Properties

Label 579.2.a.e
Level 579579
Weight 22
Character orbit 579.a
Self dual yes
Analytic conductor 4.6234.623
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [579,2,Mod(1,579)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(579, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("579.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 579=3193 579 = 3 \cdot 193
Weight: k k == 2 2
Character orbit: [χ][\chi] == 579.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 4.623338277034.62333827703
Analytic rank: 11
Dimension: 33
Coefficient field: Q(ζ18)+\Q(\zeta_{18})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x33x1 x^{3} - 3x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+q3+β2q4+(β2+β12)q5β1q63q7+(β11)q8+q9+(β2+3β11)q10+(2β1+1)q11++(2β1+1)q99+O(q100) q - \beta_1 q^{2} + q^{3} + \beta_{2} q^{4} + ( - \beta_{2} + \beta_1 - 2) q^{5} - \beta_1 q^{6} - 3 q^{7} + (\beta_1 - 1) q^{8} + q^{9} + ( - \beta_{2} + 3 \beta_1 - 1) q^{10} + (2 \beta_1 + 1) q^{11}+ \cdots + (2 \beta_1 + 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+3q36q59q73q8+3q93q10+3q113q136q156q169q193q209q2112q223q24+3q25+3q26+3q2715q29++3q99+O(q100) 3 q + 3 q^{3} - 6 q^{5} - 9 q^{7} - 3 q^{8} + 3 q^{9} - 3 q^{10} + 3 q^{11} - 3 q^{13} - 6 q^{15} - 6 q^{16} - 9 q^{19} - 3 q^{20} - 9 q^{21} - 12 q^{22} - 3 q^{24} + 3 q^{25} + 3 q^{26} + 3 q^{27} - 15 q^{29}+ \cdots + 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of ν=ζ18+ζ181\nu = \zeta_{18} + \zeta_{18}^{-1}:

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22 \nu^{2} - 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2 \beta_{2} + 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
1.87939
−0.347296
−1.53209
−1.87939 1.00000 1.53209 −1.65270 −1.87939 −3.00000 0.879385 1.00000 3.10607
1.2 0.347296 1.00000 −1.87939 −0.467911 0.347296 −3.00000 −1.34730 1.00000 −0.162504
1.3 1.53209 1.00000 0.347296 −3.87939 1.53209 −3.00000 −2.53209 1.00000 −5.94356
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
193193 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 579.2.a.e 3
3.b odd 2 1 1737.2.a.e 3
4.b odd 2 1 9264.2.a.x 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
579.2.a.e 3 1.a even 1 1 trivial
1737.2.a.e 3 3.b odd 2 1
9264.2.a.x 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(579))S_{2}^{\mathrm{new}}(\Gamma_0(579)):

T233T2+1 T_{2}^{3} - 3T_{2} + 1 Copy content Toggle raw display
T53+6T52+9T5+3 T_{5}^{3} + 6T_{5}^{2} + 9T_{5} + 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T33T+1 T^{3} - 3T + 1 Copy content Toggle raw display
33 (T1)3 (T - 1)^{3} Copy content Toggle raw display
55 T3+6T2++3 T^{3} + 6 T^{2} + \cdots + 3 Copy content Toggle raw display
77 (T+3)3 (T + 3)^{3} Copy content Toggle raw display
1111 T33T2++3 T^{3} - 3 T^{2} + \cdots + 3 Copy content Toggle raw display
1313 T3+3T23 T^{3} + 3T^{2} - 3 Copy content Toggle raw display
1717 T339T+89 T^{3} - 39T + 89 Copy content Toggle raw display
1919 (T+3)3 (T + 3)^{3} Copy content Toggle raw display
2323 T363T171 T^{3} - 63T - 171 Copy content Toggle raw display
2929 T3+15T2++57 T^{3} + 15 T^{2} + \cdots + 57 Copy content Toggle raw display
3131 T3+15T2++111 T^{3} + 15 T^{2} + \cdots + 111 Copy content Toggle raw display
3737 T3+9T2+323 T^{3} + 9 T^{2} + \cdots - 323 Copy content Toggle raw display
4141 T33T2++57 T^{3} - 3 T^{2} + \cdots + 57 Copy content Toggle raw display
4343 T339T89 T^{3} - 39T - 89 Copy content Toggle raw display
4747 T318T2+153 T^{3} - 18 T^{2} + \cdots - 153 Copy content Toggle raw display
5353 T3+12T2+703 T^{3} + 12 T^{2} + \cdots - 703 Copy content Toggle raw display
5959 T36T2++456 T^{3} - 6 T^{2} + \cdots + 456 Copy content Toggle raw display
6161 T3+6T2++109 T^{3} + 6 T^{2} + \cdots + 109 Copy content Toggle raw display
6767 T3+15T2+523 T^{3} + 15 T^{2} + \cdots - 523 Copy content Toggle raw display
7171 T3+18T2+359 T^{3} + 18 T^{2} + \cdots - 359 Copy content Toggle raw display
7373 T312T2++179 T^{3} - 12 T^{2} + \cdots + 179 Copy content Toggle raw display
7979 T3+15T2+159 T^{3} + 15 T^{2} + \cdots - 159 Copy content Toggle raw display
8383 T312T2++181 T^{3} - 12 T^{2} + \cdots + 181 Copy content Toggle raw display
8989 T3+21T21369 T^{3} + 21T^{2} - 1369 Copy content Toggle raw display
9797 T3+6T2+703 T^{3} + 6 T^{2} + \cdots - 703 Copy content Toggle raw display
show more
show less