Properties

Label 5760.2.a.f
Level 57605760
Weight 22
Character orbit 5760.a
Self dual yes
Analytic conductor 45.99445.994
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5760,2,Mod(1,5760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5760.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5760=27325 5760 = 2^{7} \cdot 3^{2} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5760.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 45.993831564345.9938315643
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1920)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq52q7+2q116q13+6q17+6q192q23+q25+2q294q31+2q3510q37+2q418q43+6q473q49+6q532q5510q59+6q97+O(q100) q - q^{5} - 2 q^{7} + 2 q^{11} - 6 q^{13} + 6 q^{17} + 6 q^{19} - 2 q^{23} + q^{25} + 2 q^{29} - 4 q^{31} + 2 q^{35} - 10 q^{37} + 2 q^{41} - 8 q^{43} + 6 q^{47} - 3 q^{49} + 6 q^{53} - 2 q^{55} - 10 q^{59}+ \cdots - 6 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 −1.00000 0 −2.00000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
55 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5760.2.a.f 1
3.b odd 2 1 1920.2.a.t yes 1
4.b odd 2 1 5760.2.a.r 1
8.b even 2 1 5760.2.a.bc 1
8.d odd 2 1 5760.2.a.bs 1
12.b even 2 1 1920.2.a.k yes 1
15.d odd 2 1 9600.2.a.u 1
24.f even 2 1 1920.2.a.p yes 1
24.h odd 2 1 1920.2.a.c 1
48.i odd 4 2 3840.2.k.u 2
48.k even 4 2 3840.2.k.g 2
60.h even 2 1 9600.2.a.bj 1
120.i odd 2 1 9600.2.a.by 1
120.m even 2 1 9600.2.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.2.a.c 1 24.h odd 2 1
1920.2.a.k yes 1 12.b even 2 1
1920.2.a.p yes 1 24.f even 2 1
1920.2.a.t yes 1 3.b odd 2 1
3840.2.k.g 2 48.k even 4 2
3840.2.k.u 2 48.i odd 4 2
5760.2.a.f 1 1.a even 1 1 trivial
5760.2.a.r 1 4.b odd 2 1
5760.2.a.bc 1 8.b even 2 1
5760.2.a.bs 1 8.d odd 2 1
9600.2.a.f 1 120.m even 2 1
9600.2.a.u 1 15.d odd 2 1
9600.2.a.bj 1 60.h even 2 1
9600.2.a.by 1 120.i odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(5760))S_{2}^{\mathrm{new}}(\Gamma_0(5760)):

T7+2 T_{7} + 2 Copy content Toggle raw display
T112 T_{11} - 2 Copy content Toggle raw display
T13+6 T_{13} + 6 Copy content Toggle raw display
T176 T_{17} - 6 Copy content Toggle raw display
T292 T_{29} - 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T+1 T + 1 Copy content Toggle raw display
77 T+2 T + 2 Copy content Toggle raw display
1111 T2 T - 2 Copy content Toggle raw display
1313 T+6 T + 6 Copy content Toggle raw display
1717 T6 T - 6 Copy content Toggle raw display
1919 T6 T - 6 Copy content Toggle raw display
2323 T+2 T + 2 Copy content Toggle raw display
2929 T2 T - 2 Copy content Toggle raw display
3131 T+4 T + 4 Copy content Toggle raw display
3737 T+10 T + 10 Copy content Toggle raw display
4141 T2 T - 2 Copy content Toggle raw display
4343 T+8 T + 8 Copy content Toggle raw display
4747 T6 T - 6 Copy content Toggle raw display
5353 T6 T - 6 Copy content Toggle raw display
5959 T+10 T + 10 Copy content Toggle raw display
6161 T14 T - 14 Copy content Toggle raw display
6767 T8 T - 8 Copy content Toggle raw display
7171 T8 T - 8 Copy content Toggle raw display
7373 T2 T - 2 Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T+12 T + 12 Copy content Toggle raw display
8989 T10 T - 10 Copy content Toggle raw display
9797 T+6 T + 6 Copy content Toggle raw display
show more
show less