0.0503177 + 0.501386i
\(827\) −5.27266 + 26.5075i −0.183348 + 0.921755i 0.774081 + 0.633087i \(0.218212\pi\)
−0.957429 + 0.288668i \(0.906788\pi\)
\(828\) 0 0
\(829\) −5.97593 + 8.94362i −0.207553 + 0.310625i −0.920612 0.390480i \(-0.872309\pi\)
0.713059 + 0.701104i \(0.247309\pi\)
\(830\) −32.7045 + 26.9411i −1.13519 + 0.935141i
\(831\) 0 0
\(832\) −29.0377 11.6524i −1.00670 0.403974i
\(833\) 25.4585 0.882085
\(834\) 0 0
\(835\) −39.7986 + 59.5627i −1.37729 + 2.06125i
\(836\) −0.363038 0.539002i −0.0125559 0.0186418i
\(837\) 0 0
\(838\) 3.44726 + 34.3499i 0.119084 + 1.18660i
\(839\) −5.86620 + 14.1623i −0.202524 + 0.488936i −0.992210 0.124575i \(-0.960243\pi\)
0.789686 + 0.613511i \(0.210243\pi\)
\(840\) 0 0
\(841\) 1.96530 + 4.74465i 0.0677689 + 0.163609i
\(842\) −9.21651 17.1665i −0.317622 0.591597i
\(843\) 0 0
\(844\) 0.0345143 + 9.34029i 0.00118803 + 0.321506i
\(845\) −1.63868 8.23822i −0.0563724 0.283403i
\(846\) 0 0
\(847\) −10.1241 10.1241i −0.347868 0.347868i
\(848\) 29.3001 6.05360i 1.00617 0.207881i
\(849\) 0 0
\(850\) −50.3144 26.7742i −1.72577 0.918348i
\(851\) −64.7947 + 12.8885i −2.22114 + 0.441811i
\(852\) 0 0
\(853\) −22.9937 34.4126i −0.787290 1.17826i −0.980387 0.197084i \(-0.936853\pi\)
0.193096 0.981180i \(-0.438147\pi\)
\(854\) 0.744440 2.47051i 0.0254742 0.0845392i
\(855\) 0 0
\(856\) 26.6998 + 14.0816i 0.912580 + 0.481300i
\(857\) −11.8164 4.89452i −0.403641 0.167193i 0.171621 0.985163i \(-0.445100\pi\)
−0.575261 + 0.817970i \(0.695100\pi\)
\(858\) 0 0
\(859\) −15.5583 3.09474i −0.530843 0.105591i −0.0776110 0.996984i \(-0.524729\pi\)
−0.453232 + 0.891392i \(0.649729\pi\)
\(860\) −12.7680 62.9723i −0.435387 2.14734i
\(861\) 0 0
\(862\) 41.6217 + 4.02174i 1.41764 + 0.136981i
\(863\) 11.5978i 0.394793i −0.980324 0.197396i \(-0.936751\pi\)
0.980324 0.197396i \(-0.0632486\pi\)
\(864\) 0 0
\(865\) 50.8468i 1.72884i
\(866\) 0.0880674 0.911424i 0.00299265 0.0309714i
\(867\) 0 0
\(868\) 10.5076 15.8523i 0.356653 0.538062i
\(869\) 2.15925 + 0.429501i 0.0732475 + 0.0145698i
\(870\) 0 0
\(871\) 17.0002 + 7.04171i 0.576029 + 0.238599i
\(872\) −20.9217 + 17.3650i −0.708500 + 0.588053i
\(873\) 0 0
\(874\) −13.0773 3.94059i −0.442346 0.133292i
\(875\) 8.97244 + 13.4282i 0.303324 + 0.453956i
\(876\) 0 0
\(877\) −29.2277 + 5.81375i −0.986949 + 0.196316i −0.662072 0.749440i \(-0.730323\pi\)
−0.324876 + 0.945756i \(0.605323\pi\)
\(878\) −11.4522 + 21.5211i −0.386493 + 0.726302i
\(879\) 0 0
\(880\) 0.0214676 + 2.90476i 0.000723674 + 0.0979193i
\(881\) −14.4448 14.4448i −0.486658 0.486658i 0.420592 0.907250i \(-0.361823\pi\)
−0.907250 + 0.420592i \(0.861823\pi\)
\(882\) 0 0
\(883\) −1.31696 6.62080i −0.0443192 0.222808i 0.952278 0.305232i \(-0.0987339\pi\)
−0.996597 + 0.0824239i \(0.973734\pi\)
\(884\) 26.5019 26.6985i 0.891356 0.897968i
\(885\) 0 0
\(886\) −18.5313 + 9.94924i −0.622570 + 0.334251i
\(887\) −6.51843 15.7369i −0.218867 0.528392i 0.775865 0.630899i \(-0.217314\pi\)
−0.994732 + 0.102506i \(0.967314\pi\)
\(888\) 0 0
\(889\) −4.15370 + 10.0279i −0.139311 + 0.336326i
\(890\) −54.6520 + 5.48473i −1.83194 + 0.183848i
\(891\) 0 0
\(892\) −19.6687 3.83684i −0.658556 0.128467i
\(893\) −9.59099 + 14.3539i −0.320950 + 0.480336i
\(894\) 0 0
\(895\) −88.5609 −2.96027
\(896\) −4.10683 + 14.1968i −0.137200 + 0.474283i
\(897\) 0 0
\(898\) −13.8720 16.8395i −0.462914 0.561942i
\(899\) −23.6294 + 35.3639i −0.788086 + 1.17945i
\(900\) 0 0
\(901\) −7.01781 + 35.2809i −0.233797 + 1.17538i
\(902\) 1.22566 0.123003i 0.0408099 0.00409557i
\(903\) 0 0
\(904\) 11.5086 + 3.42155i 0.382770 + 0.113799i
\(905\) 28.7916 + 69.5091i 0.957065 + 2.31056i
\(906\) 0 0
\(907\) 40.1409 26.8213i 1.33286 0.890586i 0.334204 0.942501i \(-0.391532\pi\)
0.998652 + 0.0519149i \(0.0165325\pi\)
\(908\) −7.00446 + 7.05642i −0.232451 + 0.234175i
\(909\) 0 0
\(910\) −25.2763 + 7.71850i −0.837901 + 0.255866i
\(911\) −5.78484 5.78484i −0.191660 0.191660i 0.604753 0.796413i \(-0.293272\pi\)
−0.796413 + 0.604753i \(0.793272\pi\)
\(912\) 0 0
\(913\) −1.14990 + 1.14990i −0.0380561 + 0.0380561i
\(914\) −7.71320 + 14.4947i −0.255130 + 0.479443i
\(915\) 0 0
\(916\) 5.02272 12.2538i 0.165955 0.404877i
\(917\) 0.109946 + 0.164546i 0.00363073 + 0.00543377i
\(918\) 0 0
\(919\) 0.487110 0.201768i 0.0160683 0.00665570i −0.374635 0.927172i \(-0.622232\pi\)
0.390703 + 0.920517i \(0.372232\pi\)
\(920\) 38.9913 + 46.9776i 1.28550 + 1.54881i
\(921\) 0 0
\(922\) −9.02358 + 11.0368i −0.297176 + 0.363477i
\(923\) −37.1635 7.39229i −1.22325 0.243320i
\(924\) 0 0
\(925\) −78.0067 52.1224i −2.56485 1.71378i
\(926\) 3.90083 40.3703i 0.128189 1.32665i
\(927\) 0 0
\(928\) 9.30149 31.7147i 0.305336 1.04109i
\(929\) 33.3160i 1.09306i −0.837439 0.546531i \(-0.815948\pi\)
0.837439 0.546531i \(-0.184052\pi\)
\(930\) 0 0
\(931\) 7.20369 + 4.81335i 0.236091 + 0.157751i
\(932\) −4.32947 21.3530i −0.141816 0.699442i
\(933\) 0 0
\(934\) 7.50772 + 6.13825i 0.245660 + 0.200850i
\(935\) −3.22669 1.33654i −0.105524 0.0437094i
\(936\) 0 0
\(937\) −21.7371 + 9.00381i −0.710121 + 0.294142i −0.708355 0.705857i \(-0.750562\pi\)
−0.00176640 + 0.999998i \(0.500562\pi\)
\(938\) 2.50765 8.32194i 0.0818778 0.271721i
\(939\) 0 0
\(940\) 71.1824 29.7934i 2.32172 0.971753i
\(941\) 38.3485 7.62799i 1.25013 0.248665i 0.474724 0.880134i \(-0.342548\pi\)
0.775401 + 0.631469i \(0.217548\pi\)
\(942\) 0 0
\(943\) 18.3063 18.3063i 0.596135 0.596135i
\(944\) −17.2283 + 26.2011i −0.560734 + 0.852774i
\(945\) 0 0
\(946\) −0.720197 2.35847i −0.0234156 0.0766806i
\(947\) −8.47316 42.5975i −0.275341 1.38423i −0.832592 0.553887i \(-0.813144\pi\)
0.557251 0.830344i \(-0.311856\pi\)
\(948\) 0 0
\(949\) −6.09560 + 4.07295i −0.197872 + 0.132214i
\(950\) −9.17477 17.0888i −0.297669 0.554433i
\(951\) 0 0
\(952\) −13.7979 11.1962i −0.447191 0.362871i
\(953\) −19.4752 + 47.0173i −0.630863 + 1.52304i 0.207676 + 0.978198i \(0.433410\pi\)
−0.838539 + 0.544841i \(0.816590\pi\)
\(954\) 0 0
\(955\) 1.59326 8.00984i 0.0515566 0.259192i
\(956\) 29.9877 + 44.5227i 0.969870 + 1.43997i
\(957\) 0 0
\(958\) 25.7290 21.1950i 0.831268 0.684778i
\(959\) 25.7344 0.831006
\(960\) 0 0
\(961\) −21.9933 −0.709462
\(962\) 47.7947 39.3721i 1.54096 1.26941i
\(963\) 0 0
\(964\) 17.4035 11.7219i 0.560530 0.377538i
\(965\) −13.7420 + 69.0858i −0.442371 + 2.22395i
\(966\) 0 0
\(967\) 12.0763 29.1548i 0.388348 0.937556i −0.601942 0.798540i \(-0.705606\pi\)
0.990290 0.139016i \(-0.0443939\pi\)
\(968\) −3.20961 30.8346i −0.103161 0.991062i
\(969\) 0 0
\(970\) 15.9927 + 29.7877i 0.513494 + 0.956426i
\(971\) −4.79328 + 3.20277i −0.153824 + 0.102782i −0.630100 0.776514i \(-0.716986\pi\)
0.476276 + 0.879296i \(0.341986\pi\)
\(972\) 0 0
\(973\) 1.57191 + 7.90254i 0.0503932 + 0.253344i
\(974\) −7.29984 23.9053i −0.233902 0.765974i
\(975\) 0 0
\(976\) 4.62223 3.13814i 0.147954 0.100449i
\(977\) 1.57017 1.57017i 0.0502341 0.0502341i −0.681543 0.731778i \(-0.738691\pi\)
0.731778 + 0.681543i \(0.238691\pi\)
\(978\) 0 0
\(979\) −2.06752 + 0.411255i −0.0660781 + 0.0131438i
\(980\) −14.9522 35.7238i −0.477629 1.14115i
\(981\) 0 0
\(982\) 3.03827 10.0829i 0.0969550 0.321757i
\(983\) 26.6882 11.0546i 0.851221 0.352587i 0.0859528 0.996299i \(-0.472607\pi\)
0.765268 + 0.643712i \(0.222607\pi\)
\(984\) 0 0
\(985\) 51.4354 + 21.3052i 1.63887 + 0.678841i
\(986\) 30.7639 + 25.1523i 0.979721 + 0.801011i
\(987\) 0 0
\(988\) 12.5467 2.54393i 0.399165 0.0809333i
\(989\) −43.0931 28.7939i −1.37028 0.915592i
\(990\) 0 0
\(991\) 52.5768i 1.67016i −0.550132 0.835078i \(-0.685423\pi\)
0.550132 0.835078i \(-0.314577\pi\)
\(992\) 39.2946 12.3174i 1.24761 0.391079i
\(993\) 0 0
\(994\) −1.72139 + 17.8149i −0.0545992 + 0.565055i
\(995\) −56.3888 37.6778i −1.78764 1.19447i
\(996\) 0 0
\(997\) 2.31625 + 0.460731i 0.0733564 + 0.0145915i 0.231632 0.972803i \(-0.425593\pi\)
−0.158276 + 0.987395i \(0.550593\pi\)
\(998\) −12.1478 + 14.8580i −0.384531 + 0.470322i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.2.bd.b.37.12 128
3.2 odd 2 192.2.r.a.37.5 128
12.11 even 2 768.2.r.a.241.8 128
64.45 even 16 inner 576.2.bd.b.109.12 128
192.83 even 16 768.2.r.a.529.8 128
192.173 odd 16 192.2.r.a.109.5 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
192.2.r.a.37.5 128 3.2 odd 2
192.2.r.a.109.5 yes 128 192.173 odd 16
576.2.bd.b.37.12 128 1.1 even 1 trivial
576.2.bd.b.109.12 128 64.45 even 16 inner
768.2.r.a.241.8 128 12.11 even 2
768.2.r.a.529.8 128 192.83 even 16