Properties

Label 5760.2.k.c.2881.1
Level $5760$
Weight $2$
Character 5760.2881
Analytic conductor $45.994$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5760,2,Mod(2881,5760)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5760, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5760.2881");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5760 = 2^{7} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5760.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(45.9938315643\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1920)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2881.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 5760.2881
Dual form 5760.2.k.c.2881.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{5} -2.00000 q^{7} +6.00000i q^{11} +6.00000i q^{13} -4.00000 q^{17} +4.00000i q^{19} -4.00000 q^{23} -1.00000 q^{25} +2.00000i q^{29} +4.00000 q^{31} +2.00000i q^{35} -10.0000i q^{37} -6.00000 q^{41} -4.00000i q^{43} -3.00000 q^{49} -6.00000i q^{53} +6.00000 q^{55} +14.0000i q^{59} -8.00000i q^{61} +6.00000 q^{65} -12.0000i q^{67} -8.00000 q^{71} +10.0000 q^{73} -12.0000i q^{77} +4.00000 q^{79} -16.0000i q^{83} +4.00000i q^{85} -10.0000 q^{89} -12.0000i q^{91} +4.00000 q^{95} +2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{7} - 8 q^{17} - 8 q^{23} - 2 q^{25} + 8 q^{31} - 12 q^{41} - 6 q^{49} + 12 q^{55} + 12 q^{65} - 16 q^{71} + 20 q^{73} + 8 q^{79} - 20 q^{89} + 8 q^{95} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5760\mathbb{Z}\right)^\times\).

\(n\) \(641\) \(901\) \(2431\) \(3457\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.00000i 1.80907i 0.426401 + 0.904534i \(0.359781\pi\)
−0.426401 + 0.904534i \(0.640219\pi\)
\(12\) 0 0
\(13\) 6.00000i 1.66410i 0.554700 + 0.832050i \(0.312833\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.00000i 0.371391i 0.982607 + 0.185695i \(0.0594537\pi\)
−0.982607 + 0.185695i \(0.940546\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00000i 0.338062i
\(36\) 0 0
\(37\) − 10.0000i − 1.64399i −0.569495 0.821995i \(-0.692861\pi\)
0.569495 0.821995i \(-0.307139\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) − 4.00000i − 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 6.00000i − 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 6.00000 0.809040
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 14.0000i 1.82264i 0.411693 + 0.911322i \(0.364937\pi\)
−0.411693 + 0.911322i \(0.635063\pi\)
\(60\) 0 0
\(61\) − 8.00000i − 1.02430i −0.858898 0.512148i \(-0.828850\pi\)
0.858898 0.512148i \(-0.171150\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) − 12.0000i − 1.46603i −0.680211 0.733017i \(-0.738112\pi\)
0.680211 0.733017i \(-0.261888\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 12.0000i − 1.36753i
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 16.0000i − 1.75623i −0.478451 0.878114i \(-0.658802\pi\)
0.478451 0.878114i \(-0.341198\pi\)
\(84\) 0 0
\(85\) 4.00000i 0.433861i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) − 12.0000i − 1.25794i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 18.0000i − 1.79107i −0.444994 0.895533i \(-0.646794\pi\)
0.444994 0.895533i \(-0.353206\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.00000i 0.773389i 0.922208 + 0.386695i \(0.126383\pi\)
−0.922208 + 0.386695i \(0.873617\pi\)
\(108\) 0 0
\(109\) − 8.00000i − 0.766261i −0.923694 0.383131i \(-0.874846\pi\)
0.923694 0.383131i \(-0.125154\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 4.00000i 0.373002i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.00000 0.733359
\(120\) 0 0
\(121\) −25.0000 −2.27273
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 18.0000 1.59724 0.798621 0.601834i \(-0.205563\pi\)
0.798621 + 0.601834i \(0.205563\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 2.00000i − 0.174741i −0.996176 0.0873704i \(-0.972154\pi\)
0.996176 0.0873704i \(-0.0278464\pi\)
\(132\) 0 0
\(133\) − 8.00000i − 0.693688i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) − 8.00000i − 0.678551i −0.940687 0.339276i \(-0.889818\pi\)
0.940687 0.339276i \(-0.110182\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −36.0000 −3.01047
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.00000i 0.163846i 0.996639 + 0.0819232i \(0.0261062\pi\)
−0.996639 + 0.0819232i \(0.973894\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 4.00000i − 0.321288i
\(156\) 0 0
\(157\) − 2.00000i − 0.159617i −0.996810 0.0798087i \(-0.974569\pi\)
0.996810 0.0798087i \(-0.0254309\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 12.0000i 0.939913i 0.882690 + 0.469956i \(0.155730\pi\)
−0.882690 + 0.469956i \(0.844270\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.00000 −0.309529 −0.154765 0.987951i \(-0.549462\pi\)
−0.154765 + 0.987951i \(0.549462\pi\)
\(168\) 0 0
\(169\) −23.0000 −1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.0000i 0.760286i 0.924928 + 0.380143i \(0.124125\pi\)
−0.924928 + 0.380143i \(0.875875\pi\)
\(174\) 0 0
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 18.0000i 1.34538i 0.739923 + 0.672692i \(0.234862\pi\)
−0.739923 + 0.672692i \(0.765138\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −10.0000 −0.735215
\(186\) 0 0
\(187\) − 24.0000i − 1.75505i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000i 0.427482i 0.976890 + 0.213741i \(0.0685649\pi\)
−0.976890 + 0.213741i \(0.931435\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 4.00000i − 0.280745i
\(204\) 0 0
\(205\) 6.00000i 0.419058i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −24.0000 −1.66011
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 24.0000i − 1.61441i
\(222\) 0 0
\(223\) −14.0000 −0.937509 −0.468755 0.883328i \(-0.655297\pi\)
−0.468755 + 0.883328i \(0.655297\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 12.0000i − 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 0 0
\(229\) 20.0000i 1.32164i 0.750546 + 0.660819i \(0.229791\pi\)
−0.750546 + 0.660819i \(0.770209\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −20.0000 −1.31024 −0.655122 0.755523i \(-0.727383\pi\)
−0.655122 + 0.755523i \(0.727383\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 6.00000 0.386494 0.193247 0.981150i \(-0.438098\pi\)
0.193247 + 0.981150i \(0.438098\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.00000i 0.191663i
\(246\) 0 0
\(247\) −24.0000 −1.52708
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.0000i 0.631194i 0.948893 + 0.315597i \(0.102205\pi\)
−0.948893 + 0.315597i \(0.897795\pi\)
\(252\) 0 0
\(253\) − 24.0000i − 1.50887i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −24.0000 −1.49708 −0.748539 0.663090i \(-0.769245\pi\)
−0.748539 + 0.663090i \(0.769245\pi\)
\(258\) 0 0
\(259\) 20.0000i 1.24274i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.00000 −0.246651 −0.123325 0.992366i \(-0.539356\pi\)
−0.123325 + 0.992366i \(0.539356\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 14.0000i − 0.853595i −0.904347 0.426798i \(-0.859642\pi\)
0.904347 0.426798i \(-0.140358\pi\)
\(270\) 0 0
\(271\) −32.0000 −1.94386 −0.971931 0.235267i \(-0.924404\pi\)
−0.971931 + 0.235267i \(0.924404\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 6.00000i − 0.361814i
\(276\) 0 0
\(277\) − 2.00000i − 0.120168i −0.998193 0.0600842i \(-0.980863\pi\)
0.998193 0.0600842i \(-0.0191369\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 28.0000i 1.66443i 0.554455 + 0.832214i \(0.312927\pi\)
−0.554455 + 0.832214i \(0.687073\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.0000 0.708338
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 26.0000i − 1.51894i −0.650545 0.759468i \(-0.725459\pi\)
0.650545 0.759468i \(-0.274541\pi\)
\(294\) 0 0
\(295\) 14.0000 0.815112
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 24.0000i − 1.38796i
\(300\) 0 0
\(301\) 8.00000i 0.461112i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.00000 −0.458079
\(306\) 0 0
\(307\) 28.0000i 1.59804i 0.601302 + 0.799022i \(0.294649\pi\)
−0.601302 + 0.799022i \(0.705351\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −30.0000 −1.69570 −0.847850 0.530236i \(-0.822103\pi\)
−0.847850 + 0.530236i \(0.822103\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.00000i 0.112331i 0.998421 + 0.0561656i \(0.0178875\pi\)
−0.998421 + 0.0561656i \(0.982113\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 16.0000i − 0.890264i
\(324\) 0 0
\(325\) − 6.00000i − 0.332820i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 20.0000i − 1.09930i −0.835395 0.549650i \(-0.814761\pi\)
0.835395 0.549650i \(-0.185239\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −12.0000 −0.655630
\(336\) 0 0
\(337\) 6.00000 0.326841 0.163420 0.986557i \(-0.447747\pi\)
0.163420 + 0.986557i \(0.447747\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 24.0000i 1.29967i
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.00000i 0.214731i 0.994220 + 0.107366i \(0.0342415\pi\)
−0.994220 + 0.107366i \(0.965758\pi\)
\(348\) 0 0
\(349\) 8.00000i 0.428230i 0.976808 + 0.214115i \(0.0686868\pi\)
−0.976808 + 0.214115i \(0.931313\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.0000 0.638696 0.319348 0.947638i \(-0.396536\pi\)
0.319348 + 0.947638i \(0.396536\pi\)
\(354\) 0 0
\(355\) 8.00000i 0.424596i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 10.0000i − 0.523424i
\(366\) 0 0
\(367\) 10.0000 0.521996 0.260998 0.965339i \(-0.415948\pi\)
0.260998 + 0.965339i \(0.415948\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.0000i 0.623009i
\(372\) 0 0
\(373\) − 22.0000i − 1.13912i −0.821951 0.569558i \(-0.807114\pi\)
0.821951 0.569558i \(-0.192886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 16.0000i 0.821865i 0.911666 + 0.410932i \(0.134797\pi\)
−0.911666 + 0.410932i \(0.865203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8.00000 0.408781 0.204390 0.978889i \(-0.434479\pi\)
0.204390 + 0.978889i \(0.434479\pi\)
\(384\) 0 0
\(385\) −12.0000 −0.611577
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 30.0000i − 1.52106i −0.649303 0.760530i \(-0.724939\pi\)
0.649303 0.760530i \(-0.275061\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 4.00000i − 0.201262i
\(396\) 0 0
\(397\) 2.00000i 0.100377i 0.998740 + 0.0501886i \(0.0159822\pi\)
−0.998740 + 0.0501886i \(0.984018\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) 24.0000i 1.19553i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 60.0000 2.97409
\(408\) 0 0
\(409\) 6.00000 0.296681 0.148340 0.988936i \(-0.452607\pi\)
0.148340 + 0.988936i \(0.452607\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 28.0000i − 1.37779i
\(414\) 0 0
\(415\) −16.0000 −0.785409
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 10.0000i − 0.488532i −0.969708 0.244266i \(-0.921453\pi\)
0.969708 0.244266i \(-0.0785470\pi\)
\(420\) 0 0
\(421\) − 28.0000i − 1.36464i −0.731055 0.682318i \(-0.760972\pi\)
0.731055 0.682318i \(-0.239028\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.00000 0.194029
\(426\) 0 0
\(427\) 16.0000i 0.774294i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 40.0000 1.92673 0.963366 0.268190i \(-0.0864254\pi\)
0.963366 + 0.268190i \(0.0864254\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 16.0000i − 0.765384i
\(438\) 0 0
\(439\) −40.0000 −1.90910 −0.954548 0.298057i \(-0.903661\pi\)
−0.954548 + 0.298057i \(0.903661\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 4.00000i − 0.190046i −0.995475 0.0950229i \(-0.969708\pi\)
0.995475 0.0950229i \(-0.0302924\pi\)
\(444\) 0 0
\(445\) 10.0000i 0.474045i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) 0 0
\(451\) − 36.0000i − 1.69517i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −12.0000 −0.562569
\(456\) 0 0
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 10.0000i − 0.465746i −0.972507 0.232873i \(-0.925187\pi\)
0.972507 0.232873i \(-0.0748127\pi\)
\(462\) 0 0
\(463\) 22.0000 1.02243 0.511213 0.859454i \(-0.329196\pi\)
0.511213 + 0.859454i \(0.329196\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.00000i 0.370196i 0.982720 + 0.185098i \(0.0592602\pi\)
−0.982720 + 0.185098i \(0.940740\pi\)
\(468\) 0 0
\(469\) 24.0000i 1.10822i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 24.0000 1.10352
\(474\) 0 0
\(475\) − 4.00000i − 0.183533i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −16.0000 −0.731059 −0.365529 0.930800i \(-0.619112\pi\)
−0.365529 + 0.930800i \(0.619112\pi\)
\(480\) 0 0
\(481\) 60.0000 2.73576
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 2.00000i − 0.0908153i
\(486\) 0 0
\(487\) −6.00000 −0.271886 −0.135943 0.990717i \(-0.543406\pi\)
−0.135943 + 0.990717i \(0.543406\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18.0000i 0.812329i 0.913800 + 0.406164i \(0.133134\pi\)
−0.913800 + 0.406164i \(0.866866\pi\)
\(492\) 0 0
\(493\) − 8.00000i − 0.360302i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 16.0000 0.717698
\(498\) 0 0
\(499\) − 28.0000i − 1.25345i −0.779240 0.626726i \(-0.784395\pi\)
0.779240 0.626726i \(-0.215605\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.00000 0.356702 0.178351 0.983967i \(-0.442924\pi\)
0.178351 + 0.983967i \(0.442924\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.800989
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 42.0000i 1.86162i 0.365507 + 0.930809i \(0.380896\pi\)
−0.365507 + 0.930809i \(0.619104\pi\)
\(510\) 0 0
\(511\) −20.0000 −0.884748
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 14.0000i − 0.616914i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) 28.0000i 1.22435i 0.790721 + 0.612177i \(0.209706\pi\)
−0.790721 + 0.612177i \(0.790294\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −16.0000 −0.696971
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 36.0000i − 1.55933i
\(534\) 0 0
\(535\) 8.00000 0.345870
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 18.0000i − 0.775315i
\(540\) 0 0
\(541\) − 16.0000i − 0.687894i −0.938989 0.343947i \(-0.888236\pi\)
0.938989 0.343947i \(-0.111764\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8.00000 −0.342682
\(546\) 0 0
\(547\) − 28.0000i − 1.19719i −0.801050 0.598597i \(-0.795725\pi\)
0.801050 0.598597i \(-0.204275\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 14.0000i − 0.593199i −0.955002 0.296600i \(-0.904147\pi\)
0.955002 0.296600i \(-0.0958526\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 36.0000i − 1.51722i −0.651546 0.758610i \(-0.725879\pi\)
0.651546 0.758610i \(-0.274121\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 0 0
\(571\) 44.0000i 1.84134i 0.390339 + 0.920671i \(0.372358\pi\)
−0.390339 + 0.920671i \(0.627642\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) 10.0000 0.416305 0.208153 0.978096i \(-0.433255\pi\)
0.208153 + 0.978096i \(0.433255\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 32.0000i 1.32758i
\(582\) 0 0
\(583\) 36.0000 1.49097
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.00000i 0.330195i 0.986277 + 0.165098i \(0.0527939\pi\)
−0.986277 + 0.165098i \(0.947206\pi\)
\(588\) 0 0
\(589\) 16.0000i 0.659269i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −8.00000 −0.328521 −0.164260 0.986417i \(-0.552524\pi\)
−0.164260 + 0.986417i \(0.552524\pi\)
\(594\) 0 0
\(595\) − 8.00000i − 0.327968i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 25.0000i 1.01639i
\(606\) 0 0
\(607\) −34.0000 −1.38002 −0.690009 0.723801i \(-0.742393\pi\)
−0.690009 + 0.723801i \(0.742393\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 34.0000i − 1.37325i −0.727013 0.686624i \(-0.759092\pi\)
0.727013 0.686624i \(-0.240908\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −12.0000 −0.483102 −0.241551 0.970388i \(-0.577656\pi\)
−0.241551 + 0.970388i \(0.577656\pi\)
\(618\) 0 0
\(619\) − 32.0000i − 1.28619i −0.765787 0.643094i \(-0.777650\pi\)
0.765787 0.643094i \(-0.222350\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 20.0000 0.801283
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 40.0000i 1.59490i
\(630\) 0 0
\(631\) −20.0000 −0.796187 −0.398094 0.917345i \(-0.630328\pi\)
−0.398094 + 0.917345i \(0.630328\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 18.0000i − 0.714308i
\(636\) 0 0
\(637\) − 18.0000i − 0.713186i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) − 12.0000i − 0.473234i −0.971603 0.236617i \(-0.923961\pi\)
0.971603 0.236617i \(-0.0760386\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −84.0000 −3.29729
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 30.0000i 1.17399i 0.809590 + 0.586995i \(0.199689\pi\)
−0.809590 + 0.586995i \(0.800311\pi\)
\(654\) 0 0
\(655\) −2.00000 −0.0781465
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 10.0000i − 0.389545i −0.980848 0.194772i \(-0.937603\pi\)
0.980848 0.194772i \(-0.0623968\pi\)
\(660\) 0 0
\(661\) 40.0000i 1.55582i 0.628376 + 0.777910i \(0.283720\pi\)
−0.628376 + 0.777910i \(0.716280\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.00000 −0.310227
\(666\) 0 0
\(667\) − 8.00000i − 0.309761i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 48.0000 1.85302
\(672\) 0 0
\(673\) 14.0000 0.539660 0.269830 0.962908i \(-0.413032\pi\)
0.269830 + 0.962908i \(0.413032\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 42.0000i 1.61419i 0.590421 + 0.807096i \(0.298962\pi\)
−0.590421 + 0.807096i \(0.701038\pi\)
\(678\) 0 0
\(679\) −4.00000 −0.153506
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.00000i 0.306111i 0.988218 + 0.153056i \(0.0489114\pi\)
−0.988218 + 0.153056i \(0.951089\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 36.0000 1.37149
\(690\) 0 0
\(691\) 12.0000i 0.456502i 0.973602 + 0.228251i \(0.0733006\pi\)
−0.973602 + 0.228251i \(0.926699\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.00000 −0.303457
\(696\) 0 0
\(697\) 24.0000 0.909065
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 14.0000i − 0.528773i −0.964417 0.264386i \(-0.914831\pi\)
0.964417 0.264386i \(-0.0851694\pi\)
\(702\) 0 0
\(703\) 40.0000 1.50863
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 36.0000i 1.35392i
\(708\) 0 0
\(709\) − 20.0000i − 0.751116i −0.926799 0.375558i \(-0.877451\pi\)
0.926799 0.375558i \(-0.122549\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −16.0000 −0.599205
\(714\) 0 0
\(715\) 36.0000i 1.34632i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16.0000 −0.596699 −0.298350 0.954457i \(-0.596436\pi\)
−0.298350 + 0.954457i \(0.596436\pi\)
\(720\) 0 0
\(721\) −28.0000 −1.04277
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 2.00000i − 0.0742781i
\(726\) 0 0
\(727\) −38.0000 −1.40934 −0.704671 0.709534i \(-0.748905\pi\)
−0.704671 + 0.709534i \(0.748905\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 16.0000i 0.591781i
\(732\) 0 0
\(733\) − 22.0000i − 0.812589i −0.913742 0.406294i \(-0.866821\pi\)
0.913742 0.406294i \(-0.133179\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 72.0000 2.65215
\(738\) 0 0
\(739\) 12.0000i 0.441427i 0.975339 + 0.220714i \(0.0708386\pi\)
−0.975339 + 0.220714i \(0.929161\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) 2.00000 0.0732743
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 16.0000i − 0.584627i
\(750\) 0 0
\(751\) −20.0000 −0.729810 −0.364905 0.931045i \(-0.618899\pi\)
−0.364905 + 0.931045i \(0.618899\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.0000i 0.582300i
\(756\) 0 0
\(757\) 46.0000i 1.67190i 0.548807 + 0.835949i \(0.315082\pi\)
−0.548807 + 0.835949i \(0.684918\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 30.0000 1.08750 0.543750 0.839248i \(-0.317004\pi\)
0.543750 + 0.839248i \(0.317004\pi\)
\(762\) 0 0
\(763\) 16.0000i 0.579239i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −84.0000 −3.03306
\(768\) 0 0
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 10.0000i − 0.359675i −0.983696 0.179838i \(-0.942443\pi\)
0.983696 0.179838i \(-0.0575572\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 24.0000i − 0.859889i
\(780\) 0 0
\(781\) − 48.0000i − 1.71758i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.00000 −0.0713831
\(786\) 0 0
\(787\) − 28.0000i − 0.998092i −0.866575 0.499046i \(-0.833684\pi\)
0.866575 0.499046i \(-0.166316\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 48.0000 1.70453
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 54.0000i − 1.91278i −0.292096 0.956389i \(-0.594353\pi\)
0.292096 0.956389i \(-0.405647\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 60.0000i 2.11735i
\(804\) 0 0
\(805\) − 8.00000i − 0.281963i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −46.0000 −1.61727 −0.808637 0.588308i \(-0.799794\pi\)
−0.808637 + 0.588308i \(0.799794\pi\)
\(810\) 0 0
\(811\) − 16.0000i − 0.561836i −0.959732 0.280918i \(-0.909361\pi\)
0.959732 0.280918i \(-0.0906389\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 12.0000 0.420342
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 18.0000i − 0.628204i −0.949389 0.314102i \(-0.898297\pi\)
0.949389 0.314102i \(-0.101703\pi\)
\(822\) 0 0
\(823\) −54.0000 −1.88232 −0.941161 0.337959i \(-0.890263\pi\)
−0.941161 + 0.337959i \(0.890263\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 36.0000i − 1.25184i −0.779886 0.625921i \(-0.784723\pi\)
0.779886 0.625921i \(-0.215277\pi\)
\(828\) 0 0
\(829\) 56.0000i 1.94496i 0.232986 + 0.972480i \(0.425151\pi\)
−0.232986 + 0.972480i \(0.574849\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 12.0000 0.415775
\(834\) 0 0
\(835\) 4.00000i 0.138426i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −56.0000 −1.93333 −0.966667 0.256036i \(-0.917584\pi\)
−0.966667 + 0.256036i \(0.917584\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 23.0000i 0.791224i
\(846\) 0 0
\(847\) 50.0000 1.71802
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 40.0000i 1.37118i
\(852\) 0 0
\(853\) − 10.0000i − 0.342393i −0.985237 0.171197i \(-0.945237\pi\)
0.985237 0.171197i \(-0.0547634\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.0000 0.409912 0.204956 0.978771i \(-0.434295\pi\)
0.204956 + 0.978771i \(0.434295\pi\)
\(858\) 0 0
\(859\) − 16.0000i − 0.545913i −0.962026 0.272956i \(-0.911998\pi\)
0.962026 0.272956i \(-0.0880015\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −28.0000 −0.953131 −0.476566 0.879139i \(-0.658119\pi\)
−0.476566 + 0.879139i \(0.658119\pi\)
\(864\) 0 0
\(865\) 10.0000 0.340010
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 24.0000i 0.814144i
\(870\) 0 0
\(871\) 72.0000 2.43963
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 2.00000i − 0.0676123i
\(876\) 0 0
\(877\) 38.0000i 1.28317i 0.767052 + 0.641584i \(0.221723\pi\)
−0.767052 + 0.641584i \(0.778277\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.0000 −0.471672 −0.235836 0.971793i \(-0.575783\pi\)
−0.235836 + 0.971793i \(0.575783\pi\)
\(882\) 0 0
\(883\) − 4.00000i − 0.134611i −0.997732 0.0673054i \(-0.978560\pi\)
0.997732 0.0673054i \(-0.0214402\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.0000 0.402921 0.201460 0.979497i \(-0.435431\pi\)
0.201460 + 0.979497i \(0.435431\pi\)
\(888\) 0 0
\(889\) −36.0000 −1.20740
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 18.0000 0.601674
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8.00000i 0.266815i
\(900\) 0 0
\(901\) 24.0000i 0.799556i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 52.0000i 1.72663i 0.504664 + 0.863316i \(0.331616\pi\)
−0.504664 + 0.863316i \(0.668384\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −32.0000 −1.06021 −0.530104 0.847933i \(-0.677847\pi\)
−0.530104 + 0.847933i \(0.677847\pi\)
\(912\) 0 0
\(913\) 96.0000 3.17714
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.00000i 0.132092i
\(918\) 0 0
\(919\) 20.0000 0.659739 0.329870 0.944027i \(-0.392995\pi\)
0.329870 + 0.944027i \(0.392995\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 48.0000i − 1.57994i
\(924\) 0 0
\(925\) 10.0000i 0.328798i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −14.0000 −0.459325 −0.229663 0.973270i \(-0.573762\pi\)
−0.229663 + 0.973270i \(0.573762\pi\)
\(930\) 0 0
\(931\) − 12.0000i − 0.393284i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −24.0000 −0.784884
\(936\) 0 0
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6.00000i 0.195594i 0.995206 + 0.0977972i \(0.0311797\pi\)
−0.995206 + 0.0977972i \(0.968820\pi\)
\(942\) 0 0
\(943\) 24.0000 0.781548
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 44.0000i 1.42981i 0.699223 + 0.714904i \(0.253530\pi\)
−0.699223 + 0.714904i \(0.746470\pi\)
\(948\) 0 0
\(949\) 60.0000i 1.94768i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 24.0000 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(954\) 0 0
\(955\) − 24.0000i − 0.776622i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 14.0000i − 0.450676i
\(966\) 0 0
\(967\) −26.0000 −0.836104 −0.418052 0.908423i \(-0.637287\pi\)
−0.418052 + 0.908423i \(0.637287\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 30.0000i − 0.962746i −0.876516 0.481373i \(-0.840138\pi\)
0.876516 0.481373i \(-0.159862\pi\)
\(972\) 0 0
\(973\) 16.0000i 0.512936i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.00000 0.127971 0.0639857 0.997951i \(-0.479619\pi\)
0.0639857 + 0.997951i \(0.479619\pi\)
\(978\) 0 0
\(979\) − 60.0000i − 1.91761i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.0000i 0.508770i
\(990\) 0 0
\(991\) −56.0000 −1.77890 −0.889449 0.457034i \(-0.848912\pi\)
−0.889449 + 0.457034i \(0.848912\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 54.0000i − 1.71020i −0.518465 0.855099i \(-0.673497\pi\)
0.518465 0.855099i \(-0.326503\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5760.2.k.c.2881.1 2
3.2 odd 2 1920.2.k.d.961.1 2
4.3 odd 2 5760.2.k.h.2881.1 2
8.3 odd 2 5760.2.k.h.2881.2 2
8.5 even 2 inner 5760.2.k.c.2881.2 2
12.11 even 2 1920.2.k.e.961.2 yes 2
24.5 odd 2 1920.2.k.d.961.2 yes 2
24.11 even 2 1920.2.k.e.961.1 yes 2
48.5 odd 4 3840.2.a.g.1.1 1
48.11 even 4 3840.2.a.o.1.1 1
48.29 odd 4 3840.2.a.ba.1.1 1
48.35 even 4 3840.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.k.d.961.1 2 3.2 odd 2
1920.2.k.d.961.2 yes 2 24.5 odd 2
1920.2.k.e.961.1 yes 2 24.11 even 2
1920.2.k.e.961.2 yes 2 12.11 even 2
3840.2.a.g.1.1 1 48.5 odd 4
3840.2.a.i.1.1 1 48.35 even 4
3840.2.a.o.1.1 1 48.11 even 4
3840.2.a.ba.1.1 1 48.29 odd 4
5760.2.k.c.2881.1 2 1.1 even 1 trivial
5760.2.k.c.2881.2 2 8.5 even 2 inner
5760.2.k.h.2881.1 2 4.3 odd 2
5760.2.k.h.2881.2 2 8.3 odd 2