Properties

Label 576.2.r.a
Level 576576
Weight 22
Character orbit 576.r
Analytic conductor 4.5994.599
Analytic rank 11
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,2,Mod(97,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 576=2632 576 = 2^{6} \cdot 3^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 576.r (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.599383156434.59938315643
Analytic rank: 11
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ123ζ12)q3+(2ζ1222)q5+(3ζ1223)q9+(3ζ123+3ζ12)q11+(2ζ1222)q13+6ζ123q15++9ζ123q99+O(q100) q + ( - \zeta_{12}^{3} - \zeta_{12}) q^{3} + ( - 2 \zeta_{12}^{2} - 2) q^{5} + (3 \zeta_{12}^{2} - 3) q^{9} + ( - 3 \zeta_{12}^{3} + 3 \zeta_{12}) q^{11} + ( - 2 \zeta_{12}^{2} - 2) q^{13} + 6 \zeta_{12}^{3} q^{15}+ \cdots + 9 \zeta_{12}^{3} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q12q56q912q1312q17+14q2524q2918q336q41+36q45+14q49+42q5724q61+24q6524q6928q7318q81+36q85+2q97+O(q100) 4 q - 12 q^{5} - 6 q^{9} - 12 q^{13} - 12 q^{17} + 14 q^{25} - 24 q^{29} - 18 q^{33} - 6 q^{41} + 36 q^{45} + 14 q^{49} + 42 q^{57} - 24 q^{61} + 24 q^{65} - 24 q^{69} - 28 q^{73} - 18 q^{81} + 36 q^{85}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/576Z)×\left(\mathbb{Z}/576\mathbb{Z}\right)^\times.

nn 6565 127127 325325
χ(n)\chi(n) 1+ζ122-1 + \zeta_{12}^{2} 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
97.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0 −0.866025 + 1.50000i 0 −3.00000 + 1.73205i 0 0 0 −1.50000 2.59808i 0
97.2 0 0.866025 1.50000i 0 −3.00000 + 1.73205i 0 0 0 −1.50000 2.59808i 0
481.1 0 −0.866025 1.50000i 0 −3.00000 1.73205i 0 0 0 −1.50000 + 2.59808i 0
481.2 0 0.866025 + 1.50000i 0 −3.00000 1.73205i 0 0 0 −1.50000 + 2.59808i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
72.n even 6 1 inner
72.p odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.2.r.a 4
3.b odd 2 1 1728.2.r.b 4
4.b odd 2 1 inner 576.2.r.a 4
8.b even 2 1 576.2.r.b yes 4
8.d odd 2 1 576.2.r.b yes 4
9.c even 3 1 576.2.r.b yes 4
9.c even 3 1 5184.2.d.c 4
9.d odd 6 1 1728.2.r.a 4
9.d odd 6 1 5184.2.d.j 4
12.b even 2 1 1728.2.r.b 4
24.f even 2 1 1728.2.r.a 4
24.h odd 2 1 1728.2.r.a 4
36.f odd 6 1 576.2.r.b yes 4
36.f odd 6 1 5184.2.d.c 4
36.h even 6 1 1728.2.r.a 4
36.h even 6 1 5184.2.d.j 4
72.j odd 6 1 1728.2.r.b 4
72.j odd 6 1 5184.2.d.j 4
72.l even 6 1 1728.2.r.b 4
72.l even 6 1 5184.2.d.j 4
72.n even 6 1 inner 576.2.r.a 4
72.n even 6 1 5184.2.d.c 4
72.p odd 6 1 inner 576.2.r.a 4
72.p odd 6 1 5184.2.d.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
576.2.r.a 4 1.a even 1 1 trivial
576.2.r.a 4 4.b odd 2 1 inner
576.2.r.a 4 72.n even 6 1 inner
576.2.r.a 4 72.p odd 6 1 inner
576.2.r.b yes 4 8.b even 2 1
576.2.r.b yes 4 8.d odd 2 1
576.2.r.b yes 4 9.c even 3 1
576.2.r.b yes 4 36.f odd 6 1
1728.2.r.a 4 9.d odd 6 1
1728.2.r.a 4 24.f even 2 1
1728.2.r.a 4 24.h odd 2 1
1728.2.r.a 4 36.h even 6 1
1728.2.r.b 4 3.b odd 2 1
1728.2.r.b 4 12.b even 2 1
1728.2.r.b 4 72.j odd 6 1
1728.2.r.b 4 72.l even 6 1
5184.2.d.c 4 9.c even 3 1
5184.2.d.c 4 36.f odd 6 1
5184.2.d.c 4 72.n even 6 1
5184.2.d.c 4 72.p odd 6 1
5184.2.d.j 4 9.d odd 6 1
5184.2.d.j 4 36.h even 6 1
5184.2.d.j 4 72.j odd 6 1
5184.2.d.j 4 72.l even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T52+6T5+12 T_{5}^{2} + 6T_{5} + 12 acting on S2new(576,[χ])S_{2}^{\mathrm{new}}(576, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+3T2+9 T^{4} + 3T^{2} + 9 Copy content Toggle raw display
55 (T2+6T+12)2 (T^{2} + 6 T + 12)^{2} Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T49T2+81 T^{4} - 9T^{2} + 81 Copy content Toggle raw display
1313 (T2+6T+12)2 (T^{2} + 6 T + 12)^{2} Copy content Toggle raw display
1717 (T+3)4 (T + 3)^{4} Copy content Toggle raw display
1919 (T2+49)2 (T^{2} + 49)^{2} Copy content Toggle raw display
2323 T4+12T2+144 T^{4} + 12T^{2} + 144 Copy content Toggle raw display
2929 (T2+12T+48)2 (T^{2} + 12 T + 48)^{2} Copy content Toggle raw display
3131 T4+48T2+2304 T^{4} + 48T^{2} + 2304 Copy content Toggle raw display
3737 (T2+108)2 (T^{2} + 108)^{2} Copy content Toggle raw display
4141 (T2+3T+9)2 (T^{2} + 3 T + 9)^{2} Copy content Toggle raw display
4343 T425T2+625 T^{4} - 25T^{2} + 625 Copy content Toggle raw display
4747 T4+12T2+144 T^{4} + 12T^{2} + 144 Copy content Toggle raw display
5353 (T2+192)2 (T^{2} + 192)^{2} Copy content Toggle raw display
5959 T481T2+6561 T^{4} - 81T^{2} + 6561 Copy content Toggle raw display
6161 (T2+12T+48)2 (T^{2} + 12 T + 48)^{2} Copy content Toggle raw display
6767 T425T2+625 T^{4} - 25T^{2} + 625 Copy content Toggle raw display
7171 (T212)2 (T^{2} - 12)^{2} Copy content Toggle raw display
7373 (T+7)4 (T + 7)^{4} Copy content Toggle raw display
7979 T4+300T2+90000 T^{4} + 300 T^{2} + 90000 Copy content Toggle raw display
8383 T4144T2+20736 T^{4} - 144 T^{2} + 20736 Copy content Toggle raw display
8989 (T+6)4 (T + 6)^{4} Copy content Toggle raw display
9797 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
show more
show less