Properties

Label 5760.2.b.d.4031.1
Level $5760$
Weight $2$
Character 5760.4031
Analytic conductor $45.994$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5760,2,Mod(4031,5760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5760.4031");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5760 = 2^{7} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5760.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.9938315643\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4031.1
Root \(-1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 5760.4031
Dual form 5760.2.b.d.4031.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -4.24264i q^{7} +4.24264i q^{11} -4.24264i q^{13} +5.65685i q^{17} +6.00000 q^{19} +1.00000 q^{25} +6.00000 q^{29} +4.24264i q^{35} -4.24264i q^{37} -1.41421i q^{41} -6.00000 q^{47} -11.0000 q^{49} -4.24264i q^{55} +12.7279i q^{59} +8.48528i q^{61} +4.24264i q^{65} +12.0000 q^{67} -2.00000 q^{73} +18.0000 q^{77} +16.9706i q^{79} -8.48528i q^{83} -5.65685i q^{85} -7.07107i q^{89} -18.0000 q^{91} -6.00000 q^{95} +10.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} + 12 q^{19} + 2 q^{25} + 12 q^{29} - 12 q^{47} - 22 q^{49} + 24 q^{67} - 4 q^{73} + 36 q^{77} - 36 q^{91} - 12 q^{95} + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5760\mathbb{Z}\right)^\times\).

\(n\) \(641\) \(901\) \(2431\) \(3457\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) − 4.24264i − 1.60357i −0.597614 0.801784i \(-0.703885\pi\)
0.597614 0.801784i \(-0.296115\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.24264i 1.27920i 0.768706 + 0.639602i \(0.220901\pi\)
−0.768706 + 0.639602i \(0.779099\pi\)
\(12\) 0 0
\(13\) − 4.24264i − 1.17670i −0.808608 0.588348i \(-0.799778\pi\)
0.808608 0.588348i \(-0.200222\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.65685i 1.37199i 0.727607 + 0.685994i \(0.240633\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.24264i 0.717137i
\(36\) 0 0
\(37\) − 4.24264i − 0.697486i −0.937218 0.348743i \(-0.886609\pi\)
0.937218 0.348743i \(-0.113391\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 1.41421i − 0.220863i −0.993884 0.110432i \(-0.964777\pi\)
0.993884 0.110432i \(-0.0352233\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) −11.0000 −1.57143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) − 4.24264i − 0.572078i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.7279i 1.65703i 0.559964 + 0.828517i \(0.310815\pi\)
−0.559964 + 0.828517i \(0.689185\pi\)
\(60\) 0 0
\(61\) 8.48528i 1.08643i 0.839594 + 0.543214i \(0.182793\pi\)
−0.839594 + 0.543214i \(0.817207\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.24264i 0.526235i
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 18.0000 2.05129
\(78\) 0 0
\(79\) 16.9706i 1.90934i 0.297670 + 0.954669i \(0.403790\pi\)
−0.297670 + 0.954669i \(0.596210\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 8.48528i − 0.931381i −0.884948 0.465690i \(-0.845806\pi\)
0.884948 0.465690i \(-0.154194\pi\)
\(84\) 0 0
\(85\) − 5.65685i − 0.613572i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 7.07107i − 0.749532i −0.927119 0.374766i \(-0.877723\pi\)
0.927119 0.374766i \(-0.122277\pi\)
\(90\) 0 0
\(91\) −18.0000 −1.88691
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 18.0000 1.79107 0.895533 0.444994i \(-0.146794\pi\)
0.895533 + 0.444994i \(0.146794\pi\)
\(102\) 0 0
\(103\) 12.7279i 1.25412i 0.778971 + 0.627060i \(0.215742\pi\)
−0.778971 + 0.627060i \(0.784258\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 8.48528i − 0.820303i −0.912017 0.410152i \(-0.865476\pi\)
0.912017 0.410152i \(-0.134524\pi\)
\(108\) 0 0
\(109\) − 8.48528i − 0.812743i −0.913708 0.406371i \(-0.866794\pi\)
0.913708 0.406371i \(-0.133206\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 14.1421i − 1.33038i −0.746674 0.665190i \(-0.768350\pi\)
0.746674 0.665190i \(-0.231650\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 24.0000 2.20008
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) − 21.2132i − 1.88237i −0.337895 0.941184i \(-0.609715\pi\)
0.337895 0.941184i \(-0.390285\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 12.7279i − 1.11204i −0.831168 0.556022i \(-0.812327\pi\)
0.831168 0.556022i \(-0.187673\pi\)
\(132\) 0 0
\(133\) − 25.4558i − 2.20730i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.82843i 0.241649i 0.992674 + 0.120824i \(0.0385538\pi\)
−0.992674 + 0.120824i \(0.961446\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 18.0000 1.50524
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 8.48528i 0.690522i 0.938507 + 0.345261i \(0.112210\pi\)
−0.938507 + 0.345261i \(0.887790\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.24264i 0.338600i 0.985565 + 0.169300i \(0.0541506\pi\)
−0.985565 + 0.169300i \(0.945849\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −24.0000 −1.87983 −0.939913 0.341415i \(-0.889094\pi\)
−0.939913 + 0.341415i \(0.889094\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −24.0000 −1.85718 −0.928588 0.371113i \(-0.878976\pi\)
−0.928588 + 0.371113i \(0.878976\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 12.0000 0.912343 0.456172 0.889892i \(-0.349220\pi\)
0.456172 + 0.889892i \(0.349220\pi\)
\(174\) 0 0
\(175\) − 4.24264i − 0.320713i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 4.24264i − 0.317110i −0.987350 0.158555i \(-0.949317\pi\)
0.987350 0.158555i \(-0.0506835\pi\)
\(180\) 0 0
\(181\) − 25.4558i − 1.89212i −0.323994 0.946059i \(-0.605026\pi\)
0.323994 0.946059i \(-0.394974\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.24264i 0.311925i
\(186\) 0 0
\(187\) −24.0000 −1.75505
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 22.0000 1.58359 0.791797 0.610784i \(-0.209146\pi\)
0.791797 + 0.610784i \(0.209146\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 8.48528i 0.601506i 0.953702 + 0.300753i \(0.0972379\pi\)
−0.953702 + 0.300753i \(0.902762\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 25.4558i − 1.78665i
\(204\) 0 0
\(205\) 1.41421i 0.0987730i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 25.4558i 1.76082i
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 24.0000 1.61441
\(222\) 0 0
\(223\) − 4.24264i − 0.284108i −0.989859 0.142054i \(-0.954629\pi\)
0.989859 0.142054i \(-0.0453707\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) − 16.9706i − 1.12145i −0.828003 0.560723i \(-0.810523\pi\)
0.828003 0.560723i \(-0.189477\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.65685i 0.370593i 0.982683 + 0.185296i \(0.0593245\pi\)
−0.982683 + 0.185296i \(0.940675\pi\)
\(234\) 0 0
\(235\) 6.00000 0.391397
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) 28.0000 1.80364 0.901819 0.432113i \(-0.142232\pi\)
0.901819 + 0.432113i \(0.142232\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 11.0000 0.702764
\(246\) 0 0
\(247\) − 25.4558i − 1.61972i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 4.24264i − 0.267793i −0.990995 0.133897i \(-0.957251\pi\)
0.990995 0.133897i \(-0.0427490\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 14.1421i − 0.882162i −0.897467 0.441081i \(-0.854595\pi\)
0.897467 0.441081i \(-0.145405\pi\)
\(258\) 0 0
\(259\) −18.0000 −1.11847
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 0 0
\(271\) − 8.48528i − 0.515444i −0.966219 0.257722i \(-0.917028\pi\)
0.966219 0.257722i \(-0.0829719\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.24264i 0.255841i
\(276\) 0 0
\(277\) − 12.7279i − 0.764747i −0.924008 0.382373i \(-0.875107\pi\)
0.924008 0.382373i \(-0.124893\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 15.5563i − 0.928014i −0.885832 0.464007i \(-0.846411\pi\)
0.885832 0.464007i \(-0.153589\pi\)
\(282\) 0 0
\(283\) 24.0000 1.42665 0.713326 0.700832i \(-0.247188\pi\)
0.713326 + 0.700832i \(0.247188\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) −15.0000 −0.882353
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) − 12.7279i − 0.741048i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 8.48528i − 0.485866i
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 30.0000 1.68497 0.842484 0.538721i \(-0.181092\pi\)
0.842484 + 0.538721i \(0.181092\pi\)
\(318\) 0 0
\(319\) 25.4558i 1.42525i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 33.9411i 1.88853i
\(324\) 0 0
\(325\) − 4.24264i − 0.235339i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 25.4558i 1.40343i
\(330\) 0 0
\(331\) 30.0000 1.64895 0.824475 0.565899i \(-0.191471\pi\)
0.824475 + 0.565899i \(0.191471\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −12.0000 −0.655630
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 16.9706i 0.916324i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.9706i 0.911028i 0.890229 + 0.455514i \(0.150544\pi\)
−0.890229 + 0.455514i \(0.849456\pi\)
\(348\) 0 0
\(349\) 25.4558i 1.36262i 0.731995 + 0.681310i \(0.238589\pi\)
−0.731995 + 0.681310i \(0.761411\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 22.6274i − 1.20434i −0.798369 0.602168i \(-0.794304\pi\)
0.798369 0.602168i \(-0.205696\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) − 4.24264i − 0.221464i −0.993850 0.110732i \(-0.964680\pi\)
0.993850 0.110732i \(-0.0353195\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 12.7279i 0.659027i 0.944151 + 0.329513i \(0.106885\pi\)
−0.944151 + 0.329513i \(0.893115\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 25.4558i − 1.31104i
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 30.0000 1.53293 0.766464 0.642287i \(-0.222014\pi\)
0.766464 + 0.642287i \(0.222014\pi\)
\(384\) 0 0
\(385\) −18.0000 −0.917365
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 16.9706i − 0.853882i
\(396\) 0 0
\(397\) − 29.6985i − 1.49052i −0.666772 0.745262i \(-0.732324\pi\)
0.666772 0.745262i \(-0.267676\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.41421i 0.0706225i 0.999376 + 0.0353112i \(0.0112422\pi\)
−0.999376 + 0.0353112i \(0.988758\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 18.0000 0.892227
\(408\) 0 0
\(409\) −22.0000 −1.08783 −0.543915 0.839140i \(-0.683059\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 54.0000 2.65717
\(414\) 0 0
\(415\) 8.48528i 0.416526i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 21.2132i 1.03633i 0.855280 + 0.518166i \(0.173385\pi\)
−0.855280 + 0.518166i \(0.826615\pi\)
\(420\) 0 0
\(421\) − 33.9411i − 1.65419i −0.562063 0.827095i \(-0.689992\pi\)
0.562063 0.827095i \(-0.310008\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.65685i 0.274398i
\(426\) 0 0
\(427\) 36.0000 1.74216
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) − 25.4558i − 1.21494i −0.794342 0.607471i \(-0.792184\pi\)
0.794342 0.607471i \(-0.207816\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 33.9411i 1.61259i 0.591513 + 0.806296i \(0.298531\pi\)
−0.591513 + 0.806296i \(0.701469\pi\)
\(444\) 0 0
\(445\) 7.07107i 0.335201i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.3848i 0.867631i 0.901002 + 0.433816i \(0.142833\pi\)
−0.901002 + 0.433816i \(0.857167\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 18.0000 0.843853
\(456\) 0 0
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) − 12.7279i − 0.591517i −0.955263 0.295758i \(-0.904428\pi\)
0.955263 0.295758i \(-0.0955723\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.4558i 1.17796i 0.808149 + 0.588978i \(0.200470\pi\)
−0.808149 + 0.588978i \(0.799530\pi\)
\(468\) 0 0
\(469\) − 50.9117i − 2.35088i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 6.00000 0.275299
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) −18.0000 −0.820729
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10.0000 −0.454077
\(486\) 0 0
\(487\) 29.6985i 1.34577i 0.739749 + 0.672883i \(0.234944\pi\)
−0.739749 + 0.672883i \(0.765056\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.7279i 0.574403i 0.957870 + 0.287202i \(0.0927249\pi\)
−0.957870 + 0.287202i \(0.907275\pi\)
\(492\) 0 0
\(493\) 33.9411i 1.52863i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 18.0000 0.805791 0.402895 0.915246i \(-0.368004\pi\)
0.402895 + 0.915246i \(0.368004\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.800989
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 8.48528i 0.375367i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 12.7279i − 0.560859i
\(516\) 0 0
\(517\) − 25.4558i − 1.11955i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 18.3848i − 0.805452i −0.915321 0.402726i \(-0.868063\pi\)
0.915321 0.402726i \(-0.131937\pi\)
\(522\) 0 0
\(523\) 12.0000 0.524723 0.262362 0.964970i \(-0.415499\pi\)
0.262362 + 0.964970i \(0.415499\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.00000 −0.259889
\(534\) 0 0
\(535\) 8.48528i 0.366851i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 46.6690i − 2.01018i
\(540\) 0 0
\(541\) 8.48528i 0.364811i 0.983223 + 0.182405i \(0.0583883\pi\)
−0.983223 + 0.182405i \(0.941612\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.48528i 0.363470i
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 36.0000 1.53365
\(552\) 0 0
\(553\) 72.0000 3.06175
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −24.0000 −1.01691 −0.508456 0.861088i \(-0.669784\pi\)
−0.508456 + 0.861088i \(0.669784\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 14.1421i 0.594964i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 41.0122i 1.71932i 0.510866 + 0.859660i \(0.329325\pi\)
−0.510866 + 0.859660i \(0.670675\pi\)
\(570\) 0 0
\(571\) −18.0000 −0.753277 −0.376638 0.926360i \(-0.622920\pi\)
−0.376638 + 0.926360i \(0.622920\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −36.0000 −1.49353
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.48528i 0.350225i 0.984548 + 0.175113i \(0.0560289\pi\)
−0.984548 + 0.175113i \(0.943971\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 31.1127i − 1.27765i −0.769354 0.638823i \(-0.779422\pi\)
0.769354 0.638823i \(-0.220578\pi\)
\(594\) 0 0
\(595\) −24.0000 −0.983904
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) −8.00000 −0.326327 −0.163163 0.986599i \(-0.552170\pi\)
−0.163163 + 0.986599i \(0.552170\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) 29.6985i 1.20542i 0.797959 + 0.602712i \(0.205913\pi\)
−0.797959 + 0.602712i \(0.794087\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 25.4558i 1.02983i
\(612\) 0 0
\(613\) − 38.1838i − 1.54223i −0.636697 0.771114i \(-0.719700\pi\)
0.636697 0.771114i \(-0.280300\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 11.3137i − 0.455473i −0.973723 0.227736i \(-0.926868\pi\)
0.973723 0.227736i \(-0.0731324\pi\)
\(618\) 0 0
\(619\) −36.0000 −1.44696 −0.723481 0.690344i \(-0.757459\pi\)
−0.723481 + 0.690344i \(0.757459\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −30.0000 −1.20192
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 24.0000 0.956943
\(630\) 0 0
\(631\) 16.9706i 0.675587i 0.941220 + 0.337794i \(0.109681\pi\)
−0.941220 + 0.337794i \(0.890319\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 21.2132i 0.841820i
\(636\) 0 0
\(637\) 46.6690i 1.84909i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 35.3553i 1.39645i 0.715877 + 0.698226i \(0.246027\pi\)
−0.715877 + 0.698226i \(0.753973\pi\)
\(642\) 0 0
\(643\) 36.0000 1.41970 0.709851 0.704352i \(-0.248762\pi\)
0.709851 + 0.704352i \(0.248762\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.00000 −0.235884 −0.117942 0.993020i \(-0.537630\pi\)
−0.117942 + 0.993020i \(0.537630\pi\)
\(648\) 0 0
\(649\) −54.0000 −2.11969
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 0 0
\(655\) 12.7279i 0.497321i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 46.6690i − 1.81797i −0.416831 0.908984i \(-0.636859\pi\)
0.416831 0.908984i \(-0.363141\pi\)
\(660\) 0 0
\(661\) 8.48528i 0.330039i 0.986290 + 0.165020i \(0.0527687\pi\)
−0.986290 + 0.165020i \(0.947231\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 25.4558i 0.987135i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −36.0000 −1.38976
\(672\) 0 0
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18.0000 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(678\) 0 0
\(679\) − 42.4264i − 1.62818i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 8.48528i − 0.324680i −0.986735 0.162340i \(-0.948096\pi\)
0.986735 0.162340i \(-0.0519042\pi\)
\(684\) 0 0
\(685\) − 2.82843i − 0.108069i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 6.00000 0.228251 0.114125 0.993466i \(-0.463593\pi\)
0.114125 + 0.993466i \(0.463593\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −12.0000 −0.455186
\(696\) 0 0
\(697\) 8.00000 0.303022
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) − 25.4558i − 0.960085i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 76.3675i − 2.87210i
\(708\) 0 0
\(709\) 33.9411i 1.27469i 0.770580 + 0.637343i \(0.219966\pi\)
−0.770580 + 0.637343i \(0.780034\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −18.0000 −0.673162
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −36.0000 −1.34257 −0.671287 0.741198i \(-0.734258\pi\)
−0.671287 + 0.741198i \(0.734258\pi\)
\(720\) 0 0
\(721\) 54.0000 2.01107
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.00000 0.222834
\(726\) 0 0
\(727\) 21.2132i 0.786754i 0.919377 + 0.393377i \(0.128693\pi\)
−0.919377 + 0.393377i \(0.871307\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 38.1838i 1.41035i 0.709034 + 0.705175i \(0.249131\pi\)
−0.709034 + 0.705175i \(0.750869\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 50.9117i 1.87536i
\(738\) 0 0
\(739\) −18.0000 −0.662141 −0.331070 0.943606i \(-0.607410\pi\)
−0.331070 + 0.943606i \(0.607410\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.00000 0.220119 0.110059 0.993925i \(-0.464896\pi\)
0.110059 + 0.993925i \(0.464896\pi\)
\(744\) 0 0
\(745\) −6.00000 −0.219823
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −36.0000 −1.31541
\(750\) 0 0
\(751\) − 33.9411i − 1.23853i −0.785182 0.619265i \(-0.787431\pi\)
0.785182 0.619265i \(-0.212569\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 8.48528i − 0.308811i
\(756\) 0 0
\(757\) − 12.7279i − 0.462604i −0.972882 0.231302i \(-0.925701\pi\)
0.972882 0.231302i \(-0.0742986\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 26.8701i − 0.974039i −0.873391 0.487019i \(-0.838084\pi\)
0.873391 0.487019i \(-0.161916\pi\)
\(762\) 0 0
\(763\) −36.0000 −1.30329
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 54.0000 1.94983
\(768\) 0 0
\(769\) −32.0000 −1.15395 −0.576975 0.816762i \(-0.695767\pi\)
−0.576975 + 0.816762i \(0.695767\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 8.48528i − 0.304017i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 4.24264i − 0.151426i
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −60.0000 −2.13335
\(792\) 0 0
\(793\) 36.0000 1.27840
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) − 33.9411i − 1.20075i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 8.48528i − 0.299439i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 32.5269i 1.14359i 0.820398 + 0.571793i \(0.193752\pi\)
−0.820398 + 0.571793i \(0.806248\pi\)
\(810\) 0 0
\(811\) −36.0000 −1.26413 −0.632065 0.774915i \(-0.717793\pi\)
−0.632065 + 0.774915i \(0.717793\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 24.0000 0.840683
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −30.0000 −1.04701 −0.523504 0.852023i \(-0.675375\pi\)
−0.523504 + 0.852023i \(0.675375\pi\)
\(822\) 0 0
\(823\) − 21.2132i − 0.739446i −0.929142 0.369723i \(-0.879453\pi\)
0.929142 0.369723i \(-0.120547\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 16.9706i − 0.590124i −0.955478 0.295062i \(-0.904660\pi\)
0.955478 0.295062i \(-0.0953404\pi\)
\(828\) 0 0
\(829\) 25.4558i 0.884118i 0.896986 + 0.442059i \(0.145752\pi\)
−0.896986 + 0.442059i \(0.854248\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 62.2254i − 2.15598i
\(834\) 0 0
\(835\) 24.0000 0.830554
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −48.0000 −1.65714 −0.828572 0.559883i \(-0.810846\pi\)
−0.828572 + 0.559883i \(0.810846\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.00000 0.172005
\(846\) 0 0
\(847\) 29.6985i 1.02045i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 12.7279i 0.435796i 0.975972 + 0.217898i \(0.0699200\pi\)
−0.975972 + 0.217898i \(0.930080\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 28.2843i 0.966172i 0.875573 + 0.483086i \(0.160484\pi\)
−0.875573 + 0.483086i \(0.839516\pi\)
\(858\) 0 0
\(859\) 12.0000 0.409435 0.204717 0.978821i \(-0.434372\pi\)
0.204717 + 0.978821i \(0.434372\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −12.0000 −0.408012
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −72.0000 −2.44243
\(870\) 0 0
\(871\) − 50.9117i − 1.72508i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.24264i 0.143427i
\(876\) 0 0
\(877\) 46.6690i 1.57590i 0.615738 + 0.787951i \(0.288858\pi\)
−0.615738 + 0.787951i \(0.711142\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 43.8406i − 1.47703i −0.674238 0.738514i \(-0.735528\pi\)
0.674238 0.738514i \(-0.264472\pi\)
\(882\) 0 0
\(883\) 24.0000 0.807664 0.403832 0.914833i \(-0.367678\pi\)
0.403832 + 0.914833i \(0.367678\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 48.0000 1.61168 0.805841 0.592132i \(-0.201714\pi\)
0.805841 + 0.592132i \(0.201714\pi\)
\(888\) 0 0
\(889\) −90.0000 −3.01850
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −36.0000 −1.20469
\(894\) 0 0
\(895\) 4.24264i 0.141816i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 25.4558i 0.846181i
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 60.0000 1.98789 0.993944 0.109885i \(-0.0350482\pi\)
0.993944 + 0.109885i \(0.0350482\pi\)
\(912\) 0 0
\(913\) 36.0000 1.19143
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −54.0000 −1.78324
\(918\) 0 0
\(919\) − 16.9706i − 0.559807i −0.960028 0.279904i \(-0.909697\pi\)
0.960028 0.279904i \(-0.0903025\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 4.24264i − 0.139497i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 15.5563i − 0.510387i −0.966890 0.255194i \(-0.917861\pi\)
0.966890 0.255194i \(-0.0821392\pi\)
\(930\) 0 0
\(931\) −66.0000 −2.16306
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 24.0000 0.784884
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 30.0000 0.977972 0.488986 0.872292i \(-0.337367\pi\)
0.488986 + 0.872292i \(0.337367\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 8.48528i 0.275444i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 31.1127i − 1.00784i −0.863751 0.503920i \(-0.831891\pi\)
0.863751 0.503920i \(-0.168109\pi\)
\(954\) 0 0
\(955\) −12.0000 −0.388311
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 12.0000 0.387500
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −22.0000 −0.708205
\(966\) 0 0
\(967\) 38.1838i 1.22791i 0.789342 + 0.613954i \(0.210422\pi\)
−0.789342 + 0.613954i \(0.789578\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.24264i 0.136153i 0.997680 + 0.0680764i \(0.0216862\pi\)
−0.997680 + 0.0680764i \(0.978314\pi\)
\(972\) 0 0
\(973\) − 50.9117i − 1.63215i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 11.3137i − 0.361958i −0.983487 0.180979i \(-0.942073\pi\)
0.983487 0.180979i \(-0.0579265\pi\)
\(978\) 0 0
\(979\) 30.0000 0.958804
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −54.0000 −1.72233 −0.861166 0.508323i \(-0.830265\pi\)
−0.861166 + 0.508323i \(0.830265\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 25.4558i 0.808632i 0.914619 + 0.404316i \(0.132490\pi\)
−0.914619 + 0.404316i \(0.867510\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 8.48528i − 0.269002i
\(996\) 0 0
\(997\) 4.24264i 0.134366i 0.997741 + 0.0671829i \(0.0214011\pi\)
−0.997741 + 0.0671829i \(0.978599\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5760.2.b.d.4031.1 yes 2
3.2 odd 2 5760.2.b.h.4031.1 yes 2
4.3 odd 2 5760.2.b.a.4031.2 yes 2
8.3 odd 2 5760.2.b.h.4031.2 yes 2
8.5 even 2 5760.2.b.e.4031.1 yes 2
12.11 even 2 5760.2.b.e.4031.2 yes 2
24.5 odd 2 5760.2.b.a.4031.1 2
24.11 even 2 inner 5760.2.b.d.4031.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5760.2.b.a.4031.1 2 24.5 odd 2
5760.2.b.a.4031.2 yes 2 4.3 odd 2
5760.2.b.d.4031.1 yes 2 1.1 even 1 trivial
5760.2.b.d.4031.2 yes 2 24.11 even 2 inner
5760.2.b.e.4031.1 yes 2 8.5 even 2
5760.2.b.e.4031.2 yes 2 12.11 even 2
5760.2.b.h.4031.1 yes 2 3.2 odd 2
5760.2.b.h.4031.2 yes 2 8.3 odd 2