Defining parameters
Level: | \( N \) | \(=\) | \( 576 = 2^{6} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 576.bb (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 144 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Sturm bound: | \(768\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(576, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2720 | 680 | 2040 |
Cusp forms | 2656 | 664 | 1992 |
Eisenstein series | 64 | 16 | 48 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(576, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{8}^{\mathrm{old}}(576, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(576, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)