Properties

Label 576.4.c.c
Level 576576
Weight 44
Character orbit 576.c
Analytic conductor 33.98533.985
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,4,Mod(575,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.575");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 576=2632 576 = 2^{6} \cdot 3^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 576.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 33.985100163333.9851001633
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x2+4 x^{4} - 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2832 2^{8}\cdot 3^{2}
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q5+β2q7β3q1128q1323β1q178β2q19+3β3q23+107q25β1q29+9β2q31β3q35+118q37+152q97+O(q100) q + \beta_1 q^{5} + \beta_{2} q^{7} - \beta_{3} q^{11} - 28 q^{13} - 23 \beta_1 q^{17} - 8 \beta_{2} q^{19} + 3 \beta_{3} q^{23} + 107 q^{25} - \beta_1 q^{29} + 9 \beta_{2} q^{31} - \beta_{3} q^{35} + 118 q^{37}+ \cdots - 152 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q112q13+428q25+472q37+604q49+3208q61+1984q73+1656q85608q97+O(q100) 4 q - 112 q^{13} + 428 q^{25} + 472 q^{37} + 604 q^{49} + 3208 q^{61} + 1984 q^{73} + 1656 q^{85} - 608 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x2+4 x^{4} - 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== (3ν3)/2 ( 3\nu^{3} ) / 2 Copy content Toggle raw display
β2\beta_{2}== 8ν28 8\nu^{2} - 8 Copy content Toggle raw display
β3\beta_{3}== 12ν3+48ν -12\nu^{3} + 48\nu Copy content Toggle raw display
ν\nu== (β3+8β1)/48 ( \beta_{3} + 8\beta_1 ) / 48 Copy content Toggle raw display
ν2\nu^{2}== (β2+8)/8 ( \beta_{2} + 8 ) / 8 Copy content Toggle raw display
ν3\nu^{3}== (2β1)/3 ( 2\beta_1 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/576Z)×\left(\mathbb{Z}/576\mathbb{Z}\right)^\times.

nn 6565 127127 325325
χ(n)\chi(n) 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
575.1
1.22474 0.707107i
−1.22474 0.707107i
−1.22474 + 0.707107i
1.22474 + 0.707107i
0 0 0 4.24264i 0 13.8564i 0 0 0
575.2 0 0 0 4.24264i 0 13.8564i 0 0 0
575.3 0 0 0 4.24264i 0 13.8564i 0 0 0
575.4 0 0 0 4.24264i 0 13.8564i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.4.c.c 4
3.b odd 2 1 inner 576.4.c.c 4
4.b odd 2 1 inner 576.4.c.c 4
8.b even 2 1 144.4.c.b 4
8.d odd 2 1 144.4.c.b 4
12.b even 2 1 inner 576.4.c.c 4
16.e even 4 2 2304.4.f.f 8
16.f odd 4 2 2304.4.f.f 8
24.f even 2 1 144.4.c.b 4
24.h odd 2 1 144.4.c.b 4
48.i odd 4 2 2304.4.f.f 8
48.k even 4 2 2304.4.f.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
144.4.c.b 4 8.b even 2 1
144.4.c.b 4 8.d odd 2 1
144.4.c.b 4 24.f even 2 1
144.4.c.b 4 24.h odd 2 1
576.4.c.c 4 1.a even 1 1 trivial
576.4.c.c 4 3.b odd 2 1 inner
576.4.c.c 4 4.b odd 2 1 inner
576.4.c.c 4 12.b even 2 1 inner
2304.4.f.f 8 16.e even 4 2
2304.4.f.f 8 16.f odd 4 2
2304.4.f.f 8 48.i odd 4 2
2304.4.f.f 8 48.k even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T52+18 T_{5}^{2} + 18 acting on S4new(576,[χ])S_{4}^{\mathrm{new}}(576, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T2+18)2 (T^{2} + 18)^{2} Copy content Toggle raw display
77 (T2+192)2 (T^{2} + 192)^{2} Copy content Toggle raw display
1111 (T23456)2 (T^{2} - 3456)^{2} Copy content Toggle raw display
1313 (T+28)4 (T + 28)^{4} Copy content Toggle raw display
1717 (T2+9522)2 (T^{2} + 9522)^{2} Copy content Toggle raw display
1919 (T2+12288)2 (T^{2} + 12288)^{2} Copy content Toggle raw display
2323 (T231104)2 (T^{2} - 31104)^{2} Copy content Toggle raw display
2929 (T2+18)2 (T^{2} + 18)^{2} Copy content Toggle raw display
3131 (T2+15552)2 (T^{2} + 15552)^{2} Copy content Toggle raw display
3737 (T118)4 (T - 118)^{4} Copy content Toggle raw display
4141 (T2+36450)2 (T^{2} + 36450)^{2} Copy content Toggle raw display
4343 (T2+62208)2 (T^{2} + 62208)^{2} Copy content Toggle raw display
4747 (T286400)2 (T^{2} - 86400)^{2} Copy content Toggle raw display
5353 (T2+490050)2 (T^{2} + 490050)^{2} Copy content Toggle raw display
5959 (T2345600)2 (T^{2} - 345600)^{2} Copy content Toggle raw display
6161 (T802)4 (T - 802)^{4} Copy content Toggle raw display
6767 (T2+19200)2 (T^{2} + 19200)^{2} Copy content Toggle raw display
7171 (T2418176)2 (T^{2} - 418176)^{2} Copy content Toggle raw display
7373 (T496)4 (T - 496)^{4} Copy content Toggle raw display
7979 (T2+1023168)2 (T^{2} + 1023168)^{2} Copy content Toggle raw display
8383 (T23456)2 (T^{2} - 3456)^{2} Copy content Toggle raw display
8989 (T2+1264050)2 (T^{2} + 1264050)^{2} Copy content Toggle raw display
9797 (T+152)4 (T + 152)^{4} Copy content Toggle raw display
show more
show less