Properties

Label 576.2.y.a.335.11
Level $576$
Weight $2$
Character 576.335
Analytic conductor $4.599$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,2,Mod(47,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59938315643\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 335.11
Character \(\chi\) \(=\) 576.335
Dual form 576.2.y.a.239.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0841095 + 1.73001i) q^{3} +(-1.17929 - 0.315990i) q^{5} +(-1.93802 + 3.35676i) q^{7} +(-2.98585 - 0.291020i) q^{9} +O(q^{10})\) \(q+(-0.0841095 + 1.73001i) q^{3} +(-1.17929 - 0.315990i) q^{5} +(-1.93802 + 3.35676i) q^{7} +(-2.98585 - 0.291020i) q^{9} +(2.53144 - 0.678298i) q^{11} +(-2.21768 - 0.594225i) q^{13} +(0.645854 - 2.01360i) q^{15} -1.65347i q^{17} +(-2.32189 - 2.32189i) q^{19} +(-5.64421 - 3.63513i) q^{21} +(-6.27540 + 3.62310i) q^{23} +(-3.03925 - 1.75471i) q^{25} +(0.754605 - 5.14107i) q^{27} +(5.23808 - 1.40354i) q^{29} +(-6.44476 + 3.72088i) q^{31} +(0.960542 + 4.43646i) q^{33} +(3.34619 - 3.34619i) q^{35} +(0.499924 + 0.499924i) q^{37} +(1.21454 - 3.78662i) q^{39} +(5.22021 + 9.04166i) q^{41} +(-2.07069 - 7.72793i) q^{43} +(3.42922 + 1.28670i) q^{45} +(-1.91487 + 3.31665i) q^{47} +(-4.01188 - 6.94877i) q^{49} +(2.86051 + 0.139072i) q^{51} +(-4.69522 + 4.69522i) q^{53} -3.19964 q^{55} +(4.21219 - 3.82160i) q^{57} +(-1.60258 + 5.98090i) q^{59} +(-2.01670 - 7.52642i) q^{61} +(6.76354 - 9.45877i) q^{63} +(2.42752 + 1.40153i) q^{65} +(-3.58944 + 13.3960i) q^{67} +(-5.74017 - 11.1612i) q^{69} -10.9828i q^{71} +10.4967i q^{73} +(3.29130 - 5.11034i) q^{75} +(-2.62911 + 9.81199i) q^{77} +(7.83718 + 4.52480i) q^{79} +(8.83061 + 1.73789i) q^{81} +(-0.746054 - 2.78431i) q^{83} +(-0.522479 + 1.94992i) q^{85} +(1.98756 + 9.17996i) q^{87} +4.91926 q^{89} +(6.29259 - 6.29259i) q^{91} +(-5.89509 - 11.4624i) q^{93} +(2.00449 + 3.47188i) q^{95} +(-7.00277 + 12.1291i) q^{97} +(-7.75590 + 1.28860i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{3} - 6 q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 88 q + 4 q^{3} - 6 q^{5} + 4 q^{7} + 6 q^{11} - 2 q^{13} + 8 q^{19} + 2 q^{21} + 12 q^{23} + 16 q^{27} - 6 q^{29} - 8 q^{33} - 8 q^{37} + 32 q^{39} + 2 q^{43} + 6 q^{45} - 24 q^{49} + 12 q^{51} + 16 q^{55} + 42 q^{59} - 2 q^{61} - 12 q^{65} + 2 q^{67} - 10 q^{69} + 56 q^{75} - 6 q^{77} - 8 q^{81} - 54 q^{83} + 8 q^{85} - 48 q^{87} - 20 q^{91} - 34 q^{93} - 4 q^{97} - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0841095 + 1.73001i −0.0485606 + 0.998820i
\(4\) 0 0
\(5\) −1.17929 0.315990i −0.527394 0.141315i −0.0147097 0.999892i \(-0.504682\pi\)
−0.512685 + 0.858577i \(0.671349\pi\)
\(6\) 0 0
\(7\) −1.93802 + 3.35676i −0.732504 + 1.26873i 0.223305 + 0.974749i \(0.428315\pi\)
−0.955810 + 0.293986i \(0.905018\pi\)
\(8\) 0 0
\(9\) −2.98585 0.291020i −0.995284 0.0970067i
\(10\) 0 0
\(11\) 2.53144 0.678298i 0.763258 0.204514i 0.143867 0.989597i \(-0.454046\pi\)
0.619391 + 0.785083i \(0.287380\pi\)
\(12\) 0 0
\(13\) −2.21768 0.594225i −0.615074 0.164808i −0.0621864 0.998065i \(-0.519807\pi\)
−0.552887 + 0.833256i \(0.686474\pi\)
\(14\) 0 0
\(15\) 0.645854 2.01360i 0.166759 0.519910i
\(16\) 0 0
\(17\) 1.65347i 0.401025i −0.979691 0.200512i \(-0.935739\pi\)
0.979691 0.200512i \(-0.0642607\pi\)
\(18\) 0 0
\(19\) −2.32189 2.32189i −0.532679 0.532679i 0.388690 0.921369i \(-0.372928\pi\)
−0.921369 + 0.388690i \(0.872928\pi\)
\(20\) 0 0
\(21\) −5.64421 3.63513i −1.23167 0.793251i
\(22\) 0 0
\(23\) −6.27540 + 3.62310i −1.30851 + 0.755469i −0.981848 0.189672i \(-0.939258\pi\)
−0.326663 + 0.945141i \(0.605924\pi\)
\(24\) 0 0
\(25\) −3.03925 1.75471i −0.607850 0.350943i
\(26\) 0 0
\(27\) 0.754605 5.14107i 0.145224 0.989399i
\(28\) 0 0
\(29\) 5.23808 1.40354i 0.972686 0.260631i 0.262725 0.964871i \(-0.415379\pi\)
0.709962 + 0.704240i \(0.248712\pi\)
\(30\) 0 0
\(31\) −6.44476 + 3.72088i −1.15751 + 0.668291i −0.950707 0.310091i \(-0.899640\pi\)
−0.206806 + 0.978382i \(0.566307\pi\)
\(32\) 0 0
\(33\) 0.960542 + 4.43646i 0.167209 + 0.772289i
\(34\) 0 0
\(35\) 3.34619 3.34619i 0.565610 0.565610i
\(36\) 0 0
\(37\) 0.499924 + 0.499924i 0.0821870 + 0.0821870i 0.747005 0.664818i \(-0.231491\pi\)
−0.664818 + 0.747005i \(0.731491\pi\)
\(38\) 0 0
\(39\) 1.21454 3.78662i 0.194482 0.606345i
\(40\) 0 0
\(41\) 5.22021 + 9.04166i 0.815259 + 1.41207i 0.909142 + 0.416487i \(0.136739\pi\)
−0.0938824 + 0.995583i \(0.529928\pi\)
\(42\) 0 0
\(43\) −2.07069 7.72793i −0.315778 1.17850i −0.923263 0.384168i \(-0.874488\pi\)
0.607485 0.794331i \(-0.292178\pi\)
\(44\) 0 0
\(45\) 3.42922 + 1.28670i 0.511199 + 0.191809i
\(46\) 0 0
\(47\) −1.91487 + 3.31665i −0.279312 + 0.483782i −0.971214 0.238209i \(-0.923440\pi\)
0.691902 + 0.721991i \(0.256773\pi\)
\(48\) 0 0
\(49\) −4.01188 6.94877i −0.573125 0.992682i
\(50\) 0 0
\(51\) 2.86051 + 0.139072i 0.400552 + 0.0194740i
\(52\) 0 0
\(53\) −4.69522 + 4.69522i −0.644938 + 0.644938i −0.951765 0.306827i \(-0.900733\pi\)
0.306827 + 0.951765i \(0.400733\pi\)
\(54\) 0 0
\(55\) −3.19964 −0.431439
\(56\) 0 0
\(57\) 4.21219 3.82160i 0.557918 0.506183i
\(58\) 0 0
\(59\) −1.60258 + 5.98090i −0.208638 + 0.778647i 0.779672 + 0.626188i \(0.215386\pi\)
−0.988310 + 0.152459i \(0.951281\pi\)
\(60\) 0 0
\(61\) −2.01670 7.52642i −0.258212 0.963660i −0.966275 0.257511i \(-0.917098\pi\)
0.708064 0.706149i \(-0.249569\pi\)
\(62\) 0 0
\(63\) 6.76354 9.45877i 0.852125 1.19169i
\(64\) 0 0
\(65\) 2.42752 + 1.40153i 0.301097 + 0.173838i
\(66\) 0 0
\(67\) −3.58944 + 13.3960i −0.438520 + 1.63658i 0.293980 + 0.955812i \(0.405020\pi\)
−0.732500 + 0.680767i \(0.761647\pi\)
\(68\) 0 0
\(69\) −5.74017 11.1612i −0.691036 1.34365i
\(70\) 0 0
\(71\) 10.9828i 1.30341i −0.758471 0.651706i \(-0.774053\pi\)
0.758471 0.651706i \(-0.225947\pi\)
\(72\) 0 0
\(73\) 10.4967i 1.22855i 0.789092 + 0.614276i \(0.210552\pi\)
−0.789092 + 0.614276i \(0.789448\pi\)
\(74\) 0 0
\(75\) 3.29130 5.11034i 0.380046 0.590091i
\(76\) 0 0
\(77\) −2.62911 + 9.81199i −0.299615 + 1.11818i
\(78\) 0 0
\(79\) 7.83718 + 4.52480i 0.881751 + 0.509079i 0.871235 0.490865i \(-0.163319\pi\)
0.0105159 + 0.999945i \(0.496653\pi\)
\(80\) 0 0
\(81\) 8.83061 + 1.73789i 0.981179 + 0.193098i
\(82\) 0 0
\(83\) −0.746054 2.78431i −0.0818900 0.305618i 0.912817 0.408369i \(-0.133902\pi\)
−0.994707 + 0.102751i \(0.967236\pi\)
\(84\) 0 0
\(85\) −0.522479 + 1.94992i −0.0566708 + 0.211498i
\(86\) 0 0
\(87\) 1.98756 + 9.17996i 0.213089 + 0.984195i
\(88\) 0 0
\(89\) 4.91926 0.521441 0.260720 0.965414i \(-0.416040\pi\)
0.260720 + 0.965414i \(0.416040\pi\)
\(90\) 0 0
\(91\) 6.29259 6.29259i 0.659642 0.659642i
\(92\) 0 0
\(93\) −5.89509 11.4624i −0.611293 1.18860i
\(94\) 0 0
\(95\) 2.00449 + 3.47188i 0.205656 + 0.356207i
\(96\) 0 0
\(97\) −7.00277 + 12.1291i −0.711023 + 1.23153i 0.253450 + 0.967348i \(0.418435\pi\)
−0.964473 + 0.264180i \(0.914899\pi\)
\(98\) 0 0
\(99\) −7.75590 + 1.28860i −0.779498 + 0.129509i
\(100\) 0 0
\(101\) 1.05238 + 3.92753i 0.104716 + 0.390804i 0.998313 0.0580659i \(-0.0184933\pi\)
−0.893597 + 0.448870i \(0.851827\pi\)
\(102\) 0 0
\(103\) −3.96541 6.86830i −0.390724 0.676754i 0.601821 0.798631i \(-0.294442\pi\)
−0.992545 + 0.121877i \(0.961109\pi\)
\(104\) 0 0
\(105\) 5.50749 + 6.07039i 0.537476 + 0.592409i
\(106\) 0 0
\(107\) 10.7040 + 10.7040i 1.03479 + 1.03479i 0.999372 + 0.0354212i \(0.0112773\pi\)
0.0354212 + 0.999372i \(0.488723\pi\)
\(108\) 0 0
\(109\) −0.225954 + 0.225954i −0.0216424 + 0.0216424i −0.717845 0.696203i \(-0.754871\pi\)
0.696203 + 0.717845i \(0.254871\pi\)
\(110\) 0 0
\(111\) −0.906921 + 0.822824i −0.0860811 + 0.0780990i
\(112\) 0 0
\(113\) 2.55128 1.47298i 0.240004 0.138567i −0.375174 0.926954i \(-0.622417\pi\)
0.615179 + 0.788388i \(0.289084\pi\)
\(114\) 0 0
\(115\) 8.54538 2.28973i 0.796860 0.213518i
\(116\) 0 0
\(117\) 6.44873 + 2.41966i 0.596185 + 0.223697i
\(118\) 0 0
\(119\) 5.55029 + 3.20446i 0.508794 + 0.293752i
\(120\) 0 0
\(121\) −3.57817 + 2.06586i −0.325289 + 0.187805i
\(122\) 0 0
\(123\) −16.0812 + 8.27051i −1.44999 + 0.745726i
\(124\) 0 0
\(125\) 7.34619 + 7.34619i 0.657063 + 0.657063i
\(126\) 0 0
\(127\) 20.0270i 1.77711i 0.458770 + 0.888555i \(0.348290\pi\)
−0.458770 + 0.888555i \(0.651710\pi\)
\(128\) 0 0
\(129\) 13.5435 2.93232i 1.19244 0.258177i
\(130\) 0 0
\(131\) 8.78388 + 2.35363i 0.767451 + 0.205638i 0.621245 0.783616i \(-0.286627\pi\)
0.146206 + 0.989254i \(0.453294\pi\)
\(132\) 0 0
\(133\) 12.2939 3.29415i 1.06602 0.285639i
\(134\) 0 0
\(135\) −2.51442 + 5.82436i −0.216407 + 0.501281i
\(136\) 0 0
\(137\) 5.06820 8.77838i 0.433005 0.749987i −0.564125 0.825689i \(-0.690786\pi\)
0.997130 + 0.0757020i \(0.0241198\pi\)
\(138\) 0 0
\(139\) −6.98099 1.87055i −0.592120 0.158658i −0.0496980 0.998764i \(-0.515826\pi\)
−0.542422 + 0.840106i \(0.682493\pi\)
\(140\) 0 0
\(141\) −5.57676 3.59169i −0.469648 0.302475i
\(142\) 0 0
\(143\) −6.01699 −0.503166
\(144\) 0 0
\(145\) −6.62071 −0.549820
\(146\) 0 0
\(147\) 12.3589 6.35612i 1.01934 0.524244i
\(148\) 0 0
\(149\) −3.33856 0.894564i −0.273505 0.0732855i 0.119459 0.992839i \(-0.461884\pi\)
−0.392965 + 0.919554i \(0.628551\pi\)
\(150\) 0 0
\(151\) 0.234448 0.406076i 0.0190791 0.0330460i −0.856328 0.516432i \(-0.827260\pi\)
0.875407 + 0.483386i \(0.160593\pi\)
\(152\) 0 0
\(153\) −0.481192 + 4.93701i −0.0389021 + 0.399133i
\(154\) 0 0
\(155\) 8.77600 2.35152i 0.704906 0.188879i
\(156\) 0 0
\(157\) 6.27529 + 1.68146i 0.500823 + 0.134195i 0.500382 0.865805i \(-0.333193\pi\)
0.000440823 1.00000i \(0.499860\pi\)
\(158\) 0 0
\(159\) −7.72785 8.51768i −0.612859 0.675496i
\(160\) 0 0
\(161\) 28.0866i 2.21354i
\(162\) 0 0
\(163\) −10.7957 10.7957i −0.845583 0.845583i 0.143996 0.989578i \(-0.454005\pi\)
−0.989578 + 0.143996i \(0.954005\pi\)
\(164\) 0 0
\(165\) 0.269120 5.53540i 0.0209510 0.430930i
\(166\) 0 0
\(167\) 5.80942 3.35407i 0.449546 0.259546i −0.258092 0.966120i \(-0.583094\pi\)
0.707639 + 0.706575i \(0.249761\pi\)
\(168\) 0 0
\(169\) −6.69333 3.86440i −0.514872 0.297261i
\(170\) 0 0
\(171\) 6.25711 + 7.60855i 0.478493 + 0.581840i
\(172\) 0 0
\(173\) −7.96162 + 2.13331i −0.605310 + 0.162192i −0.548441 0.836189i \(-0.684779\pi\)
−0.0568693 + 0.998382i \(0.518112\pi\)
\(174\) 0 0
\(175\) 11.7803 6.80135i 0.890506 0.514134i
\(176\) 0 0
\(177\) −10.2122 3.27552i −0.767597 0.246203i
\(178\) 0 0
\(179\) 3.01712 3.01712i 0.225510 0.225510i −0.585304 0.810814i \(-0.699025\pi\)
0.810814 + 0.585304i \(0.199025\pi\)
\(180\) 0 0
\(181\) 13.4602 + 13.4602i 1.00049 + 1.00049i 1.00000 0.000489717i \(0.000155882\pi\)
0.000489717 1.00000i \(0.499844\pi\)
\(182\) 0 0
\(183\) 13.1904 2.85586i 0.975062 0.211111i
\(184\) 0 0
\(185\) −0.431585 0.747526i −0.0317307 0.0549592i
\(186\) 0 0
\(187\) −1.12154 4.18565i −0.0820153 0.306085i
\(188\) 0 0
\(189\) 15.7949 + 12.4965i 1.14891 + 0.908989i
\(190\) 0 0
\(191\) −0.130752 + 0.226469i −0.00946088 + 0.0163867i −0.870717 0.491784i \(-0.836345\pi\)
0.861256 + 0.508171i \(0.169678\pi\)
\(192\) 0 0
\(193\) 0.344850 + 0.597298i 0.0248229 + 0.0429944i 0.878170 0.478349i \(-0.158764\pi\)
−0.853347 + 0.521343i \(0.825431\pi\)
\(194\) 0 0
\(195\) −2.62883 + 4.08174i −0.188255 + 0.292300i
\(196\) 0 0
\(197\) 5.05530 5.05530i 0.360175 0.360175i −0.503702 0.863877i \(-0.668029\pi\)
0.863877 + 0.503702i \(0.168029\pi\)
\(198\) 0 0
\(199\) 4.15845 0.294785 0.147392 0.989078i \(-0.452912\pi\)
0.147392 + 0.989078i \(0.452912\pi\)
\(200\) 0 0
\(201\) −22.8732 7.33649i −1.61335 0.517476i
\(202\) 0 0
\(203\) −5.44018 + 20.3030i −0.381826 + 1.42499i
\(204\) 0 0
\(205\) −3.29906 12.3123i −0.230417 0.859926i
\(206\) 0 0
\(207\) 19.7918 8.99178i 1.37563 0.624972i
\(208\) 0 0
\(209\) −7.45267 4.30280i −0.515512 0.297631i
\(210\) 0 0
\(211\) 2.22080 8.28816i 0.152887 0.570580i −0.846391 0.532563i \(-0.821229\pi\)
0.999277 0.0380175i \(-0.0121043\pi\)
\(212\) 0 0
\(213\) 19.0002 + 0.923754i 1.30188 + 0.0632946i
\(214\) 0 0
\(215\) 9.76779i 0.666158i
\(216\) 0 0
\(217\) 28.8447i 1.95810i
\(218\) 0 0
\(219\) −18.1594 0.882876i −1.22710 0.0596592i
\(220\) 0 0
\(221\) −0.982532 + 3.66686i −0.0660923 + 0.246660i
\(222\) 0 0
\(223\) −10.4773 6.04905i −0.701610 0.405074i 0.106337 0.994330i \(-0.466088\pi\)
−0.807947 + 0.589256i \(0.799421\pi\)
\(224\) 0 0
\(225\) 8.56410 + 6.12379i 0.570940 + 0.408253i
\(226\) 0 0
\(227\) 3.35751 + 12.5304i 0.222846 + 0.831671i 0.983256 + 0.182229i \(0.0583311\pi\)
−0.760411 + 0.649443i \(0.775002\pi\)
\(228\) 0 0
\(229\) −1.70767 + 6.37310i −0.112846 + 0.421146i −0.999117 0.0420210i \(-0.986620\pi\)
0.886271 + 0.463167i \(0.153287\pi\)
\(230\) 0 0
\(231\) −16.7537 5.37367i −1.10231 0.353561i
\(232\) 0 0
\(233\) −7.09511 −0.464816 −0.232408 0.972618i \(-0.574660\pi\)
−0.232408 + 0.972618i \(0.574660\pi\)
\(234\) 0 0
\(235\) 3.30621 3.30621i 0.215673 0.215673i
\(236\) 0 0
\(237\) −8.48711 + 13.1778i −0.551297 + 0.855990i
\(238\) 0 0
\(239\) −8.35740 14.4754i −0.540595 0.936338i −0.998870 0.0475275i \(-0.984866\pi\)
0.458275 0.888810i \(-0.348468\pi\)
\(240\) 0 0
\(241\) −13.3143 + 23.0610i −0.857647 + 1.48549i 0.0165212 + 0.999864i \(0.494741\pi\)
−0.874168 + 0.485624i \(0.838592\pi\)
\(242\) 0 0
\(243\) −3.74929 + 15.1309i −0.240517 + 0.970645i
\(244\) 0 0
\(245\) 2.53542 + 9.46233i 0.161982 + 0.604526i
\(246\) 0 0
\(247\) 3.76949 + 6.52894i 0.239847 + 0.415427i
\(248\) 0 0
\(249\) 4.87963 1.05649i 0.309234 0.0669524i
\(250\) 0 0
\(251\) −12.5807 12.5807i −0.794085 0.794085i 0.188070 0.982156i \(-0.439777\pi\)
−0.982156 + 0.188070i \(0.939777\pi\)
\(252\) 0 0
\(253\) −13.4283 + 13.4283i −0.844227 + 0.844227i
\(254\) 0 0
\(255\) −3.32943 1.06790i −0.208497 0.0668744i
\(256\) 0 0
\(257\) −15.6784 + 9.05193i −0.977992 + 0.564644i −0.901663 0.432439i \(-0.857653\pi\)
−0.0763288 + 0.997083i \(0.524320\pi\)
\(258\) 0 0
\(259\) −2.64699 + 0.709259i −0.164476 + 0.0440712i
\(260\) 0 0
\(261\) −16.0486 + 2.66637i −0.993382 + 0.165044i
\(262\) 0 0
\(263\) 4.90611 + 2.83254i 0.302524 + 0.174662i 0.643576 0.765382i \(-0.277450\pi\)
−0.341052 + 0.940044i \(0.610783\pi\)
\(264\) 0 0
\(265\) 7.02067 4.05338i 0.431276 0.248997i
\(266\) 0 0
\(267\) −0.413757 + 8.51036i −0.0253215 + 0.520826i
\(268\) 0 0
\(269\) −14.2691 14.2691i −0.870000 0.870000i 0.122472 0.992472i \(-0.460918\pi\)
−0.992472 + 0.122472i \(0.960918\pi\)
\(270\) 0 0
\(271\) 0.189638i 0.0115197i −0.999983 0.00575985i \(-0.998167\pi\)
0.999983 0.00575985i \(-0.00183343\pi\)
\(272\) 0 0
\(273\) 10.3570 + 11.4155i 0.626831 + 0.690897i
\(274\) 0 0
\(275\) −8.88390 2.38043i −0.535720 0.143546i
\(276\) 0 0
\(277\) −7.79717 + 2.08925i −0.468487 + 0.125531i −0.485337 0.874327i \(-0.661303\pi\)
0.0168499 + 0.999858i \(0.494636\pi\)
\(278\) 0 0
\(279\) 20.3259 9.23445i 1.21688 0.552852i
\(280\) 0 0
\(281\) 1.54002 2.66740i 0.0918700 0.159124i −0.816428 0.577447i \(-0.804049\pi\)
0.908298 + 0.418324i \(0.137382\pi\)
\(282\) 0 0
\(283\) −7.94293 2.12830i −0.472158 0.126514i 0.0148908 0.999889i \(-0.495260\pi\)
−0.487049 + 0.873375i \(0.661927\pi\)
\(284\) 0 0
\(285\) −6.17498 + 3.17577i −0.365774 + 0.188116i
\(286\) 0 0
\(287\) −40.4675 −2.38872
\(288\) 0 0
\(289\) 14.2660 0.839179
\(290\) 0 0
\(291\) −20.3945 13.1350i −1.19555 0.769988i
\(292\) 0 0
\(293\) −20.7143 5.55039i −1.21014 0.324257i −0.403326 0.915056i \(-0.632146\pi\)
−0.806819 + 0.590799i \(0.798813\pi\)
\(294\) 0 0
\(295\) 3.77981 6.54682i 0.220069 0.381171i
\(296\) 0 0
\(297\) −1.57693 13.5262i −0.0915030 0.784867i
\(298\) 0 0
\(299\) 16.0698 4.30588i 0.929338 0.249015i
\(300\) 0 0
\(301\) 29.9538 + 8.02611i 1.72651 + 0.462617i
\(302\) 0 0
\(303\) −6.88317 + 1.49028i −0.395428 + 0.0856144i
\(304\) 0 0
\(305\) 9.51309i 0.544718i
\(306\) 0 0
\(307\) −14.6450 14.6450i −0.835837 0.835837i 0.152471 0.988308i \(-0.451277\pi\)
−0.988308 + 0.152471i \(0.951277\pi\)
\(308\) 0 0
\(309\) 12.2157 6.28251i 0.694929 0.357399i
\(310\) 0 0
\(311\) 0.242062 0.139755i 0.0137261 0.00792475i −0.493121 0.869961i \(-0.664144\pi\)
0.506847 + 0.862036i \(0.330811\pi\)
\(312\) 0 0
\(313\) 8.17606 + 4.72045i 0.462138 + 0.266816i 0.712943 0.701222i \(-0.247362\pi\)
−0.250805 + 0.968038i \(0.580695\pi\)
\(314\) 0 0
\(315\) −10.9650 + 9.01743i −0.617810 + 0.508074i
\(316\) 0 0
\(317\) 29.5930 7.92943i 1.66211 0.445361i 0.699144 0.714981i \(-0.253565\pi\)
0.962967 + 0.269619i \(0.0868979\pi\)
\(318\) 0 0
\(319\) 12.3079 7.10595i 0.689108 0.397857i
\(320\) 0 0
\(321\) −19.4183 + 17.6177i −1.08382 + 0.983323i
\(322\) 0 0
\(323\) −3.83917 + 3.83917i −0.213617 + 0.213617i
\(324\) 0 0
\(325\) 5.69739 + 5.69739i 0.316034 + 0.316034i
\(326\) 0 0
\(327\) −0.371897 0.409906i −0.0205659 0.0226679i
\(328\) 0 0
\(329\) −7.42211 12.8555i −0.409194 0.708745i
\(330\) 0 0
\(331\) 7.00136 + 26.1294i 0.384829 + 1.43620i 0.838436 + 0.545001i \(0.183471\pi\)
−0.453606 + 0.891202i \(0.649863\pi\)
\(332\) 0 0
\(333\) −1.34721 1.63819i −0.0738267 0.0897721i
\(334\) 0 0
\(335\) 8.46598 14.6635i 0.462546 0.801153i
\(336\) 0 0
\(337\) −7.23274 12.5275i −0.393993 0.682415i 0.598980 0.800764i \(-0.295573\pi\)
−0.992972 + 0.118349i \(0.962240\pi\)
\(338\) 0 0
\(339\) 2.33368 + 4.53763i 0.126748 + 0.246450i
\(340\) 0 0
\(341\) −13.7907 + 13.7907i −0.746806 + 0.746806i
\(342\) 0 0
\(343\) 3.96811 0.214258
\(344\) 0 0
\(345\) 3.24250 + 14.9762i 0.174570 + 0.806289i
\(346\) 0 0
\(347\) 2.74121 10.2303i 0.147156 0.549194i −0.852494 0.522737i \(-0.824911\pi\)
0.999650 0.0264566i \(-0.00842240\pi\)
\(348\) 0 0
\(349\) −0.171076 0.638465i −0.00915749 0.0341762i 0.961196 0.275867i \(-0.0889648\pi\)
−0.970353 + 0.241690i \(0.922298\pi\)
\(350\) 0 0
\(351\) −4.72843 + 10.9528i −0.252385 + 0.584619i
\(352\) 0 0
\(353\) 8.55438 + 4.93888i 0.455304 + 0.262870i 0.710068 0.704133i \(-0.248664\pi\)
−0.254764 + 0.967003i \(0.581998\pi\)
\(354\) 0 0
\(355\) −3.47044 + 12.9518i −0.184192 + 0.687413i
\(356\) 0 0
\(357\) −6.01057 + 9.33251i −0.318113 + 0.493929i
\(358\) 0 0
\(359\) 31.4509i 1.65991i −0.557828 0.829956i \(-0.688365\pi\)
0.557828 0.829956i \(-0.311635\pi\)
\(360\) 0 0
\(361\) 8.21762i 0.432506i
\(362\) 0 0
\(363\) −3.27299 6.36403i −0.171788 0.334025i
\(364\) 0 0
\(365\) 3.31686 12.3787i 0.173613 0.647931i
\(366\) 0 0
\(367\) 2.27957 + 1.31611i 0.118993 + 0.0687004i 0.558315 0.829629i \(-0.311448\pi\)
−0.439322 + 0.898329i \(0.644781\pi\)
\(368\) 0 0
\(369\) −12.9555 28.5162i −0.674434 1.48450i
\(370\) 0 0
\(371\) −6.66126 24.8602i −0.345835 1.29068i
\(372\) 0 0
\(373\) 6.22536 23.2334i 0.322337 1.20298i −0.594625 0.804003i \(-0.702699\pi\)
0.916962 0.398975i \(-0.130634\pi\)
\(374\) 0 0
\(375\) −13.3268 + 12.0911i −0.688195 + 0.624380i
\(376\) 0 0
\(377\) −12.4504 −0.641228
\(378\) 0 0
\(379\) 8.59872 8.59872i 0.441687 0.441687i −0.450892 0.892579i \(-0.648894\pi\)
0.892579 + 0.450892i \(0.148894\pi\)
\(380\) 0 0
\(381\) −34.6469 1.68446i −1.77501 0.0862976i
\(382\) 0 0
\(383\) 6.23486 + 10.7991i 0.318586 + 0.551808i 0.980193 0.198043i \(-0.0634585\pi\)
−0.661607 + 0.749851i \(0.730125\pi\)
\(384\) 0 0
\(385\) 6.20098 10.7404i 0.316031 0.547382i
\(386\) 0 0
\(387\) 3.93380 + 23.6771i 0.199966 + 1.20357i
\(388\) 0 0
\(389\) 3.38346 + 12.6272i 0.171548 + 0.640227i 0.997114 + 0.0759206i \(0.0241896\pi\)
−0.825566 + 0.564306i \(0.809144\pi\)
\(390\) 0 0
\(391\) 5.99068 + 10.3762i 0.302962 + 0.524745i
\(392\) 0 0
\(393\) −4.81061 + 14.9982i −0.242663 + 0.756560i
\(394\) 0 0
\(395\) −7.81252 7.81252i −0.393090 0.393090i
\(396\) 0 0
\(397\) 1.89653 1.89653i 0.0951839 0.0951839i −0.657911 0.753095i \(-0.728560\pi\)
0.753095 + 0.657911i \(0.228560\pi\)
\(398\) 0 0
\(399\) 4.66486 + 21.5456i 0.233535 + 1.07863i
\(400\) 0 0
\(401\) 7.73867 4.46792i 0.386451 0.223118i −0.294170 0.955753i \(-0.595043\pi\)
0.680621 + 0.732635i \(0.261710\pi\)
\(402\) 0 0
\(403\) 16.5035 4.42209i 0.822096 0.220280i
\(404\) 0 0
\(405\) −9.86470 4.83985i −0.490181 0.240494i
\(406\) 0 0
\(407\) 1.60463 + 0.926431i 0.0795384 + 0.0459215i
\(408\) 0 0
\(409\) −5.14089 + 2.96810i −0.254201 + 0.146763i −0.621686 0.783266i \(-0.713552\pi\)
0.367485 + 0.930029i \(0.380219\pi\)
\(410\) 0 0
\(411\) 14.7604 + 9.50636i 0.728075 + 0.468914i
\(412\) 0 0
\(413\) −16.9706 16.9706i −0.835069 0.835069i
\(414\) 0 0
\(415\) 3.51925i 0.172753i
\(416\) 0 0
\(417\) 3.82323 11.9198i 0.187225 0.583717i
\(418\) 0 0
\(419\) −30.6701 8.21802i −1.49833 0.401476i −0.585790 0.810463i \(-0.699216\pi\)
−0.912540 + 0.408986i \(0.865882\pi\)
\(420\) 0 0
\(421\) 17.0997 4.58184i 0.833387 0.223305i 0.183196 0.983076i \(-0.441356\pi\)
0.650191 + 0.759771i \(0.274689\pi\)
\(422\) 0 0
\(423\) 6.68272 9.34575i 0.324925 0.454406i
\(424\) 0 0
\(425\) −2.90136 + 5.02530i −0.140737 + 0.243763i
\(426\) 0 0
\(427\) 29.1728 + 7.81682i 1.41177 + 0.378283i
\(428\) 0 0
\(429\) 0.506086 10.4094i 0.0244340 0.502572i
\(430\) 0 0
\(431\) 20.7181 0.997956 0.498978 0.866615i \(-0.333709\pi\)
0.498978 + 0.866615i \(0.333709\pi\)
\(432\) 0 0
\(433\) −9.78697 −0.470332 −0.235166 0.971955i \(-0.575563\pi\)
−0.235166 + 0.971955i \(0.575563\pi\)
\(434\) 0 0
\(435\) 0.556865 11.4539i 0.0266996 0.549172i
\(436\) 0 0
\(437\) 22.9833 + 6.15835i 1.09944 + 0.294594i
\(438\) 0 0
\(439\) −10.6989 + 18.5310i −0.510629 + 0.884435i 0.489295 + 0.872118i \(0.337254\pi\)
−0.999924 + 0.0123167i \(0.996079\pi\)
\(440\) 0 0
\(441\) 9.95663 + 21.9155i 0.474125 + 1.04360i
\(442\) 0 0
\(443\) −23.0566 + 6.17801i −1.09545 + 0.293526i −0.760912 0.648855i \(-0.775248\pi\)
−0.334542 + 0.942381i \(0.608581\pi\)
\(444\) 0 0
\(445\) −5.80124 1.55444i −0.275005 0.0736874i
\(446\) 0 0
\(447\) 1.82841 5.70049i 0.0864806 0.269624i
\(448\) 0 0
\(449\) 17.2778i 0.815390i −0.913118 0.407695i \(-0.866333\pi\)
0.913118 0.407695i \(-0.133667\pi\)
\(450\) 0 0
\(451\) 19.3476 + 19.3476i 0.911042 + 0.911042i
\(452\) 0 0
\(453\) 0.682795 + 0.439752i 0.0320805 + 0.0206613i
\(454\) 0 0
\(455\) −9.40918 + 5.43239i −0.441109 + 0.254674i
\(456\) 0 0
\(457\) 33.3114 + 19.2323i 1.55824 + 0.899651i 0.997426 + 0.0717098i \(0.0228455\pi\)
0.560815 + 0.827941i \(0.310488\pi\)
\(458\) 0 0
\(459\) −8.50058 1.24772i −0.396773 0.0582383i
\(460\) 0 0
\(461\) −2.43896 + 0.653517i −0.113594 + 0.0304373i −0.315168 0.949036i \(-0.602061\pi\)
0.201574 + 0.979473i \(0.435394\pi\)
\(462\) 0 0
\(463\) 24.3919 14.0827i 1.13359 0.654476i 0.188752 0.982025i \(-0.439556\pi\)
0.944834 + 0.327549i \(0.106223\pi\)
\(464\) 0 0
\(465\) 3.33001 + 15.3803i 0.154425 + 0.713246i
\(466\) 0 0
\(467\) −2.16739 + 2.16739i −0.100295 + 0.100295i −0.755474 0.655179i \(-0.772593\pi\)
0.655179 + 0.755474i \(0.272593\pi\)
\(468\) 0 0
\(469\) −38.0106 38.0106i −1.75517 1.75517i
\(470\) 0 0
\(471\) −3.43675 + 10.7149i −0.158357 + 0.493715i
\(472\) 0 0
\(473\) −10.4837 18.1583i −0.482040 0.834918i
\(474\) 0 0
\(475\) 2.98256 + 11.1311i 0.136849 + 0.510729i
\(476\) 0 0
\(477\) 15.3856 12.6528i 0.704460 0.579333i
\(478\) 0 0
\(479\) −0.298969 + 0.517829i −0.0136602 + 0.0236602i −0.872775 0.488123i \(-0.837682\pi\)
0.859114 + 0.511783i \(0.171015\pi\)
\(480\) 0 0
\(481\) −0.811604 1.40574i −0.0370060 0.0640962i
\(482\) 0 0
\(483\) 48.5901 + 2.36235i 2.21093 + 0.107491i
\(484\) 0 0
\(485\) 12.0910 12.0910i 0.549023 0.549023i
\(486\) 0 0
\(487\) −2.90101 −0.131457 −0.0657287 0.997838i \(-0.520937\pi\)
−0.0657287 + 0.997838i \(0.520937\pi\)
\(488\) 0 0
\(489\) 19.5846 17.7686i 0.885647 0.803523i
\(490\) 0 0
\(491\) 0.760458 2.83807i 0.0343190 0.128080i −0.946641 0.322290i \(-0.895547\pi\)
0.980960 + 0.194210i \(0.0622142\pi\)
\(492\) 0 0
\(493\) −2.32070 8.66099i −0.104519 0.390071i
\(494\) 0 0
\(495\) 9.55364 + 0.931159i 0.429404 + 0.0418525i
\(496\) 0 0
\(497\) 36.8664 + 21.2848i 1.65368 + 0.954755i
\(498\) 0 0
\(499\) −3.32662 + 12.4151i −0.148920 + 0.555777i 0.850630 + 0.525765i \(0.176221\pi\)
−0.999550 + 0.0300115i \(0.990446\pi\)
\(500\) 0 0
\(501\) 5.31394 + 10.3324i 0.237409 + 0.461620i
\(502\) 0 0
\(503\) 2.78327i 0.124100i 0.998073 + 0.0620500i \(0.0197638\pi\)
−0.998073 + 0.0620500i \(0.980236\pi\)
\(504\) 0 0
\(505\) 4.96424i 0.220906i
\(506\) 0 0
\(507\) 7.24841 11.2545i 0.321913 0.499829i
\(508\) 0 0
\(509\) −8.72439 + 32.5599i −0.386702 + 1.44319i 0.448765 + 0.893650i \(0.351864\pi\)
−0.835467 + 0.549541i \(0.814803\pi\)
\(510\) 0 0
\(511\) −35.2350 20.3429i −1.55871 0.899919i
\(512\) 0 0
\(513\) −13.6891 + 10.1849i −0.604390 + 0.449674i
\(514\) 0 0
\(515\) 2.50606 + 9.35275i 0.110430 + 0.412131i
\(516\) 0 0
\(517\) −2.59770 + 9.69474i −0.114247 + 0.426374i
\(518\) 0 0
\(519\) −3.02099 13.9531i −0.132607 0.612473i
\(520\) 0 0
\(521\) 12.7253 0.557504 0.278752 0.960363i \(-0.410079\pi\)
0.278752 + 0.960363i \(0.410079\pi\)
\(522\) 0 0
\(523\) 7.32974 7.32974i 0.320507 0.320507i −0.528454 0.848962i \(-0.677228\pi\)
0.848962 + 0.528454i \(0.177228\pi\)
\(524\) 0 0
\(525\) 10.7756 + 20.9520i 0.470284 + 0.914422i
\(526\) 0 0
\(527\) 6.15236 + 10.6562i 0.268001 + 0.464191i
\(528\) 0 0
\(529\) 14.7537 25.5542i 0.641467 1.11105i
\(530\) 0 0
\(531\) 6.52562 17.3917i 0.283188 0.754736i
\(532\) 0 0
\(533\) −6.20396 23.1535i −0.268723 1.00289i
\(534\) 0 0
\(535\) −9.24076 16.0055i −0.399513 0.691976i
\(536\) 0 0
\(537\) 4.96588 + 5.47342i 0.214294 + 0.236195i
\(538\) 0 0
\(539\) −14.8692 14.8692i −0.640460 0.640460i
\(540\) 0 0
\(541\) 0.283076 0.283076i 0.0121704 0.0121704i −0.700995 0.713166i \(-0.747261\pi\)
0.713166 + 0.700995i \(0.247261\pi\)
\(542\) 0 0
\(543\) −24.4184 + 22.1541i −1.04789 + 0.950725i
\(544\) 0 0
\(545\) 0.337864 0.195066i 0.0144725 0.00835570i
\(546\) 0 0
\(547\) −0.947844 + 0.253974i −0.0405269 + 0.0108591i −0.279026 0.960284i \(-0.590011\pi\)
0.238499 + 0.971143i \(0.423345\pi\)
\(548\) 0 0
\(549\) 3.83122 + 23.0597i 0.163513 + 0.984163i
\(550\) 0 0
\(551\) −15.4211 8.90339i −0.656962 0.379297i
\(552\) 0 0
\(553\) −30.3773 + 17.5383i −1.29177 + 0.745806i
\(554\) 0 0
\(555\) 1.32953 0.683771i 0.0564353 0.0290244i
\(556\) 0 0
\(557\) 10.5939 + 10.5939i 0.448877 + 0.448877i 0.894981 0.446104i \(-0.147189\pi\)
−0.446104 + 0.894981i \(0.647189\pi\)
\(558\) 0 0
\(559\) 18.3685i 0.776906i
\(560\) 0 0
\(561\) 7.33554 1.58822i 0.309707 0.0670549i
\(562\) 0 0
\(563\) 40.4774 + 10.8459i 1.70592 + 0.457099i 0.974418 0.224742i \(-0.0721540\pi\)
0.731500 + 0.681842i \(0.238821\pi\)
\(564\) 0 0
\(565\) −3.47415 + 0.930895i −0.146158 + 0.0391630i
\(566\) 0 0
\(567\) −22.9476 + 26.2742i −0.963709 + 1.10341i
\(568\) 0 0
\(569\) −18.6572 + 32.3152i −0.782151 + 1.35473i 0.148535 + 0.988907i \(0.452544\pi\)
−0.930686 + 0.365818i \(0.880789\pi\)
\(570\) 0 0
\(571\) −22.6439 6.06741i −0.947616 0.253913i −0.248266 0.968692i \(-0.579861\pi\)
−0.699350 + 0.714779i \(0.746527\pi\)
\(572\) 0 0
\(573\) −0.380796 0.245250i −0.0159080 0.0102455i
\(574\) 0 0
\(575\) 25.4300 1.06051
\(576\) 0 0
\(577\) 44.5543 1.85482 0.927410 0.374047i \(-0.122030\pi\)
0.927410 + 0.374047i \(0.122030\pi\)
\(578\) 0 0
\(579\) −1.06234 + 0.546355i −0.0441491 + 0.0227057i
\(580\) 0 0
\(581\) 10.7921 + 2.89174i 0.447733 + 0.119970i
\(582\) 0 0
\(583\) −8.70092 + 15.0704i −0.360355 + 0.624153i
\(584\) 0 0
\(585\) −6.84033 4.89121i −0.282813 0.202227i
\(586\) 0 0
\(587\) 16.0531 4.30142i 0.662584 0.177539i 0.0881720 0.996105i \(-0.471897\pi\)
0.574412 + 0.818566i \(0.305231\pi\)
\(588\) 0 0
\(589\) 23.6035 + 6.32455i 0.972567 + 0.260599i
\(590\) 0 0
\(591\) 8.32051 + 9.17090i 0.342260 + 0.377241i
\(592\) 0 0
\(593\) 38.8079i 1.59365i 0.604211 + 0.796824i \(0.293488\pi\)
−0.604211 + 0.796824i \(0.706512\pi\)
\(594\) 0 0
\(595\) −5.53282 5.53282i −0.226824 0.226824i
\(596\) 0 0
\(597\) −0.349765 + 7.19415i −0.0143149 + 0.294437i
\(598\) 0 0
\(599\) 1.76012 1.01621i 0.0719165 0.0415210i −0.463611 0.886039i \(-0.653446\pi\)
0.535527 + 0.844518i \(0.320113\pi\)
\(600\) 0 0
\(601\) 14.9323 + 8.62115i 0.609100 + 0.351664i 0.772613 0.634877i \(-0.218949\pi\)
−0.163513 + 0.986541i \(0.552283\pi\)
\(602\) 0 0
\(603\) 14.6160 38.9538i 0.595211 1.58632i
\(604\) 0 0
\(605\) 4.87249 1.30558i 0.198095 0.0530794i
\(606\) 0 0
\(607\) 10.3001 5.94674i 0.418066 0.241371i −0.276183 0.961105i \(-0.589070\pi\)
0.694250 + 0.719734i \(0.255736\pi\)
\(608\) 0 0
\(609\) −34.6668 11.1192i −1.40477 0.450574i
\(610\) 0 0
\(611\) 6.21739 6.21739i 0.251529 0.251529i
\(612\) 0 0
\(613\) −3.45525 3.45525i −0.139556 0.139556i 0.633877 0.773434i \(-0.281462\pi\)
−0.773434 + 0.633877i \(0.781462\pi\)
\(614\) 0 0
\(615\) 21.5778 4.67183i 0.870101 0.188386i
\(616\) 0 0
\(617\) 20.6596 + 35.7835i 0.831725 + 1.44059i 0.896669 + 0.442701i \(0.145980\pi\)
−0.0649443 + 0.997889i \(0.520687\pi\)
\(618\) 0 0
\(619\) −3.19640 11.9291i −0.128474 0.479471i 0.871466 0.490456i \(-0.163170\pi\)
−0.999940 + 0.0109851i \(0.996503\pi\)
\(620\) 0 0
\(621\) 13.8912 + 34.9963i 0.557433 + 1.40435i
\(622\) 0 0
\(623\) −9.53365 + 16.5128i −0.381958 + 0.661570i
\(624\) 0 0
\(625\) 2.43160 + 4.21165i 0.0972639 + 0.168466i
\(626\) 0 0
\(627\) 8.07072 12.5313i 0.322313 0.500451i
\(628\) 0 0
\(629\) 0.826608 0.826608i 0.0329590 0.0329590i
\(630\) 0 0
\(631\) 21.4353 0.853326 0.426663 0.904411i \(-0.359689\pi\)
0.426663 + 0.904411i \(0.359689\pi\)
\(632\) 0 0
\(633\) 14.1518 + 4.53912i 0.562483 + 0.180414i
\(634\) 0 0
\(635\) 6.32833 23.6177i 0.251132 0.937238i
\(636\) 0 0
\(637\) 4.76792 + 17.7941i 0.188912 + 0.705028i
\(638\) 0 0
\(639\) −3.19620 + 32.7929i −0.126440 + 1.29727i
\(640\) 0 0
\(641\) −40.1623 23.1877i −1.58631 0.915859i −0.993907 0.110220i \(-0.964844\pi\)
−0.592407 0.805639i \(-0.701822\pi\)
\(642\) 0 0
\(643\) 4.94288 18.4471i 0.194928 0.727482i −0.797357 0.603508i \(-0.793769\pi\)
0.992285 0.123974i \(-0.0395641\pi\)
\(644\) 0 0
\(645\) −16.8984 0.821564i −0.665372 0.0323491i
\(646\) 0 0
\(647\) 45.8797i 1.80372i 0.432033 + 0.901858i \(0.357797\pi\)
−0.432033 + 0.901858i \(0.642203\pi\)
\(648\) 0 0
\(649\) 16.2273i 0.636978i
\(650\) 0 0
\(651\) 49.9015 + 2.42611i 1.95579 + 0.0950867i
\(652\) 0 0
\(653\) 9.78101 36.5032i 0.382761 1.42848i −0.458906 0.888485i \(-0.651759\pi\)
0.841667 0.539997i \(-0.181575\pi\)
\(654\) 0 0
\(655\) −9.61502 5.55123i −0.375690 0.216905i
\(656\) 0 0
\(657\) 3.05476 31.3417i 0.119178 1.22276i
\(658\) 0 0
\(659\) 8.01748 + 29.9216i 0.312317 + 1.16558i 0.926462 + 0.376388i \(0.122834\pi\)
−0.614145 + 0.789193i \(0.710499\pi\)
\(660\) 0 0
\(661\) −9.93628 + 37.0827i −0.386476 + 1.44235i 0.449350 + 0.893356i \(0.351656\pi\)
−0.835827 + 0.548994i \(0.815011\pi\)
\(662\) 0 0
\(663\) −6.26105 2.00821i −0.243159 0.0779922i
\(664\) 0 0
\(665\) −15.5390 −0.602577
\(666\) 0 0
\(667\) −27.7858 + 27.7858i −1.07587 + 1.07587i
\(668\) 0 0
\(669\) 11.3461 17.6170i 0.438667 0.681111i
\(670\) 0 0
\(671\) −10.2103 17.6848i −0.394165 0.682713i
\(672\) 0 0
\(673\) −8.24767 + 14.2854i −0.317924 + 0.550661i −0.980055 0.198728i \(-0.936319\pi\)
0.662131 + 0.749389i \(0.269652\pi\)
\(674\) 0 0
\(675\) −11.3145 + 14.3009i −0.435497 + 0.550441i
\(676\) 0 0
\(677\) −10.7252 40.0270i −0.412203 1.53836i −0.790372 0.612627i \(-0.790113\pi\)
0.378169 0.925737i \(-0.376554\pi\)
\(678\) 0 0
\(679\) −27.1431 47.0132i −1.04166 1.80420i
\(680\) 0 0
\(681\) −21.9601 + 4.75459i −0.841512 + 0.182196i
\(682\) 0 0
\(683\) −6.62321 6.62321i −0.253430 0.253430i 0.568945 0.822375i \(-0.307352\pi\)
−0.822375 + 0.568945i \(0.807352\pi\)
\(684\) 0 0
\(685\) −8.75075 + 8.75075i −0.334349 + 0.334349i
\(686\) 0 0
\(687\) −10.8819 3.49031i −0.415169 0.133164i
\(688\) 0 0
\(689\) 13.2025 7.62248i 0.502976 0.290393i
\(690\) 0 0
\(691\) 22.8153 6.11334i 0.867935 0.232562i 0.202740 0.979233i \(-0.435015\pi\)
0.665194 + 0.746670i \(0.268349\pi\)
\(692\) 0 0
\(693\) 10.7056 28.5320i 0.406673 1.08384i
\(694\) 0 0
\(695\) 7.64154 + 4.41184i 0.289860 + 0.167351i
\(696\) 0 0
\(697\) 14.9501 8.63144i 0.566275 0.326939i
\(698\) 0 0
\(699\) 0.596766 12.2746i 0.0225718 0.464267i
\(700\) 0 0
\(701\) −5.24880 5.24880i −0.198245 0.198245i 0.601003 0.799247i \(-0.294768\pi\)
−0.799247 + 0.601003i \(0.794768\pi\)
\(702\) 0 0
\(703\) 2.32154i 0.0875586i
\(704\) 0 0
\(705\) 5.44168 + 5.99785i 0.204946 + 0.225892i
\(706\) 0 0
\(707\) −15.2233 4.07907i −0.572531 0.153409i
\(708\) 0 0
\(709\) 5.03953 1.35034i 0.189263 0.0507130i −0.162942 0.986636i \(-0.552098\pi\)
0.352206 + 0.935923i \(0.385432\pi\)
\(710\) 0 0
\(711\) −22.0838 15.7911i −0.828209 0.592214i
\(712\) 0 0
\(713\) 26.9623 46.7001i 1.00975 1.74893i
\(714\) 0 0
\(715\) 7.09577 + 1.90131i 0.265367 + 0.0711048i
\(716\) 0 0
\(717\) 25.7455 13.2408i 0.961485 0.494488i
\(718\) 0 0
\(719\) 37.6412 1.40378 0.701889 0.712286i \(-0.252340\pi\)
0.701889 + 0.712286i \(0.252340\pi\)
\(720\) 0 0
\(721\) 30.7403 1.14483
\(722\) 0 0
\(723\) −38.7758 24.9734i −1.44209 0.928771i
\(724\) 0 0
\(725\) −18.3826 4.92561i −0.682714 0.182933i
\(726\) 0 0
\(727\) −3.14610 + 5.44920i −0.116682 + 0.202100i −0.918451 0.395535i \(-0.870559\pi\)
0.801769 + 0.597634i \(0.203893\pi\)
\(728\) 0 0
\(729\) −25.8611 7.75895i −0.957820 0.287369i
\(730\) 0 0
\(731\) −12.7779 + 3.42382i −0.472607 + 0.126635i
\(732\) 0 0
\(733\) −31.5136 8.44405i −1.16398 0.311888i −0.375427 0.926852i \(-0.622504\pi\)
−0.788555 + 0.614964i \(0.789171\pi\)
\(734\) 0 0
\(735\) −16.5832 + 3.59043i −0.611679 + 0.132435i
\(736\) 0 0
\(737\) 36.3458i 1.33882i
\(738\) 0 0
\(739\) −0.850912 0.850912i −0.0313013 0.0313013i 0.691283 0.722584i \(-0.257046\pi\)
−0.722584 + 0.691283i \(0.757046\pi\)
\(740\) 0 0
\(741\) −11.6122 + 5.97209i −0.426584 + 0.219390i
\(742\) 0 0
\(743\) −25.4064 + 14.6684i −0.932070 + 0.538131i −0.887466 0.460874i \(-0.847536\pi\)
−0.0446046 + 0.999005i \(0.514203\pi\)
\(744\) 0 0
\(745\) 3.65445 + 2.10990i 0.133889 + 0.0773007i
\(746\) 0 0
\(747\) 1.41732 + 8.53065i 0.0518568 + 0.312120i
\(748\) 0 0
\(749\) −56.6753 + 15.1861i −2.07087 + 0.554888i
\(750\) 0 0
\(751\) −17.8715 + 10.3181i −0.652141 + 0.376514i −0.789276 0.614038i \(-0.789544\pi\)
0.137135 + 0.990552i \(0.456211\pi\)
\(752\) 0 0
\(753\) 22.8228 20.7065i 0.831710 0.754587i
\(754\) 0 0
\(755\) −0.404798 + 0.404798i −0.0147321 + 0.0147321i
\(756\) 0 0
\(757\) −38.7488 38.7488i −1.40835 1.40835i −0.768502 0.639847i \(-0.778998\pi\)
−0.639847 0.768502i \(-0.721002\pi\)
\(758\) 0 0
\(759\) −22.1015 24.3604i −0.802235 0.884228i
\(760\) 0 0
\(761\) 6.22122 + 10.7755i 0.225519 + 0.390611i 0.956475 0.291814i \(-0.0942588\pi\)
−0.730956 + 0.682425i \(0.760925\pi\)
\(762\) 0 0
\(763\) −0.320568 1.19638i −0.0116053 0.0433117i
\(764\) 0 0
\(765\) 2.12751 5.67011i 0.0769202 0.205003i
\(766\) 0 0
\(767\) 7.10801 12.3114i 0.256655 0.444540i
\(768\) 0 0
\(769\) −9.70125 16.8031i −0.349836 0.605934i 0.636384 0.771372i \(-0.280429\pi\)
−0.986220 + 0.165438i \(0.947096\pi\)
\(770\) 0 0
\(771\) −14.3412 27.8851i −0.516486 1.00426i
\(772\) 0 0
\(773\) 29.9097 29.9097i 1.07578 1.07578i 0.0788954 0.996883i \(-0.474861\pi\)
0.996883 0.0788954i \(-0.0251393\pi\)
\(774\) 0 0
\(775\) 26.1163 0.938126
\(776\) 0 0
\(777\) −1.00439 4.63897i −0.0360321 0.166422i
\(778\) 0 0
\(779\) 8.87301 33.1145i 0.317909 1.18645i
\(780\) 0 0
\(781\) −7.44957 27.8022i −0.266567 0.994840i
\(782\) 0 0
\(783\) −3.26300 27.9884i −0.116610 1.00022i
\(784\) 0 0
\(785\) −6.86906 3.96585i −0.245167 0.141547i
\(786\) 0 0
\(787\) −3.02137 + 11.2759i −0.107700 + 0.401942i −0.998637 0.0521839i \(-0.983382\pi\)
0.890937 + 0.454126i \(0.150048\pi\)
\(788\) 0 0
\(789\) −5.31297 + 8.24937i −0.189147 + 0.293685i
\(790\) 0 0
\(791\) 11.4187i 0.406002i
\(792\) 0 0
\(793\) 17.8896i 0.635277i
\(794\) 0 0
\(795\) 6.42188 + 12.4867i 0.227761 + 0.442859i
\(796\) 0 0
\(797\) 7.63006 28.4758i 0.270271 1.00866i −0.688674 0.725071i \(-0.741807\pi\)
0.958945 0.283593i \(-0.0915264\pi\)
\(798\) 0 0
\(799\) 5.48396 + 3.16617i 0.194009 + 0.112011i
\(800\) 0 0
\(801\) −14.6882 1.43160i −0.518982 0.0505833i
\(802\) 0 0
\(803\) 7.11992 + 26.5719i 0.251256 + 0.937702i
\(804\) 0 0
\(805\) −8.87509 + 33.1223i −0.312806 + 1.16741i
\(806\) 0 0
\(807\) 25.8857 23.4854i 0.911222 0.826726i
\(808\) 0 0
\(809\) 20.9519 0.736631 0.368316 0.929701i \(-0.379935\pi\)
0.368316 + 0.929701i \(0.379935\pi\)
\(810\) 0 0
\(811\) −20.4725 + 20.4725i −0.718886 + 0.718886i −0.968377 0.249491i \(-0.919737\pi\)
0.249491 + 0.968377i \(0.419737\pi\)
\(812\) 0 0
\(813\) 0.328075 + 0.0159504i 0.0115061 + 0.000559404i
\(814\) 0 0
\(815\) 9.31991 + 16.1426i 0.326462 + 0.565449i
\(816\) 0 0
\(817\) −13.1355 + 22.7514i −0.459553 + 0.795970i
\(818\) 0 0
\(819\) −20.6200 + 16.9575i −0.720521 + 0.592542i
\(820\) 0 0
\(821\) 0.747963 + 2.79144i 0.0261041 + 0.0974218i 0.977749 0.209779i \(-0.0672744\pi\)
−0.951645 + 0.307201i \(0.900608\pi\)
\(822\) 0 0
\(823\) 19.7347 + 34.1816i 0.687909 + 1.19149i 0.972513 + 0.232849i \(0.0748047\pi\)
−0.284604 + 0.958645i \(0.591862\pi\)
\(824\) 0 0
\(825\) 4.86539 15.1690i 0.169391 0.528117i
\(826\) 0 0
\(827\) 39.7044 + 39.7044i 1.38066 + 1.38066i 0.843448 + 0.537211i \(0.180522\pi\)
0.537211 + 0.843448i \(0.319478\pi\)
\(828\) 0 0
\(829\) −34.2723 + 34.2723i −1.19033 + 1.19033i −0.213352 + 0.976975i \(0.568438\pi\)
−0.976975 + 0.213352i \(0.931562\pi\)
\(830\) 0 0
\(831\) −2.95860 13.6649i −0.102633 0.474030i
\(832\) 0 0
\(833\) −11.4896 + 6.63350i −0.398090 + 0.229837i
\(834\) 0 0
\(835\) −7.91084 + 2.11970i −0.273766 + 0.0733554i
\(836\) 0 0
\(837\) 14.2661 + 35.9407i 0.493107 + 1.24229i
\(838\) 0 0
\(839\) −7.72719 4.46130i −0.266772 0.154021i 0.360648 0.932702i \(-0.382556\pi\)
−0.627420 + 0.778681i \(0.715889\pi\)
\(840\) 0 0
\(841\) 0.352787 0.203682i 0.0121651 0.00702351i
\(842\) 0 0
\(843\) 4.48508 + 2.88860i 0.154475 + 0.0994888i
\(844\) 0 0
\(845\) 6.67227 + 6.67227i 0.229533 + 0.229533i
\(846\) 0 0
\(847\) 16.0147i 0.550273i
\(848\) 0 0
\(849\) 4.35005 13.5623i 0.149293 0.465457i
\(850\) 0 0
\(851\) −4.94850 1.32595i −0.169632 0.0454529i
\(852\) 0 0
\(853\) −26.1333 + 7.00239i −0.894786 + 0.239757i −0.676776 0.736189i \(-0.736623\pi\)
−0.218010 + 0.975946i \(0.569957\pi\)
\(854\) 0 0
\(855\) −4.97472 10.9499i −0.170132 0.374477i
\(856\) 0 0
\(857\) −24.0832 + 41.7133i −0.822666 + 1.42490i 0.0810244 + 0.996712i \(0.474181\pi\)
−0.903690 + 0.428187i \(0.859153\pi\)
\(858\) 0 0
\(859\) −28.0522 7.51656i −0.957128 0.256462i −0.253744 0.967271i \(-0.581662\pi\)
−0.703384 + 0.710810i \(0.748329\pi\)
\(860\) 0 0
\(861\) 3.40370 70.0091i 0.115998 2.38591i
\(862\) 0 0
\(863\) 10.5561 0.359334 0.179667 0.983728i \(-0.442498\pi\)
0.179667 + 0.983728i \(0.442498\pi\)
\(864\) 0 0
\(865\) 10.0632 0.342158
\(866\) 0 0
\(867\) −1.19991 + 24.6804i −0.0407511 + 0.838189i
\(868\) 0 0
\(869\) 22.9085 + 6.13832i 0.777118 + 0.208228i
\(870\) 0 0
\(871\) 15.9205 27.5750i 0.539444 0.934344i
\(872\) 0 0
\(873\) 24.4390 34.1779i 0.827136 1.15675i
\(874\) 0 0
\(875\) −38.8965 + 10.4223i −1.31494 + 0.352337i
\(876\) 0 0
\(877\) −6.20335 1.66218i −0.209472 0.0561279i 0.152557 0.988295i \(-0.451249\pi\)
−0.362029 + 0.932167i \(0.617916\pi\)
\(878\) 0 0
\(879\) 11.3445 35.3691i 0.382640 1.19297i
\(880\) 0 0
\(881\) 30.8423i 1.03910i 0.854439 + 0.519552i \(0.173901\pi\)
−0.854439 + 0.519552i \(0.826099\pi\)
\(882\) 0 0
\(883\) 0.0570127 + 0.0570127i 0.00191863 + 0.00191863i 0.708065 0.706147i \(-0.249568\pi\)
−0.706147 + 0.708065i \(0.749568\pi\)
\(884\) 0 0
\(885\) 11.0081 + 7.08975i 0.370034 + 0.238319i
\(886\) 0 0
\(887\) 29.6650 17.1271i 0.996055 0.575072i 0.0889760 0.996034i \(-0.471641\pi\)
0.907079 + 0.420961i \(0.138307\pi\)
\(888\) 0 0
\(889\) −67.2258 38.8128i −2.25468 1.30174i
\(890\) 0 0
\(891\) 23.5330 1.59043i 0.788385 0.0532814i
\(892\) 0 0
\(893\) 12.1470 3.25478i 0.406484 0.108917i
\(894\) 0 0
\(895\) −4.51145 + 2.60468i −0.150801 + 0.0870650i
\(896\) 0 0
\(897\) 6.09758 + 28.1630i 0.203592 + 0.940334i
\(898\) 0 0
\(899\) −28.5357 + 28.5357i −0.951720 + 0.951720i
\(900\) 0 0
\(901\) 7.76339 + 7.76339i 0.258636 + 0.258636i
\(902\) 0 0
\(903\) −16.4046 + 51.1453i −0.545912 + 1.70201i
\(904\) 0 0
\(905\) −11.6202 20.1268i −0.386269 0.669037i
\(906\) 0 0
\(907\) 1.17997 + 4.40372i 0.0391804 + 0.146223i 0.982745 0.184965i \(-0.0592172\pi\)
−0.943565 + 0.331188i \(0.892551\pi\)
\(908\) 0 0
\(909\) −1.99926 12.0333i −0.0663111 0.399119i
\(910\) 0 0
\(911\) 4.58628 7.94367i 0.151950 0.263185i −0.779994 0.625787i \(-0.784778\pi\)
0.931944 + 0.362601i \(0.118111\pi\)
\(912\) 0 0
\(913\) −3.77718 6.54227i −0.125006 0.216518i
\(914\) 0 0
\(915\) −16.4577 0.800141i −0.544075 0.0264519i
\(916\) 0 0
\(917\) −24.9240 + 24.9240i −0.823061 + 0.823061i
\(918\) 0 0
\(919\) −2.72325 −0.0898318 −0.0449159 0.998991i \(-0.514302\pi\)
−0.0449159 + 0.998991i \(0.514302\pi\)
\(920\) 0 0
\(921\) 26.5678 24.1043i 0.875440 0.794262i
\(922\) 0 0
\(923\) −6.52623 + 24.3562i −0.214813 + 0.801695i
\(924\) 0 0
\(925\) −0.642172 2.39662i −0.0211145 0.0788003i
\(926\) 0 0
\(927\) 9.84132 + 21.6617i 0.323232 + 0.711465i
\(928\) 0 0
\(929\) 3.93105 + 2.26959i 0.128973 + 0.0744629i 0.563099 0.826390i \(-0.309609\pi\)
−0.434125 + 0.900853i \(0.642942\pi\)
\(930\) 0 0
\(931\) −6.81916 + 25.4495i −0.223489 + 0.834072i
\(932\) 0 0
\(933\) 0.221417 + 0.430524i 0.00724885 + 0.0140947i
\(934\) 0 0
\(935\) 5.29050i 0.173018i
\(936\) 0 0
\(937\) 15.3808i 0.502470i 0.967926 + 0.251235i \(0.0808367\pi\)
−0.967926 + 0.251235i \(0.919163\pi\)
\(938\) 0 0
\(939\) −8.85409 + 13.7476i −0.288942 + 0.448636i
\(940\) 0 0
\(941\) −5.88269 + 21.9545i −0.191770 + 0.715696i 0.801309 + 0.598251i \(0.204137\pi\)
−0.993079 + 0.117446i \(0.962529\pi\)
\(942\) 0 0
\(943\) −65.5177 37.8267i −2.13355 1.23181i
\(944\) 0 0
\(945\) −14.6779 19.7281i −0.477474 0.641754i
\(946\) 0 0
\(947\) −10.6876 39.8867i −0.347301 1.29614i −0.889901 0.456153i \(-0.849227\pi\)
0.542600 0.839991i \(-0.317440\pi\)
\(948\) 0 0
\(949\) 6.23743 23.2784i 0.202476 0.755649i
\(950\) 0 0
\(951\) 11.2289 + 51.8631i 0.364123 + 1.68178i
\(952\) 0 0
\(953\) −3.63707 −0.117816 −0.0589081 0.998263i \(-0.518762\pi\)
−0.0589081 + 0.998263i \(0.518762\pi\)
\(954\) 0 0
\(955\) 0.225756 0.225756i 0.00730531 0.00730531i
\(956\) 0 0
\(957\) 11.2581 + 21.8904i 0.363924 + 0.707615i
\(958\) 0 0
\(959\) 19.6446 + 34.0254i 0.634357 + 1.09874i
\(960\) 0 0
\(961\) 12.1900 21.1136i 0.393224 0.681085i
\(962\) 0 0
\(963\) −28.8454 35.0756i −0.929531 1.13030i
\(964\) 0 0
\(965\) −0.217938 0.813357i −0.00701568 0.0261829i
\(966\) 0 0
\(967\) −13.2430 22.9375i −0.425865 0.737619i 0.570636 0.821203i \(-0.306697\pi\)
−0.996501 + 0.0835839i \(0.973363\pi\)
\(968\) 0 0
\(969\) −6.31889 6.96471i −0.202992 0.223739i
\(970\) 0 0
\(971\) −19.1926 19.1926i −0.615920 0.615920i 0.328562 0.944482i \(-0.393436\pi\)
−0.944482 + 0.328562i \(0.893436\pi\)
\(972\) 0 0
\(973\) 19.8083 19.8083i 0.635025 0.635025i
\(974\) 0 0
\(975\) −10.3357 + 9.37732i −0.331008 + 0.300315i
\(976\) 0 0
\(977\) −39.5474 + 22.8327i −1.26523 + 0.730482i −0.974082 0.226195i \(-0.927371\pi\)
−0.291151 + 0.956677i \(0.594038\pi\)
\(978\) 0 0
\(979\) 12.4528 3.33672i 0.397994 0.106642i
\(980\) 0 0
\(981\) 0.740421 0.608907i 0.0236398 0.0194409i
\(982\) 0 0
\(983\) −4.07756 2.35418i −0.130054 0.0750868i 0.433561 0.901124i \(-0.357257\pi\)
−0.563616 + 0.826037i \(0.690590\pi\)
\(984\) 0 0
\(985\) −7.55909 + 4.36424i −0.240852 + 0.139056i
\(986\) 0 0
\(987\) 22.8643 11.7590i 0.727780 0.374295i
\(988\) 0 0
\(989\) 40.9935 + 40.9935i 1.30352 + 1.30352i
\(990\) 0 0
\(991\) 18.1880i 0.577760i −0.957365 0.288880i \(-0.906717\pi\)
0.957365 0.288880i \(-0.0932829\pi\)
\(992\) 0 0
\(993\) −45.7930 + 9.91467i −1.45320 + 0.314633i
\(994\) 0 0
\(995\) −4.90402 1.31403i −0.155468 0.0416575i
\(996\) 0 0
\(997\) −51.8412 + 13.8908i −1.64183 + 0.439926i −0.957308 0.289069i \(-0.906654\pi\)
−0.684519 + 0.728995i \(0.739988\pi\)
\(998\) 0 0
\(999\) 2.94739 2.19290i 0.0932513 0.0693802i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.2.y.a.335.11 88
3.2 odd 2 1728.2.z.a.143.15 88
4.3 odd 2 144.2.u.a.11.4 88
9.4 even 3 1728.2.z.a.719.15 88
9.5 odd 6 inner 576.2.y.a.527.22 88
12.11 even 2 432.2.v.a.251.19 88
16.3 odd 4 inner 576.2.y.a.47.22 88
16.13 even 4 144.2.u.a.83.5 yes 88
36.23 even 6 144.2.u.a.59.5 yes 88
36.31 odd 6 432.2.v.a.395.18 88
48.29 odd 4 432.2.v.a.35.18 88
48.35 even 4 1728.2.z.a.1007.15 88
144.13 even 12 432.2.v.a.179.19 88
144.67 odd 12 1728.2.z.a.1583.15 88
144.77 odd 12 144.2.u.a.131.4 yes 88
144.131 even 12 inner 576.2.y.a.239.11 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.4 88 4.3 odd 2
144.2.u.a.59.5 yes 88 36.23 even 6
144.2.u.a.83.5 yes 88 16.13 even 4
144.2.u.a.131.4 yes 88 144.77 odd 12
432.2.v.a.35.18 88 48.29 odd 4
432.2.v.a.179.19 88 144.13 even 12
432.2.v.a.251.19 88 12.11 even 2
432.2.v.a.395.18 88 36.31 odd 6
576.2.y.a.47.22 88 16.3 odd 4 inner
576.2.y.a.239.11 88 144.131 even 12 inner
576.2.y.a.335.11 88 1.1 even 1 trivial
576.2.y.a.527.22 88 9.5 odd 6 inner
1728.2.z.a.143.15 88 3.2 odd 2
1728.2.z.a.719.15 88 9.4 even 3
1728.2.z.a.1007.15 88 48.35 even 4
1728.2.z.a.1583.15 88 144.67 odd 12