Properties

Label 5760.2.a.cf.1.2
Level $5760$
Weight $2$
Character 5760.1
Self dual yes
Analytic conductor $45.994$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5760,2,Mod(1,5760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5760.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5760 = 2^{7} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5760.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.9938315643\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 5760.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +3.12311 q^{7} -4.00000 q^{11} +7.12311 q^{13} +1.12311 q^{17} +1.12311 q^{19} -5.12311 q^{23} +1.00000 q^{25} +2.00000 q^{29} +3.12311 q^{31} +3.12311 q^{35} +3.12311 q^{37} -6.24621 q^{41} +4.00000 q^{43} +5.12311 q^{47} +2.75379 q^{49} +12.2462 q^{53} -4.00000 q^{55} -10.2462 q^{59} +6.00000 q^{61} +7.12311 q^{65} +8.00000 q^{67} +10.2462 q^{71} -8.24621 q^{73} -12.4924 q^{77} -15.1231 q^{79} +12.0000 q^{83} +1.12311 q^{85} -2.24621 q^{89} +22.2462 q^{91} +1.12311 q^{95} +8.24621 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{7} - 8 q^{11} + 6 q^{13} - 6 q^{17} - 6 q^{19} - 2 q^{23} + 2 q^{25} + 4 q^{29} - 2 q^{31} - 2 q^{35} - 2 q^{37} + 4 q^{41} + 8 q^{43} + 2 q^{47} + 22 q^{49} + 8 q^{53} - 8 q^{55} - 4 q^{59}+ \cdots - 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 3.12311 1.18042 0.590211 0.807249i \(-0.299044\pi\)
0.590211 + 0.807249i \(0.299044\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 7.12311 1.97559 0.987797 0.155747i \(-0.0497784\pi\)
0.987797 + 0.155747i \(0.0497784\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.12311 0.272393 0.136197 0.990682i \(-0.456512\pi\)
0.136197 + 0.990682i \(0.456512\pi\)
\(18\) 0 0
\(19\) 1.12311 0.257658 0.128829 0.991667i \(-0.458878\pi\)
0.128829 + 0.991667i \(0.458878\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.12311 −1.06824 −0.534121 0.845408i \(-0.679357\pi\)
−0.534121 + 0.845408i \(0.679357\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 3.12311 0.560926 0.280463 0.959865i \(-0.409512\pi\)
0.280463 + 0.959865i \(0.409512\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.12311 0.527901
\(36\) 0 0
\(37\) 3.12311 0.513435 0.256718 0.966486i \(-0.417359\pi\)
0.256718 + 0.966486i \(0.417359\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.24621 −0.975494 −0.487747 0.872985i \(-0.662181\pi\)
−0.487747 + 0.872985i \(0.662181\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.12311 0.747282 0.373641 0.927573i \(-0.378109\pi\)
0.373641 + 0.927573i \(0.378109\pi\)
\(48\) 0 0
\(49\) 2.75379 0.393398
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.2462 1.68215 0.841073 0.540921i \(-0.181924\pi\)
0.841073 + 0.540921i \(0.181924\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.2462 −1.33394 −0.666972 0.745083i \(-0.732410\pi\)
−0.666972 + 0.745083i \(0.732410\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.12311 0.883513
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.2462 1.21600 0.608001 0.793936i \(-0.291972\pi\)
0.608001 + 0.793936i \(0.291972\pi\)
\(72\) 0 0
\(73\) −8.24621 −0.965146 −0.482573 0.875856i \(-0.660298\pi\)
−0.482573 + 0.875856i \(0.660298\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.4924 −1.42364
\(78\) 0 0
\(79\) −15.1231 −1.70148 −0.850741 0.525585i \(-0.823847\pi\)
−0.850741 + 0.525585i \(0.823847\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 1.12311 0.121818
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.24621 −0.238098 −0.119049 0.992888i \(-0.537985\pi\)
−0.119049 + 0.992888i \(0.537985\pi\)
\(90\) 0 0
\(91\) 22.2462 2.33204
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.12311 0.115228
\(96\) 0 0
\(97\) 8.24621 0.837276 0.418638 0.908153i \(-0.362508\pi\)
0.418638 + 0.908153i \(0.362508\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −14.0000 −1.39305 −0.696526 0.717532i \(-0.745272\pi\)
−0.696526 + 0.717532i \(0.745272\pi\)
\(102\) 0 0
\(103\) −3.12311 −0.307729 −0.153864 0.988092i \(-0.549172\pi\)
−0.153864 + 0.988092i \(0.549172\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.24621 0.217149 0.108575 0.994088i \(-0.465371\pi\)
0.108575 + 0.994088i \(0.465371\pi\)
\(108\) 0 0
\(109\) −8.24621 −0.789844 −0.394922 0.918715i \(-0.629228\pi\)
−0.394922 + 0.918715i \(0.629228\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.1231 1.23452 0.617259 0.786760i \(-0.288243\pi\)
0.617259 + 0.786760i \(0.288243\pi\)
\(114\) 0 0
\(115\) −5.12311 −0.477732
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.50758 0.321539
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −19.1231 −1.69690 −0.848451 0.529275i \(-0.822464\pi\)
−0.848451 + 0.529275i \(0.822464\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.24621 −0.196252 −0.0981262 0.995174i \(-0.531285\pi\)
−0.0981262 + 0.995174i \(0.531285\pi\)
\(132\) 0 0
\(133\) 3.50758 0.304146
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.3693 0.971346 0.485673 0.874140i \(-0.338575\pi\)
0.485673 + 0.874140i \(0.338575\pi\)
\(138\) 0 0
\(139\) −5.12311 −0.434536 −0.217268 0.976112i \(-0.569715\pi\)
−0.217268 + 0.976112i \(0.569715\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −28.4924 −2.38266
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 18.4924 1.51496 0.757479 0.652859i \(-0.226431\pi\)
0.757479 + 0.652859i \(0.226431\pi\)
\(150\) 0 0
\(151\) −17.3693 −1.41349 −0.706747 0.707466i \(-0.749838\pi\)
−0.706747 + 0.707466i \(0.749838\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.12311 0.250854
\(156\) 0 0
\(157\) 8.87689 0.708453 0.354227 0.935160i \(-0.384744\pi\)
0.354227 + 0.935160i \(0.384744\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −16.0000 −1.26098
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 25.6155 1.98219 0.991095 0.133160i \(-0.0425125\pi\)
0.991095 + 0.133160i \(0.0425125\pi\)
\(168\) 0 0
\(169\) 37.7386 2.90297
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.75379 −0.589510 −0.294755 0.955573i \(-0.595238\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(174\) 0 0
\(175\) 3.12311 0.236085
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −10.2462 −0.765838 −0.382919 0.923782i \(-0.625081\pi\)
−0.382919 + 0.923782i \(0.625081\pi\)
\(180\) 0 0
\(181\) 7.75379 0.576335 0.288167 0.957580i \(-0.406954\pi\)
0.288167 + 0.957580i \(0.406954\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.12311 0.229615
\(186\) 0 0
\(187\) −4.49242 −0.328518
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 18.4924 1.33111 0.665557 0.746347i \(-0.268194\pi\)
0.665557 + 0.746347i \(0.268194\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.4924 −1.31753 −0.658765 0.752349i \(-0.728921\pi\)
−0.658765 + 0.752349i \(0.728921\pi\)
\(198\) 0 0
\(199\) −8.87689 −0.629266 −0.314633 0.949213i \(-0.601882\pi\)
−0.314633 + 0.949213i \(0.601882\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.24621 0.438398
\(204\) 0 0
\(205\) −6.24621 −0.436254
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.49242 −0.310747
\(210\) 0 0
\(211\) −25.6155 −1.76345 −0.881723 0.471768i \(-0.843616\pi\)
−0.881723 + 0.471768i \(0.843616\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) 9.75379 0.662130
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.00000 0.538138
\(222\) 0 0
\(223\) −3.12311 −0.209139 −0.104569 0.994518i \(-0.533346\pi\)
−0.104569 + 0.994518i \(0.533346\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 24.4924 1.62562 0.812810 0.582529i \(-0.197937\pi\)
0.812810 + 0.582529i \(0.197937\pi\)
\(228\) 0 0
\(229\) 22.4924 1.48634 0.743171 0.669102i \(-0.233321\pi\)
0.743171 + 0.669102i \(0.233321\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −29.1231 −1.90792 −0.953959 0.299937i \(-0.903034\pi\)
−0.953959 + 0.299937i \(0.903034\pi\)
\(234\) 0 0
\(235\) 5.12311 0.334195
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −18.2462 −1.18025 −0.590125 0.807312i \(-0.700921\pi\)
−0.590125 + 0.807312i \(0.700921\pi\)
\(240\) 0 0
\(241\) 12.2462 0.788848 0.394424 0.918929i \(-0.370944\pi\)
0.394424 + 0.918929i \(0.370944\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.75379 0.175933
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 0 0
\(253\) 20.4924 1.28835
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.8769 −0.678482 −0.339241 0.940699i \(-0.610170\pi\)
−0.339241 + 0.940699i \(0.610170\pi\)
\(258\) 0 0
\(259\) 9.75379 0.606071
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.36932 0.454412 0.227206 0.973847i \(-0.427041\pi\)
0.227206 + 0.973847i \(0.427041\pi\)
\(264\) 0 0
\(265\) 12.2462 0.752279
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 22.4924 1.37139 0.685694 0.727890i \(-0.259499\pi\)
0.685694 + 0.727890i \(0.259499\pi\)
\(270\) 0 0
\(271\) −0.876894 −0.0532675 −0.0266338 0.999645i \(-0.508479\pi\)
−0.0266338 + 0.999645i \(0.508479\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) 12.8769 0.773698 0.386849 0.922143i \(-0.373564\pi\)
0.386849 + 0.922143i \(0.373564\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.2462 0.611238 0.305619 0.952154i \(-0.401137\pi\)
0.305619 + 0.952154i \(0.401137\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −19.5076 −1.15150
\(288\) 0 0
\(289\) −15.7386 −0.925802
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −8.24621 −0.481749 −0.240874 0.970556i \(-0.577434\pi\)
−0.240874 + 0.970556i \(0.577434\pi\)
\(294\) 0 0
\(295\) −10.2462 −0.596557
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −36.4924 −2.11041
\(300\) 0 0
\(301\) 12.4924 0.720051
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.00000 0.343559
\(306\) 0 0
\(307\) 22.7386 1.29776 0.648881 0.760890i \(-0.275237\pi\)
0.648881 + 0.760890i \(0.275237\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −14.7386 −0.835751 −0.417876 0.908504i \(-0.637225\pi\)
−0.417876 + 0.908504i \(0.637225\pi\)
\(312\) 0 0
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.4924 0.813976 0.406988 0.913434i \(-0.366579\pi\)
0.406988 + 0.913434i \(0.366579\pi\)
\(318\) 0 0
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.26137 0.0701843
\(324\) 0 0
\(325\) 7.12311 0.395119
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) 18.8769 1.03757 0.518784 0.854905i \(-0.326385\pi\)
0.518784 + 0.854905i \(0.326385\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) −0.246211 −0.0134120 −0.00670599 0.999978i \(-0.502135\pi\)
−0.00670599 + 0.999978i \(0.502135\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −12.4924 −0.676503
\(342\) 0 0
\(343\) −13.2614 −0.716046
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9.75379 −0.523611 −0.261805 0.965121i \(-0.584318\pi\)
−0.261805 + 0.965121i \(0.584318\pi\)
\(348\) 0 0
\(349\) 1.50758 0.0806988 0.0403494 0.999186i \(-0.487153\pi\)
0.0403494 + 0.999186i \(0.487153\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −33.6155 −1.78917 −0.894587 0.446894i \(-0.852530\pi\)
−0.894587 + 0.446894i \(0.852530\pi\)
\(354\) 0 0
\(355\) 10.2462 0.543812
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 26.2462 1.38522 0.692611 0.721311i \(-0.256460\pi\)
0.692611 + 0.721311i \(0.256460\pi\)
\(360\) 0 0
\(361\) −17.7386 −0.933612
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −8.24621 −0.431626
\(366\) 0 0
\(367\) −25.3693 −1.32427 −0.662134 0.749386i \(-0.730349\pi\)
−0.662134 + 0.749386i \(0.730349\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 38.2462 1.98564
\(372\) 0 0
\(373\) −15.1231 −0.783045 −0.391522 0.920169i \(-0.628051\pi\)
−0.391522 + 0.920169i \(0.628051\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.2462 0.733717
\(378\) 0 0
\(379\) 17.1231 0.879555 0.439777 0.898107i \(-0.355057\pi\)
0.439777 + 0.898107i \(0.355057\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.630683 −0.0322264 −0.0161132 0.999870i \(-0.505129\pi\)
−0.0161132 + 0.999870i \(0.505129\pi\)
\(384\) 0 0
\(385\) −12.4924 −0.636673
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.50758 0.0764372 0.0382186 0.999269i \(-0.487832\pi\)
0.0382186 + 0.999269i \(0.487832\pi\)
\(390\) 0 0
\(391\) −5.75379 −0.290982
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −15.1231 −0.760926
\(396\) 0 0
\(397\) 3.12311 0.156744 0.0783721 0.996924i \(-0.475028\pi\)
0.0783721 + 0.996924i \(0.475028\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.00000 0.199750 0.0998752 0.995000i \(-0.468156\pi\)
0.0998752 + 0.995000i \(0.468156\pi\)
\(402\) 0 0
\(403\) 22.2462 1.10816
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12.4924 −0.619226
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −32.0000 −1.57462
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 16.4924 0.805708 0.402854 0.915264i \(-0.368018\pi\)
0.402854 + 0.915264i \(0.368018\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.12311 0.0544786
\(426\) 0 0
\(427\) 18.7386 0.906826
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −34.2462 −1.64958 −0.824791 0.565438i \(-0.808707\pi\)
−0.824791 + 0.565438i \(0.808707\pi\)
\(432\) 0 0
\(433\) 12.2462 0.588515 0.294258 0.955726i \(-0.404928\pi\)
0.294258 + 0.955726i \(0.404928\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.75379 −0.275241
\(438\) 0 0
\(439\) 7.12311 0.339967 0.169984 0.985447i \(-0.445629\pi\)
0.169984 + 0.985447i \(0.445629\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −24.4924 −1.16367 −0.581835 0.813307i \(-0.697665\pi\)
−0.581835 + 0.813307i \(0.697665\pi\)
\(444\) 0 0
\(445\) −2.24621 −0.106481
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.0000 0.566315 0.283158 0.959073i \(-0.408618\pi\)
0.283158 + 0.959073i \(0.408618\pi\)
\(450\) 0 0
\(451\) 24.9848 1.17649
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 22.2462 1.04292
\(456\) 0 0
\(457\) −4.24621 −0.198629 −0.0993147 0.995056i \(-0.531665\pi\)
−0.0993147 + 0.995056i \(0.531665\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.4924 0.488681 0.244340 0.969690i \(-0.421429\pi\)
0.244340 + 0.969690i \(0.421429\pi\)
\(462\) 0 0
\(463\) 17.3693 0.807221 0.403610 0.914931i \(-0.367755\pi\)
0.403610 + 0.914931i \(0.367755\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 30.2462 1.39963 0.699814 0.714325i \(-0.253266\pi\)
0.699814 + 0.714325i \(0.253266\pi\)
\(468\) 0 0
\(469\) 24.9848 1.15369
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) 1.12311 0.0515316
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 42.2462 1.93028 0.965139 0.261737i \(-0.0842952\pi\)
0.965139 + 0.261737i \(0.0842952\pi\)
\(480\) 0 0
\(481\) 22.2462 1.01434
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.24621 0.374441
\(486\) 0 0
\(487\) −4.87689 −0.220993 −0.110497 0.993877i \(-0.535244\pi\)
−0.110497 + 0.993877i \(0.535244\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.24621 −0.101370 −0.0506850 0.998715i \(-0.516140\pi\)
−0.0506850 + 0.998715i \(0.516140\pi\)
\(492\) 0 0
\(493\) 2.24621 0.101164
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 32.0000 1.43540
\(498\) 0 0
\(499\) 23.3693 1.04615 0.523077 0.852285i \(-0.324784\pi\)
0.523077 + 0.852285i \(0.324784\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.63068 0.384823 0.192412 0.981314i \(-0.438369\pi\)
0.192412 + 0.981314i \(0.438369\pi\)
\(504\) 0 0
\(505\) −14.0000 −0.622992
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 26.0000 1.15243 0.576215 0.817298i \(-0.304529\pi\)
0.576215 + 0.817298i \(0.304529\pi\)
\(510\) 0 0
\(511\) −25.7538 −1.13928
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.12311 −0.137620
\(516\) 0 0
\(517\) −20.4924 −0.901256
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 28.9848 1.26985 0.634925 0.772574i \(-0.281031\pi\)
0.634925 + 0.772574i \(0.281031\pi\)
\(522\) 0 0
\(523\) −38.2462 −1.67239 −0.836195 0.548432i \(-0.815225\pi\)
−0.836195 + 0.548432i \(0.815225\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.50758 0.152792
\(528\) 0 0
\(529\) 3.24621 0.141140
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −44.4924 −1.92718
\(534\) 0 0
\(535\) 2.24621 0.0971122
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −11.0152 −0.474456
\(540\) 0 0
\(541\) 20.2462 0.870453 0.435226 0.900321i \(-0.356668\pi\)
0.435226 + 0.900321i \(0.356668\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8.24621 −0.353229
\(546\) 0 0
\(547\) −28.9848 −1.23930 −0.619651 0.784877i \(-0.712726\pi\)
−0.619651 + 0.784877i \(0.712726\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.24621 0.0956918
\(552\) 0 0
\(553\) −47.2311 −2.00847
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.2462 0.688374 0.344187 0.938901i \(-0.388155\pi\)
0.344187 + 0.938901i \(0.388155\pi\)
\(558\) 0 0
\(559\) 28.4924 1.20510
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 34.7386 1.46406 0.732029 0.681273i \(-0.238573\pi\)
0.732029 + 0.681273i \(0.238573\pi\)
\(564\) 0 0
\(565\) 13.1231 0.552093
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 40.4924 1.69753 0.848765 0.528770i \(-0.177346\pi\)
0.848765 + 0.528770i \(0.177346\pi\)
\(570\) 0 0
\(571\) −0.630683 −0.0263933 −0.0131966 0.999913i \(-0.504201\pi\)
−0.0131966 + 0.999913i \(0.504201\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.12311 −0.213648
\(576\) 0 0
\(577\) 11.7538 0.489317 0.244658 0.969609i \(-0.421324\pi\)
0.244658 + 0.969609i \(0.421324\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 37.4773 1.55482
\(582\) 0 0
\(583\) −48.9848 −2.02874
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.2462 −0.422906 −0.211453 0.977388i \(-0.567820\pi\)
−0.211453 + 0.977388i \(0.567820\pi\)
\(588\) 0 0
\(589\) 3.50758 0.144527
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −23.3693 −0.959663 −0.479831 0.877361i \(-0.659302\pi\)
−0.479831 + 0.877361i \(0.659302\pi\)
\(594\) 0 0
\(595\) 3.50758 0.143797
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 34.2462 1.39926 0.699631 0.714504i \(-0.253348\pi\)
0.699631 + 0.714504i \(0.253348\pi\)
\(600\) 0 0
\(601\) 34.4924 1.40698 0.703488 0.710708i \(-0.251625\pi\)
0.703488 + 0.710708i \(0.251625\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.00000 0.203279
\(606\) 0 0
\(607\) 33.3693 1.35442 0.677209 0.735790i \(-0.263189\pi\)
0.677209 + 0.735790i \(0.263189\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 36.4924 1.47633
\(612\) 0 0
\(613\) −4.87689 −0.196976 −0.0984880 0.995138i \(-0.531401\pi\)
−0.0984880 + 0.995138i \(0.531401\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −46.1080 −1.85624 −0.928118 0.372286i \(-0.878574\pi\)
−0.928118 + 0.372286i \(0.878574\pi\)
\(618\) 0 0
\(619\) 18.8769 0.758726 0.379363 0.925248i \(-0.376143\pi\)
0.379363 + 0.925248i \(0.376143\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −7.01515 −0.281056
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.50758 0.139856
\(630\) 0 0
\(631\) 40.8769 1.62728 0.813642 0.581367i \(-0.197482\pi\)
0.813642 + 0.581367i \(0.197482\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −19.1231 −0.758877
\(636\) 0 0
\(637\) 19.6155 0.777196
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −30.2462 −1.19465 −0.597327 0.801998i \(-0.703770\pi\)
−0.597327 + 0.801998i \(0.703770\pi\)
\(642\) 0 0
\(643\) −24.4924 −0.965887 −0.482943 0.875652i \(-0.660432\pi\)
−0.482943 + 0.875652i \(0.660432\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.38447 0.250999 0.125500 0.992094i \(-0.459947\pi\)
0.125500 + 0.992094i \(0.459947\pi\)
\(648\) 0 0
\(649\) 40.9848 1.60880
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −24.7386 −0.968098 −0.484049 0.875041i \(-0.660834\pi\)
−0.484049 + 0.875041i \(0.660834\pi\)
\(654\) 0 0
\(655\) −2.24621 −0.0877667
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −38.7386 −1.50904 −0.754521 0.656275i \(-0.772131\pi\)
−0.754521 + 0.656275i \(0.772131\pi\)
\(660\) 0 0
\(661\) −46.4924 −1.80835 −0.904173 0.427167i \(-0.859512\pi\)
−0.904173 + 0.427167i \(0.859512\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.50758 0.136018
\(666\) 0 0
\(667\) −10.2462 −0.396735
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −24.0000 −0.926510
\(672\) 0 0
\(673\) 28.2462 1.08881 0.544406 0.838822i \(-0.316755\pi\)
0.544406 + 0.838822i \(0.316755\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 40.2462 1.54679 0.773394 0.633926i \(-0.218558\pi\)
0.773394 + 0.633926i \(0.218558\pi\)
\(678\) 0 0
\(679\) 25.7538 0.988340
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −10.7386 −0.410902 −0.205451 0.978667i \(-0.565866\pi\)
−0.205451 + 0.978667i \(0.565866\pi\)
\(684\) 0 0
\(685\) 11.3693 0.434399
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 87.2311 3.32324
\(690\) 0 0
\(691\) −34.1080 −1.29753 −0.648764 0.760990i \(-0.724714\pi\)
−0.648764 + 0.760990i \(0.724714\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.12311 −0.194330
\(696\) 0 0
\(697\) −7.01515 −0.265718
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −38.9848 −1.47244 −0.736219 0.676744i \(-0.763390\pi\)
−0.736219 + 0.676744i \(0.763390\pi\)
\(702\) 0 0
\(703\) 3.50758 0.132291
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −43.7235 −1.64439
\(708\) 0 0
\(709\) 18.0000 0.676004 0.338002 0.941145i \(-0.390249\pi\)
0.338002 + 0.941145i \(0.390249\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −16.0000 −0.599205
\(714\) 0 0
\(715\) −28.4924 −1.06556
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16.0000 −0.596699 −0.298350 0.954457i \(-0.596436\pi\)
−0.298350 + 0.954457i \(0.596436\pi\)
\(720\) 0 0
\(721\) −9.75379 −0.363250
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) −17.3693 −0.644192 −0.322096 0.946707i \(-0.604387\pi\)
−0.322096 + 0.946707i \(0.604387\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.49242 0.166158
\(732\) 0 0
\(733\) −11.1231 −0.410841 −0.205421 0.978674i \(-0.565856\pi\)
−0.205421 + 0.978674i \(0.565856\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −32.0000 −1.17874
\(738\) 0 0
\(739\) −41.6155 −1.53085 −0.765426 0.643524i \(-0.777472\pi\)
−0.765426 + 0.643524i \(0.777472\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −10.8769 −0.399035 −0.199517 0.979894i \(-0.563937\pi\)
−0.199517 + 0.979894i \(0.563937\pi\)
\(744\) 0 0
\(745\) 18.4924 0.677510
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 7.01515 0.256328
\(750\) 0 0
\(751\) −37.8617 −1.38159 −0.690797 0.723049i \(-0.742740\pi\)
−0.690797 + 0.723049i \(0.742740\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −17.3693 −0.632134
\(756\) 0 0
\(757\) −3.12311 −0.113511 −0.0567556 0.998388i \(-0.518076\pi\)
−0.0567556 + 0.998388i \(0.518076\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −28.9848 −1.05070 −0.525350 0.850886i \(-0.676066\pi\)
−0.525350 + 0.850886i \(0.676066\pi\)
\(762\) 0 0
\(763\) −25.7538 −0.932350
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −72.9848 −2.63533
\(768\) 0 0
\(769\) −44.2462 −1.59556 −0.797780 0.602949i \(-0.793992\pi\)
−0.797780 + 0.602949i \(0.793992\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9.50758 −0.341964 −0.170982 0.985274i \(-0.554694\pi\)
−0.170982 + 0.985274i \(0.554694\pi\)
\(774\) 0 0
\(775\) 3.12311 0.112185
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.01515 −0.251344
\(780\) 0 0
\(781\) −40.9848 −1.46655
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.87689 0.316830
\(786\) 0 0
\(787\) −9.75379 −0.347685 −0.173843 0.984773i \(-0.555618\pi\)
−0.173843 + 0.984773i \(0.555618\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 40.9848 1.45725
\(792\) 0 0
\(793\) 42.7386 1.51769
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) 5.75379 0.203554
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 32.9848 1.16401
\(804\) 0 0
\(805\) −16.0000 −0.563926
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −14.2462 −0.500870 −0.250435 0.968133i \(-0.580574\pi\)
−0.250435 + 0.968133i \(0.580574\pi\)
\(810\) 0 0
\(811\) −26.1080 −0.916774 −0.458387 0.888753i \(-0.651573\pi\)
−0.458387 + 0.888753i \(0.651573\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 20.0000 0.700569
\(816\) 0 0
\(817\) 4.49242 0.157170
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.4924 −0.366188 −0.183094 0.983095i \(-0.558611\pi\)
−0.183094 + 0.983095i \(0.558611\pi\)
\(822\) 0 0
\(823\) −25.3693 −0.884319 −0.442159 0.896936i \(-0.645787\pi\)
−0.442159 + 0.896936i \(0.645787\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −16.9848 −0.590621 −0.295310 0.955401i \(-0.595423\pi\)
−0.295310 + 0.955401i \(0.595423\pi\)
\(828\) 0 0
\(829\) −28.7386 −0.998134 −0.499067 0.866563i \(-0.666324\pi\)
−0.499067 + 0.866563i \(0.666324\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.09280 0.107159
\(834\) 0 0
\(835\) 25.6155 0.886462
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 46.7386 1.61360 0.806798 0.590827i \(-0.201198\pi\)
0.806798 + 0.590827i \(0.201198\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 37.7386 1.29825
\(846\) 0 0
\(847\) 15.6155 0.536556
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −16.0000 −0.548473
\(852\) 0 0
\(853\) −13.8617 −0.474617 −0.237308 0.971434i \(-0.576265\pi\)
−0.237308 + 0.971434i \(0.576265\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.3693 −0.388368 −0.194184 0.980965i \(-0.562206\pi\)
−0.194184 + 0.980965i \(0.562206\pi\)
\(858\) 0 0
\(859\) −27.3693 −0.933829 −0.466915 0.884302i \(-0.654634\pi\)
−0.466915 + 0.884302i \(0.654634\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −47.3693 −1.61247 −0.806235 0.591595i \(-0.798498\pi\)
−0.806235 + 0.591595i \(0.798498\pi\)
\(864\) 0 0
\(865\) −7.75379 −0.263637
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 60.4924 2.05206
\(870\) 0 0
\(871\) 56.9848 1.93086
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.12311 0.105580
\(876\) 0 0
\(877\) −47.1231 −1.59123 −0.795617 0.605800i \(-0.792853\pi\)
−0.795617 + 0.605800i \(0.792853\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 42.2462 1.42331 0.711656 0.702529i \(-0.247946\pi\)
0.711656 + 0.702529i \(0.247946\pi\)
\(882\) 0 0
\(883\) 36.0000 1.21150 0.605748 0.795656i \(-0.292874\pi\)
0.605748 + 0.795656i \(0.292874\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.87689 −0.0965967 −0.0482983 0.998833i \(-0.515380\pi\)
−0.0482983 + 0.998833i \(0.515380\pi\)
\(888\) 0 0
\(889\) −59.7235 −2.00306
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.75379 0.192543
\(894\) 0 0
\(895\) −10.2462 −0.342493
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.24621 0.208323
\(900\) 0 0
\(901\) 13.7538 0.458205
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7.75379 0.257745
\(906\) 0 0
\(907\) 54.2462 1.80122 0.900608 0.434632i \(-0.143122\pi\)
0.900608 + 0.434632i \(0.143122\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −13.7538 −0.455683 −0.227842 0.973698i \(-0.573167\pi\)
−0.227842 + 0.973698i \(0.573167\pi\)
\(912\) 0 0
\(913\) −48.0000 −1.58857
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7.01515 −0.231661
\(918\) 0 0
\(919\) −37.8617 −1.24894 −0.624472 0.781047i \(-0.714686\pi\)
−0.624472 + 0.781047i \(0.714686\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 72.9848 2.40233
\(924\) 0 0
\(925\) 3.12311 0.102687
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −23.5076 −0.771259 −0.385629 0.922654i \(-0.626016\pi\)
−0.385629 + 0.922654i \(0.626016\pi\)
\(930\) 0 0
\(931\) 3.09280 0.101362
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.49242 −0.146918
\(936\) 0 0
\(937\) 14.4924 0.473447 0.236723 0.971577i \(-0.423926\pi\)
0.236723 + 0.971577i \(0.423926\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −42.0000 −1.36916 −0.684580 0.728937i \(-0.740015\pi\)
−0.684580 + 0.728937i \(0.740015\pi\)
\(942\) 0 0
\(943\) 32.0000 1.04206
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.24621 −0.0729921 −0.0364960 0.999334i \(-0.511620\pi\)
−0.0364960 + 0.999334i \(0.511620\pi\)
\(948\) 0 0
\(949\) −58.7386 −1.90674
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 14.8769 0.481910 0.240955 0.970536i \(-0.422539\pi\)
0.240955 + 0.970536i \(0.422539\pi\)
\(954\) 0 0
\(955\) −8.00000 −0.258874
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 35.5076 1.14660
\(960\) 0 0
\(961\) −21.2462 −0.685362
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 18.4924 0.595292
\(966\) 0 0
\(967\) 20.8769 0.671356 0.335678 0.941977i \(-0.391035\pi\)
0.335678 + 0.941977i \(0.391035\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 20.9848 0.673436 0.336718 0.941606i \(-0.390683\pi\)
0.336718 + 0.941606i \(0.390683\pi\)
\(972\) 0 0
\(973\) −16.0000 −0.512936
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −15.8617 −0.507462 −0.253731 0.967275i \(-0.581658\pi\)
−0.253731 + 0.967275i \(0.581658\pi\)
\(978\) 0 0
\(979\) 8.98485 0.287157
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −18.8769 −0.602079 −0.301040 0.953612i \(-0.597334\pi\)
−0.301040 + 0.953612i \(0.597334\pi\)
\(984\) 0 0
\(985\) −18.4924 −0.589218
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −20.4924 −0.651621
\(990\) 0 0
\(991\) −27.6155 −0.877236 −0.438618 0.898674i \(-0.644532\pi\)
−0.438618 + 0.898674i \(0.644532\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −8.87689 −0.281416
\(996\) 0 0
\(997\) −2.63068 −0.0833146 −0.0416573 0.999132i \(-0.513264\pi\)
−0.0416573 + 0.999132i \(0.513264\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5760.2.a.cf.1.2 yes 2
3.2 odd 2 5760.2.a.bz.1.2 yes 2
4.3 odd 2 5760.2.a.cl.1.1 yes 2
8.3 odd 2 5760.2.a.ca.1.1 yes 2
8.5 even 2 5760.2.a.by.1.2 2
12.11 even 2 5760.2.a.cb.1.1 yes 2
24.5 odd 2 5760.2.a.ce.1.2 yes 2
24.11 even 2 5760.2.a.ck.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5760.2.a.by.1.2 2 8.5 even 2
5760.2.a.bz.1.2 yes 2 3.2 odd 2
5760.2.a.ca.1.1 yes 2 8.3 odd 2
5760.2.a.cb.1.1 yes 2 12.11 even 2
5760.2.a.ce.1.2 yes 2 24.5 odd 2
5760.2.a.cf.1.2 yes 2 1.1 even 1 trivial
5760.2.a.ck.1.1 yes 2 24.11 even 2
5760.2.a.cl.1.1 yes 2 4.3 odd 2