Properties

Label 579.2.a.e
Level $579$
Weight $2$
Character orbit 579.a
Self dual yes
Analytic conductor $4.623$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [579,2,Mod(1,579)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(579, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("579.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 579 = 3 \cdot 193 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 579.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.62333827703\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + q^{3} + \beta_{2} q^{4} + ( - \beta_{2} + \beta_1 - 2) q^{5} - \beta_1 q^{6} - 3 q^{7} + (\beta_1 - 1) q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} + q^{3} + \beta_{2} q^{4} + ( - \beta_{2} + \beta_1 - 2) q^{5} - \beta_1 q^{6} - 3 q^{7} + (\beta_1 - 1) q^{8} + q^{9} + ( - \beta_{2} + 3 \beta_1 - 1) q^{10} + (2 \beta_1 + 1) q^{11} + \beta_{2} q^{12} + ( - \beta_{2} - 1) q^{13} + 3 \beta_1 q^{14} + ( - \beta_{2} + \beta_1 - 2) q^{15} + ( - 3 \beta_{2} + \beta_1 - 2) q^{16} + (4 \beta_{2} - \beta_1) q^{17} - \beta_1 q^{18} - 3 q^{19} + ( - \beta_{2} - 1) q^{20} - 3 q^{21} + ( - 2 \beta_{2} - \beta_1 - 4) q^{22} + (4 \beta_{2} - 5 \beta_1) q^{23} + (\beta_1 - 1) q^{24} + (4 \beta_{2} - 5 \beta_1 + 1) q^{25} + (2 \beta_1 + 1) q^{26} + q^{27} - 3 \beta_{2} q^{28} + ( - \beta_{2} - 2 \beta_1 - 5) q^{29} + ( - \beta_{2} + 3 \beta_1 - 1) q^{30} + ( - \beta_1 - 5) q^{31} + ( - \beta_{2} + 3 \beta_1 + 3) q^{32} + (2 \beta_1 + 1) q^{33} + (\beta_{2} - 4 \beta_1 - 2) q^{34} + (3 \beta_{2} - 3 \beta_1 + 6) q^{35} + \beta_{2} q^{36} + (5 \beta_1 - 3) q^{37} + 3 \beta_1 q^{38} + ( - \beta_{2} - 1) q^{39} + (2 \beta_{2} - 4 \beta_1 + 3) q^{40} + ( - 3 \beta_{2} - \beta_1 + 1) q^{41} + 3 \beta_1 q^{42} + ( - 4 \beta_{2} + \beta_1) q^{43} + (\beta_{2} + 2 \beta_1 + 2) q^{44} + ( - \beta_{2} + \beta_1 - 2) q^{45} + (5 \beta_{2} - 4 \beta_1 + 6) q^{46} + ( - \beta_{2} + 2 \beta_1 + 6) q^{47} + ( - 3 \beta_{2} + \beta_1 - 2) q^{48} + 2 q^{49} + (5 \beta_{2} - 5 \beta_1 + 6) q^{50} + (4 \beta_{2} - \beta_1) q^{51} + ( - \beta_1 - 2) q^{52} + ( - 7 \beta_{2} + 4 \beta_1 - 4) q^{53} - \beta_1 q^{54} + (\beta_{2} - 5 \beta_1) q^{55} + ( - 3 \beta_1 + 3) q^{56} - 3 q^{57} + (2 \beta_{2} + 6 \beta_1 + 5) q^{58} + ( - 2 \beta_{2} - 4 \beta_1 + 2) q^{59} + ( - \beta_{2} - 1) q^{60} + (7 \beta_{2} - 4 \beta_1 - 2) q^{61} + (\beta_{2} + 5 \beta_1 + 2) q^{62} - 3 q^{63} + (3 \beta_{2} - 4 \beta_1 - 1) q^{64} + (2 \beta_{2} - \beta_1 + 3) q^{65} + ( - 2 \beta_{2} - \beta_1 - 4) q^{66} + ( - 6 \beta_{2} + 3 \beta_1 - 5) q^{67} + ( - 4 \beta_{2} + 3 \beta_1 + 7) q^{68} + (4 \beta_{2} - 5 \beta_1) q^{69} + (3 \beta_{2} - 9 \beta_1 + 3) q^{70} + ( - 5 \beta_{2} - 6) q^{71} + (\beta_1 - 1) q^{72} + ( - 5 \beta_{2} + 4 \beta_1 + 4) q^{73} + ( - 5 \beta_{2} + 3 \beta_1 - 10) q^{74} + (4 \beta_{2} - 5 \beta_1 + 1) q^{75} - 3 \beta_{2} q^{76} + ( - 6 \beta_1 - 3) q^{77} + (2 \beta_1 + 1) q^{78} + (\beta_{2} + 3 \beta_1 - 5) q^{79} + (6 \beta_{2} - 5 \beta_1 + 8) q^{80} + q^{81} + (\beta_{2} + 2 \beta_1 + 5) q^{82} + ( - 3 \beta_{2} + 4 \beta_1 + 4) q^{83} - 3 \beta_{2} q^{84} + ( - 5 \beta_{2} + 3 \beta_1 - 5) q^{85} + ( - \beta_{2} + 4 \beta_1 + 2) q^{86} + ( - \beta_{2} - 2 \beta_1 - 5) q^{87} + (2 \beta_{2} - \beta_1 + 3) q^{88} + (5 \beta_{2} - 8 \beta_1 - 7) q^{89} + ( - \beta_{2} + 3 \beta_1 - 1) q^{90} + (3 \beta_{2} + 3) q^{91} + ( - 4 \beta_{2} - \beta_1 + 3) q^{92} + ( - \beta_1 - 5) q^{93} + ( - 2 \beta_{2} - 5 \beta_1 - 3) q^{94} + (3 \beta_{2} - 3 \beta_1 + 6) q^{95} + ( - \beta_{2} + 3 \beta_1 + 3) q^{96} + (5 \beta_{2} - 7 \beta_1 - 2) q^{97} - 2 \beta_1 q^{98} + (2 \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} - 6 q^{5} - 9 q^{7} - 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{3} - 6 q^{5} - 9 q^{7} - 3 q^{8} + 3 q^{9} - 3 q^{10} + 3 q^{11} - 3 q^{13} - 6 q^{15} - 6 q^{16} - 9 q^{19} - 3 q^{20} - 9 q^{21} - 12 q^{22} - 3 q^{24} + 3 q^{25} + 3 q^{26} + 3 q^{27} - 15 q^{29} - 3 q^{30} - 15 q^{31} + 9 q^{32} + 3 q^{33} - 6 q^{34} + 18 q^{35} - 9 q^{37} - 3 q^{39} + 9 q^{40} + 3 q^{41} + 6 q^{44} - 6 q^{45} + 18 q^{46} + 18 q^{47} - 6 q^{48} + 6 q^{49} + 18 q^{50} - 6 q^{52} - 12 q^{53} + 9 q^{56} - 9 q^{57} + 15 q^{58} + 6 q^{59} - 3 q^{60} - 6 q^{61} + 6 q^{62} - 9 q^{63} - 3 q^{64} + 9 q^{65} - 12 q^{66} - 15 q^{67} + 21 q^{68} + 9 q^{70} - 18 q^{71} - 3 q^{72} + 12 q^{73} - 30 q^{74} + 3 q^{75} - 9 q^{77} + 3 q^{78} - 15 q^{79} + 24 q^{80} + 3 q^{81} + 15 q^{82} + 12 q^{83} - 15 q^{85} + 6 q^{86} - 15 q^{87} + 9 q^{88} - 21 q^{89} - 3 q^{90} + 9 q^{91} + 9 q^{92} - 15 q^{93} - 9 q^{94} + 18 q^{95} + 9 q^{96} - 6 q^{97} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{18} + \zeta_{18}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.87939
−0.347296
−1.53209
−1.87939 1.00000 1.53209 −1.65270 −1.87939 −3.00000 0.879385 1.00000 3.10607
1.2 0.347296 1.00000 −1.87939 −0.467911 0.347296 −3.00000 −1.34730 1.00000 −0.162504
1.3 1.53209 1.00000 0.347296 −3.87939 1.53209 −3.00000 −2.53209 1.00000 −5.94356
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(193\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 579.2.a.e 3
3.b odd 2 1 1737.2.a.e 3
4.b odd 2 1 9264.2.a.x 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
579.2.a.e 3 1.a even 1 1 trivial
1737.2.a.e 3 3.b odd 2 1
9264.2.a.x 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(579))\):

\( T_{2}^{3} - 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{3} + 6T_{5}^{2} + 9T_{5} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 3T + 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 6 T^{2} + \cdots + 3 \) Copy content Toggle raw display
$7$ \( (T + 3)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 3 T^{2} + \cdots + 3 \) Copy content Toggle raw display
$13$ \( T^{3} + 3T^{2} - 3 \) Copy content Toggle raw display
$17$ \( T^{3} - 39T + 89 \) Copy content Toggle raw display
$19$ \( (T + 3)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 63T - 171 \) Copy content Toggle raw display
$29$ \( T^{3} + 15 T^{2} + \cdots + 57 \) Copy content Toggle raw display
$31$ \( T^{3} + 15 T^{2} + \cdots + 111 \) Copy content Toggle raw display
$37$ \( T^{3} + 9 T^{2} + \cdots - 323 \) Copy content Toggle raw display
$41$ \( T^{3} - 3 T^{2} + \cdots + 57 \) Copy content Toggle raw display
$43$ \( T^{3} - 39T - 89 \) Copy content Toggle raw display
$47$ \( T^{3} - 18 T^{2} + \cdots - 153 \) Copy content Toggle raw display
$53$ \( T^{3} + 12 T^{2} + \cdots - 703 \) Copy content Toggle raw display
$59$ \( T^{3} - 6 T^{2} + \cdots + 456 \) Copy content Toggle raw display
$61$ \( T^{3} + 6 T^{2} + \cdots + 109 \) Copy content Toggle raw display
$67$ \( T^{3} + 15 T^{2} + \cdots - 523 \) Copy content Toggle raw display
$71$ \( T^{3} + 18 T^{2} + \cdots - 359 \) Copy content Toggle raw display
$73$ \( T^{3} - 12 T^{2} + \cdots + 179 \) Copy content Toggle raw display
$79$ \( T^{3} + 15 T^{2} + \cdots - 159 \) Copy content Toggle raw display
$83$ \( T^{3} - 12 T^{2} + \cdots + 181 \) Copy content Toggle raw display
$89$ \( T^{3} + 21T^{2} - 1369 \) Copy content Toggle raw display
$97$ \( T^{3} + 6 T^{2} + \cdots - 703 \) Copy content Toggle raw display
show more
show less