Properties

Label 576.2.i.g
Level $576$
Weight $2$
Character orbit 576.i
Analytic conductor $4.599$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,2,Mod(193,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59938315643\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} + 1) q^{3} + (2 \zeta_{6} - 2) q^{7} + 3 \zeta_{6} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{6} + 1) q^{3} + (2 \zeta_{6} - 2) q^{7} + 3 \zeta_{6} q^{9} + (3 \zeta_{6} - 3) q^{11} + 2 \zeta_{6} q^{13} - 3 q^{17} + q^{19} + (2 \zeta_{6} - 4) q^{21} + 6 \zeta_{6} q^{23} + ( - 5 \zeta_{6} + 5) q^{25} + (6 \zeta_{6} - 3) q^{27} + ( - 6 \zeta_{6} + 6) q^{29} + 4 \zeta_{6} q^{31} + (3 \zeta_{6} - 6) q^{33} + 4 q^{37} + (4 \zeta_{6} - 2) q^{39} - 9 \zeta_{6} q^{41} + (\zeta_{6} - 1) q^{43} + ( - 6 \zeta_{6} + 6) q^{47} + 3 \zeta_{6} q^{49} + ( - 3 \zeta_{6} - 3) q^{51} - 12 q^{53} + (\zeta_{6} + 1) q^{57} + 3 \zeta_{6} q^{59} + ( - 8 \zeta_{6} + 8) q^{61} - 6 q^{63} + 5 \zeta_{6} q^{67} + (12 \zeta_{6} - 6) q^{69} - 12 q^{71} + 11 q^{73} + ( - 5 \zeta_{6} + 10) q^{75} - 6 \zeta_{6} q^{77} + ( - 4 \zeta_{6} + 4) q^{79} + (9 \zeta_{6} - 9) q^{81} + ( - 12 \zeta_{6} + 12) q^{83} + ( - 6 \zeta_{6} + 12) q^{87} + 6 q^{89} - 4 q^{91} + (8 \zeta_{6} - 4) q^{93} + (5 \zeta_{6} - 5) q^{97} - 9 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} - 2 q^{7} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{3} - 2 q^{7} + 3 q^{9} - 3 q^{11} + 2 q^{13} - 6 q^{17} + 2 q^{19} - 6 q^{21} + 6 q^{23} + 5 q^{25} + 6 q^{29} + 4 q^{31} - 9 q^{33} + 8 q^{37} - 9 q^{41} - q^{43} + 6 q^{47} + 3 q^{49} - 9 q^{51} - 24 q^{53} + 3 q^{57} + 3 q^{59} + 8 q^{61} - 12 q^{63} + 5 q^{67} - 24 q^{71} + 22 q^{73} + 15 q^{75} - 6 q^{77} + 4 q^{79} - 9 q^{81} + 12 q^{83} + 18 q^{87} + 12 q^{89} - 8 q^{91} - 5 q^{97} - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
193.1
0.500000 0.866025i
0.500000 + 0.866025i
0 1.50000 0.866025i 0 0 0 −1.00000 1.73205i 0 1.50000 2.59808i 0
385.1 0 1.50000 + 0.866025i 0 0 0 −1.00000 + 1.73205i 0 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.2.i.g 2
3.b odd 2 1 1728.2.i.e 2
4.b odd 2 1 576.2.i.a 2
8.b even 2 1 18.2.c.a 2
8.d odd 2 1 144.2.i.c 2
9.c even 3 1 inner 576.2.i.g 2
9.c even 3 1 5184.2.a.r 1
9.d odd 6 1 1728.2.i.e 2
9.d odd 6 1 5184.2.a.q 1
12.b even 2 1 1728.2.i.f 2
24.f even 2 1 432.2.i.b 2
24.h odd 2 1 54.2.c.a 2
36.f odd 6 1 576.2.i.a 2
36.f odd 6 1 5184.2.a.o 1
36.h even 6 1 1728.2.i.f 2
36.h even 6 1 5184.2.a.p 1
40.f even 2 1 450.2.e.i 2
40.i odd 4 2 450.2.j.e 4
56.h odd 2 1 882.2.f.d 2
56.j odd 6 1 882.2.e.g 2
56.j odd 6 1 882.2.h.b 2
56.p even 6 1 882.2.e.i 2
56.p even 6 1 882.2.h.c 2
72.j odd 6 1 54.2.c.a 2
72.j odd 6 1 162.2.a.b 1
72.l even 6 1 432.2.i.b 2
72.l even 6 1 1296.2.a.f 1
72.n even 6 1 18.2.c.a 2
72.n even 6 1 162.2.a.c 1
72.p odd 6 1 144.2.i.c 2
72.p odd 6 1 1296.2.a.g 1
120.i odd 2 1 1350.2.e.c 2
120.w even 4 2 1350.2.j.a 4
168.i even 2 1 2646.2.f.g 2
168.s odd 6 1 2646.2.e.b 2
168.s odd 6 1 2646.2.h.h 2
168.ba even 6 1 2646.2.e.c 2
168.ba even 6 1 2646.2.h.i 2
360.bh odd 6 1 1350.2.e.c 2
360.bh odd 6 1 4050.2.a.v 1
360.bk even 6 1 450.2.e.i 2
360.bk even 6 1 4050.2.a.c 1
360.br even 12 2 1350.2.j.a 4
360.br even 12 2 4050.2.c.r 2
360.bu odd 12 2 450.2.j.e 4
360.bu odd 12 2 4050.2.c.c 2
504.w even 6 1 882.2.e.i 2
504.y even 6 1 2646.2.e.c 2
504.bi odd 6 1 2646.2.h.h 2
504.bn odd 6 1 882.2.f.d 2
504.bn odd 6 1 7938.2.a.x 1
504.bp odd 6 1 882.2.h.b 2
504.ca even 6 1 2646.2.h.i 2
504.cc even 6 1 2646.2.f.g 2
504.cc even 6 1 7938.2.a.i 1
504.cq even 6 1 882.2.h.c 2
504.cw odd 6 1 882.2.e.g 2
504.db odd 6 1 2646.2.e.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
18.2.c.a 2 8.b even 2 1
18.2.c.a 2 72.n even 6 1
54.2.c.a 2 24.h odd 2 1
54.2.c.a 2 72.j odd 6 1
144.2.i.c 2 8.d odd 2 1
144.2.i.c 2 72.p odd 6 1
162.2.a.b 1 72.j odd 6 1
162.2.a.c 1 72.n even 6 1
432.2.i.b 2 24.f even 2 1
432.2.i.b 2 72.l even 6 1
450.2.e.i 2 40.f even 2 1
450.2.e.i 2 360.bk even 6 1
450.2.j.e 4 40.i odd 4 2
450.2.j.e 4 360.bu odd 12 2
576.2.i.a 2 4.b odd 2 1
576.2.i.a 2 36.f odd 6 1
576.2.i.g 2 1.a even 1 1 trivial
576.2.i.g 2 9.c even 3 1 inner
882.2.e.g 2 56.j odd 6 1
882.2.e.g 2 504.cw odd 6 1
882.2.e.i 2 56.p even 6 1
882.2.e.i 2 504.w even 6 1
882.2.f.d 2 56.h odd 2 1
882.2.f.d 2 504.bn odd 6 1
882.2.h.b 2 56.j odd 6 1
882.2.h.b 2 504.bp odd 6 1
882.2.h.c 2 56.p even 6 1
882.2.h.c 2 504.cq even 6 1
1296.2.a.f 1 72.l even 6 1
1296.2.a.g 1 72.p odd 6 1
1350.2.e.c 2 120.i odd 2 1
1350.2.e.c 2 360.bh odd 6 1
1350.2.j.a 4 120.w even 4 2
1350.2.j.a 4 360.br even 12 2
1728.2.i.e 2 3.b odd 2 1
1728.2.i.e 2 9.d odd 6 1
1728.2.i.f 2 12.b even 2 1
1728.2.i.f 2 36.h even 6 1
2646.2.e.b 2 168.s odd 6 1
2646.2.e.b 2 504.db odd 6 1
2646.2.e.c 2 168.ba even 6 1
2646.2.e.c 2 504.y even 6 1
2646.2.f.g 2 168.i even 2 1
2646.2.f.g 2 504.cc even 6 1
2646.2.h.h 2 168.s odd 6 1
2646.2.h.h 2 504.bi odd 6 1
2646.2.h.i 2 168.ba even 6 1
2646.2.h.i 2 504.ca even 6 1
4050.2.a.c 1 360.bk even 6 1
4050.2.a.v 1 360.bh odd 6 1
4050.2.c.c 2 360.bu odd 12 2
4050.2.c.r 2 360.br even 12 2
5184.2.a.o 1 36.f odd 6 1
5184.2.a.p 1 36.h even 6 1
5184.2.a.q 1 9.d odd 6 1
5184.2.a.r 1 9.c even 3 1
7938.2.a.i 1 504.cc even 6 1
7938.2.a.x 1 504.bn odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(576, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$11$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$13$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$17$ \( (T + 3)^{2} \) Copy content Toggle raw display
$19$ \( (T - 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$29$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$31$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$37$ \( (T - 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$43$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$47$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$53$ \( (T + 12)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$61$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$67$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$71$ \( (T + 12)^{2} \) Copy content Toggle raw display
$73$ \( (T - 11)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$83$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$89$ \( (T - 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
show more
show less