Properties

Label 58.3.f.b.11.3
Level $58$
Weight $3$
Character 58.11
Analytic conductor $1.580$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [58,3,Mod(3,58)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(58, base_ring=CyclotomicField(28))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("58.3");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 58 = 2 \cdot 29 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 58.f (of order \(28\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.58038553329\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(3\) over \(\Q(\zeta_{28})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 11.3
Character \(\chi\) \(=\) 58.11
Dual form 58.3.f.b.37.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.33485 - 0.467085i) q^{2} +(0.397504 + 3.52794i) q^{3} +(1.56366 - 1.24698i) q^{4} +(-0.990768 + 2.05735i) q^{5} +(2.17846 + 4.52361i) q^{6} +(1.68871 - 2.11758i) q^{7} +(1.50481 - 2.39490i) q^{8} +(-3.51401 + 0.802050i) q^{9} +O(q^{10})\) \(q+(1.33485 - 0.467085i) q^{2} +(0.397504 + 3.52794i) q^{3} +(1.56366 - 1.24698i) q^{4} +(-0.990768 + 2.05735i) q^{5} +(2.17846 + 4.52361i) q^{6} +(1.68871 - 2.11758i) q^{7} +(1.50481 - 2.39490i) q^{8} +(-3.51401 + 0.802050i) q^{9} +(-0.361571 + 3.20903i) q^{10} +(-8.26427 - 13.1525i) q^{11} +(5.02083 + 5.02083i) q^{12} +(2.24005 + 0.511276i) q^{13} +(1.26509 - 3.61543i) q^{14} +(-7.65205 - 2.67757i) q^{15} +(0.890084 - 3.89971i) q^{16} +(7.53643 - 7.53643i) q^{17} +(-4.31606 + 2.71196i) q^{18} +(-18.6721 - 2.10384i) q^{19} +(1.01625 + 4.45247i) q^{20} +(8.14197 + 5.11594i) q^{21} +(-17.1749 - 13.6965i) q^{22} +(-23.4171 + 11.2771i) q^{23} +(9.04723 + 4.35691i) q^{24} +(12.3362 + 15.4691i) q^{25} +(3.22894 - 0.363814i) q^{26} +(6.32679 + 18.0809i) q^{27} -5.41697i q^{28} +(-28.9994 + 0.180801i) q^{29} -11.4650 q^{30} +(26.6754 - 9.33412i) q^{31} +(-0.633367 - 5.62129i) q^{32} +(43.1162 - 34.3840i) q^{33} +(6.53987 - 13.5802i) q^{34} +(2.68348 + 5.57231i) q^{35} +(-4.49459 + 5.63603i) q^{36} +(29.0552 - 46.2411i) q^{37} +(-25.9072 + 5.91314i) q^{38} +(-0.913325 + 8.10599i) q^{39} +(3.43622 + 5.46872i) q^{40} +(39.4715 + 39.4715i) q^{41} +(13.2579 + 3.02603i) q^{42} +(-18.7484 + 53.5798i) q^{43} +(-29.3235 - 10.2607i) q^{44} +(1.83147 - 8.02420i) q^{45} +(-25.9910 + 25.9910i) q^{46} +(15.8446 - 9.95582i) q^{47} +(14.1118 + 1.59001i) q^{48} +(9.27114 + 40.6195i) q^{49} +(23.6923 + 14.8869i) q^{50} +(29.5838 + 23.5923i) q^{51} +(4.14023 - 1.99383i) q^{52} +(-34.9252 - 16.8191i) q^{53} +(16.8907 + 21.1802i) q^{54} +(35.2473 - 3.97142i) q^{55} +(-2.53019 - 7.23086i) q^{56} -66.7103i q^{57} +(-38.6255 + 13.7865i) q^{58} -103.236 q^{59} +(-15.3041 + 5.35514i) q^{60} +(-2.91173 - 25.8423i) q^{61} +(31.2479 - 24.9193i) q^{62} +(-4.23575 + 8.79562i) q^{63} +(-3.47107 - 7.20775i) q^{64} +(-3.27124 + 4.10201i) q^{65} +(41.4935 - 66.0366i) q^{66} +(19.0535 - 4.34884i) q^{67} +(2.38666 - 21.1822i) q^{68} +(-49.0933 - 78.1315i) q^{69} +(6.18479 + 6.18479i) q^{70} +(-121.745 - 27.7876i) q^{71} +(-3.36710 + 9.62263i) q^{72} +(45.1389 + 15.7948i) q^{73} +(17.1859 - 75.2963i) q^{74} +(-49.6703 + 49.6703i) q^{75} +(-31.8203 + 19.9940i) q^{76} +(-41.8075 - 4.71057i) q^{77} +(2.56703 + 11.2469i) q^{78} +(52.7837 + 33.1662i) q^{79} +(7.14121 + 5.69493i) q^{80} +(-90.5004 + 43.5827i) q^{81} +(71.1252 + 34.2521i) q^{82} +(6.65778 + 8.34859i) q^{83} +(19.1108 - 2.15327i) q^{84} +(8.03823 + 22.9719i) q^{85} +80.2782i q^{86} +(-12.1652 - 102.236i) q^{87} -43.9351 q^{88} +(48.2811 - 16.8943i) q^{89} +(-1.30324 - 11.5666i) q^{90} +(4.86547 - 3.88008i) q^{91} +(-22.5542 + 46.8342i) q^{92} +(43.5338 + 90.3988i) q^{93} +(16.5000 - 20.6903i) q^{94} +(22.8281 - 36.3306i) q^{95} +(19.5798 - 4.46896i) q^{96} +(-3.08778 + 27.4048i) q^{97} +(31.3484 + 49.8906i) q^{98} +(39.5897 + 39.5897i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 6 q^{2} + 4 q^{3} - 28 q^{5} - 34 q^{7} - 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 6 q^{2} + 4 q^{3} - 28 q^{5} - 34 q^{7} - 12 q^{8} - 4 q^{10} + 68 q^{11} - 8 q^{12} + 20 q^{14} + 62 q^{15} + 24 q^{16} + 14 q^{17} - 14 q^{18} + 28 q^{19} - 76 q^{20} - 264 q^{21} - 84 q^{22} - 184 q^{23} - 40 q^{24} + 26 q^{25} + 30 q^{26} - 188 q^{27} + 32 q^{29} + 184 q^{30} + 46 q^{31} - 24 q^{32} + 322 q^{33} + 126 q^{34} + 196 q^{35} + 140 q^{36} + 348 q^{37} + 114 q^{39} + 76 q^{40} - 30 q^{41} - 308 q^{42} - 36 q^{43} - 24 q^{44} - 258 q^{45} - 40 q^{46} + 110 q^{47} - 16 q^{48} - 514 q^{49} + 86 q^{50} + 126 q^{51} - 88 q^{52} - 86 q^{53} + 208 q^{54} - 332 q^{55} - 40 q^{56} + 142 q^{58} + 40 q^{59} + 124 q^{60} - 18 q^{61} + 56 q^{62} + 644 q^{63} + 40 q^{65} - 36 q^{66} + 70 q^{67} - 28 q^{68} + 1128 q^{69} - 208 q^{70} - 854 q^{71} + 28 q^{72} + 482 q^{73} - 360 q^{74} - 1164 q^{75} - 84 q^{76} - 1002 q^{77} - 732 q^{78} - 218 q^{79} - 898 q^{81} - 220 q^{82} + 624 q^{83} + 52 q^{84} - 260 q^{85} - 202 q^{87} + 48 q^{88} - 16 q^{89} - 148 q^{90} + 1022 q^{91} + 392 q^{92} - 644 q^{93} - 80 q^{94} + 1090 q^{95} - 52 q^{97} + 906 q^{98} + 588 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/58\mathbb{Z}\right)^\times\).

\(n\) \(31\)
\(\chi(n)\) \(e\left(\frac{25}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.33485 0.467085i 0.667426 0.233543i
\(3\) 0.397504 + 3.52794i 0.132501 + 1.17598i 0.867332 + 0.497730i \(0.165833\pi\)
−0.734831 + 0.678250i \(0.762738\pi\)
\(4\) 1.56366 1.24698i 0.390916 0.311745i
\(5\) −0.990768 + 2.05735i −0.198154 + 0.411470i −0.976242 0.216685i \(-0.930476\pi\)
0.778088 + 0.628155i \(0.216190\pi\)
\(6\) 2.17846 + 4.52361i 0.363076 + 0.753936i
\(7\) 1.68871 2.11758i 0.241245 0.302511i −0.646438 0.762966i \(-0.723742\pi\)
0.887683 + 0.460455i \(0.152314\pi\)
\(8\) 1.50481 2.39490i 0.188102 0.299362i
\(9\) −3.51401 + 0.802050i −0.390445 + 0.0891166i
\(10\) −0.361571 + 3.20903i −0.0361571 + 0.320903i
\(11\) −8.26427 13.1525i −0.751297 1.19568i −0.975255 0.221084i \(-0.929040\pi\)
0.223957 0.974599i \(-0.428102\pi\)
\(12\) 5.02083 + 5.02083i 0.418403 + 0.418403i
\(13\) 2.24005 + 0.511276i 0.172311 + 0.0393289i 0.307806 0.951449i \(-0.400405\pi\)
−0.135495 + 0.990778i \(0.543262\pi\)
\(14\) 1.26509 3.61543i 0.0903638 0.258245i
\(15\) −7.65205 2.67757i −0.510137 0.178505i
\(16\) 0.890084 3.89971i 0.0556302 0.243732i
\(17\) 7.53643 7.53643i 0.443319 0.443319i −0.449807 0.893126i \(-0.648507\pi\)
0.893126 + 0.449807i \(0.148507\pi\)
\(18\) −4.31606 + 2.71196i −0.239781 + 0.150664i
\(19\) −18.6721 2.10384i −0.982742 0.110728i −0.394053 0.919088i \(-0.628927\pi\)
−0.588689 + 0.808359i \(0.700356\pi\)
\(20\) 1.01625 + 4.45247i 0.0508124 + 0.222624i
\(21\) 8.14197 + 5.11594i 0.387713 + 0.243616i
\(22\) −17.1749 13.6965i −0.780679 0.622570i
\(23\) −23.4171 + 11.2771i −1.01814 + 0.490308i −0.867054 0.498213i \(-0.833990\pi\)
−0.151081 + 0.988521i \(0.548275\pi\)
\(24\) 9.04723 + 4.35691i 0.376968 + 0.181538i
\(25\) 12.3362 + 15.4691i 0.493447 + 0.618763i
\(26\) 3.22894 0.363814i 0.124190 0.0139929i
\(27\) 6.32679 + 18.0809i 0.234325 + 0.669664i
\(28\) 5.41697i 0.193463i
\(29\) −28.9994 + 0.180801i −0.999981 + 0.00623453i
\(30\) −11.4650 −0.382167
\(31\) 26.6754 9.33412i 0.860496 0.301101i 0.136277 0.990671i \(-0.456486\pi\)
0.724219 + 0.689570i \(0.242201\pi\)
\(32\) −0.633367 5.62129i −0.0197927 0.175665i
\(33\) 43.1162 34.3840i 1.30655 1.04194i
\(34\) 6.53987 13.5802i 0.192349 0.399417i
\(35\) 2.68348 + 5.57231i 0.0766709 + 0.159209i
\(36\) −4.49459 + 5.63603i −0.124850 + 0.156556i
\(37\) 29.0552 46.2411i 0.785276 1.24976i −0.178735 0.983897i \(-0.557201\pi\)
0.964011 0.265862i \(-0.0856566\pi\)
\(38\) −25.9072 + 5.91314i −0.681768 + 0.155609i
\(39\) −0.913325 + 8.10599i −0.0234186 + 0.207846i
\(40\) 3.43622 + 5.46872i 0.0859056 + 0.136718i
\(41\) 39.4715 + 39.4715i 0.962719 + 0.962719i 0.999330 0.0366106i \(-0.0116561\pi\)
−0.0366106 + 0.999330i \(0.511656\pi\)
\(42\) 13.2579 + 3.02603i 0.315664 + 0.0720483i
\(43\) −18.7484 + 53.5798i −0.436009 + 1.24604i 0.491052 + 0.871130i \(0.336613\pi\)
−0.927061 + 0.374911i \(0.877673\pi\)
\(44\) −29.3235 10.2607i −0.666442 0.233198i
\(45\) 1.83147 8.02420i 0.0406993 0.178315i
\(46\) −25.9910 + 25.9910i −0.565022 + 0.565022i
\(47\) 15.8446 9.95582i 0.337119 0.211826i −0.352824 0.935690i \(-0.614779\pi\)
0.689943 + 0.723864i \(0.257636\pi\)
\(48\) 14.1118 + 1.59001i 0.293995 + 0.0331253i
\(49\) 9.27114 + 40.6195i 0.189207 + 0.828969i
\(50\) 23.6923 + 14.8869i 0.473847 + 0.297738i
\(51\) 29.5838 + 23.5923i 0.580075 + 0.462594i
\(52\) 4.14023 1.99383i 0.0796198 0.0383429i
\(53\) −34.9252 16.8191i −0.658966 0.317341i 0.0743474 0.997232i \(-0.476313\pi\)
−0.733313 + 0.679891i \(0.762027\pi\)
\(54\) 16.8907 + 21.1802i 0.312790 + 0.392226i
\(55\) 35.2473 3.97142i 0.640860 0.0722076i
\(56\) −2.53019 7.23086i −0.0451819 0.129122i
\(57\) 66.7103i 1.17036i
\(58\) −38.6255 + 13.7865i −0.665957 + 0.237699i
\(59\) −103.236 −1.74975 −0.874877 0.484344i \(-0.839058\pi\)
−0.874877 + 0.484344i \(0.839058\pi\)
\(60\) −15.3041 + 5.35514i −0.255068 + 0.0892523i
\(61\) −2.91173 25.8423i −0.0477332 0.423644i −0.994740 0.102431i \(-0.967338\pi\)
0.947007 0.321213i \(-0.104091\pi\)
\(62\) 31.2479 24.9193i 0.503998 0.401925i
\(63\) −4.23575 + 8.79562i −0.0672341 + 0.139613i
\(64\) −3.47107 7.20775i −0.0542355 0.112621i
\(65\) −3.27124 + 4.10201i −0.0503268 + 0.0631078i
\(66\) 41.4935 66.0366i 0.628690 1.00055i
\(67\) 19.0535 4.34884i 0.284381 0.0649081i −0.0779511 0.996957i \(-0.524838\pi\)
0.362332 + 0.932049i \(0.381981\pi\)
\(68\) 2.38666 21.1822i 0.0350980 0.311503i
\(69\) −49.0933 78.1315i −0.711497 1.13234i
\(70\) 6.18479 + 6.18479i 0.0883542 + 0.0883542i
\(71\) −121.745 27.7876i −1.71472 0.391375i −0.751428 0.659815i \(-0.770634\pi\)
−0.963296 + 0.268441i \(0.913492\pi\)
\(72\) −3.36710 + 9.62263i −0.0467653 + 0.133648i
\(73\) 45.1389 + 15.7948i 0.618341 + 0.216367i 0.621229 0.783629i \(-0.286634\pi\)
−0.00288809 + 0.999996i \(0.500919\pi\)
\(74\) 17.1859 75.2963i 0.232242 1.01752i
\(75\) −49.6703 + 49.6703i −0.662271 + 0.662271i
\(76\) −31.8203 + 19.9940i −0.418688 + 0.263079i
\(77\) −41.8075 4.71057i −0.542954 0.0611763i
\(78\) 2.56703 + 11.2469i 0.0329107 + 0.144191i
\(79\) 52.7837 + 33.1662i 0.668148 + 0.419825i 0.822945 0.568121i \(-0.192329\pi\)
−0.154797 + 0.987946i \(0.549472\pi\)
\(80\) 7.14121 + 5.69493i 0.0892651 + 0.0711866i
\(81\) −90.5004 + 43.5827i −1.11729 + 0.538058i
\(82\) 71.1252 + 34.2521i 0.867380 + 0.417708i
\(83\) 6.65778 + 8.34859i 0.0802142 + 0.100585i 0.820319 0.571906i \(-0.193796\pi\)
−0.740105 + 0.672491i \(0.765224\pi\)
\(84\) 19.1108 2.15327i 0.227509 0.0256341i
\(85\) 8.03823 + 22.9719i 0.0945674 + 0.270258i
\(86\) 80.2782i 0.933468i
\(87\) −12.1652 102.236i −0.139830 1.17513i
\(88\) −43.9351 −0.499263
\(89\) 48.2811 16.8943i 0.542484 0.189823i −0.0451059 0.998982i \(-0.514363\pi\)
0.587590 + 0.809159i \(0.300077\pi\)
\(90\) −1.30324 11.5666i −0.0144804 0.128517i
\(91\) 4.86547 3.88008i 0.0534667 0.0426382i
\(92\) −22.5542 + 46.8342i −0.245154 + 0.509068i
\(93\) 43.5338 + 90.3988i 0.468105 + 0.972030i
\(94\) 16.5000 20.6903i 0.175532 0.220110i
\(95\) 22.8281 36.3306i 0.240295 0.382428i
\(96\) 19.5798 4.46896i 0.203956 0.0465517i
\(97\) −3.08778 + 27.4048i −0.0318328 + 0.282524i 0.967704 + 0.252089i \(0.0811177\pi\)
−0.999537 + 0.0304346i \(0.990311\pi\)
\(98\) 31.3484 + 49.8906i 0.319881 + 0.509088i
\(99\) 39.5897 + 39.5897i 0.399896 + 0.399896i
\(100\) 38.5792 + 8.80546i 0.385792 + 0.0880546i
\(101\) −4.34475 + 12.4166i −0.0430173 + 0.122937i −0.963388 0.268110i \(-0.913601\pi\)
0.920371 + 0.391046i \(0.127887\pi\)
\(102\) 50.5097 + 17.6741i 0.495193 + 0.173275i
\(103\) 32.6468 143.035i 0.316960 1.38869i −0.525895 0.850550i \(-0.676269\pi\)
0.842855 0.538141i \(-0.180873\pi\)
\(104\) 4.59531 4.59531i 0.0441857 0.0441857i
\(105\) −18.5921 + 11.6822i −0.177067 + 0.111259i
\(106\) −54.4759 6.13796i −0.513924 0.0579053i
\(107\) −14.4557 63.3344i −0.135100 0.591910i −0.996471 0.0839348i \(-0.973251\pi\)
0.861372 0.507975i \(-0.169606\pi\)
\(108\) 32.4395 + 20.3831i 0.300366 + 0.188732i
\(109\) 117.260 + 93.5118i 1.07578 + 0.857907i 0.990371 0.138439i \(-0.0442085\pi\)
0.0854101 + 0.996346i \(0.472780\pi\)
\(110\) 45.1950 21.7648i 0.410864 0.197861i
\(111\) 174.685 + 84.1241i 1.57374 + 0.757874i
\(112\) −6.75485 8.47032i −0.0603112 0.0756278i
\(113\) 123.808 13.9498i 1.09565 0.123450i 0.454410 0.890792i \(-0.349850\pi\)
0.641237 + 0.767343i \(0.278421\pi\)
\(114\) −31.1594 89.0485i −0.273328 0.781127i
\(115\) 59.3502i 0.516089i
\(116\) −45.1199 + 36.4444i −0.388965 + 0.314176i
\(117\) −8.28161 −0.0707830
\(118\) −137.804 + 48.2198i −1.16783 + 0.408642i
\(119\) −3.23212 28.6859i −0.0271607 0.241058i
\(120\) −17.9274 + 14.2966i −0.149395 + 0.119139i
\(121\) −52.1905 + 108.375i −0.431326 + 0.895658i
\(122\) −15.9573 33.1356i −0.130797 0.271604i
\(123\) −123.563 + 154.943i −1.00458 + 1.25970i
\(124\) 30.0718 47.8591i 0.242515 0.385960i
\(125\) −99.7035 + 22.7567i −0.797628 + 0.182053i
\(126\) −1.54580 + 13.7193i −0.0122682 + 0.108883i
\(127\) −91.4609 145.559i −0.720165 1.14614i −0.983408 0.181406i \(-0.941935\pi\)
0.263243 0.964729i \(-0.415208\pi\)
\(128\) −8.00000 8.00000i −0.0625000 0.0625000i
\(129\) −196.479 44.8450i −1.52309 0.347636i
\(130\) −2.45064 + 7.00352i −0.0188511 + 0.0538733i
\(131\) 236.212 + 82.6541i 1.80314 + 0.630948i 0.999350 + 0.0360406i \(0.0114746\pi\)
0.803794 + 0.594907i \(0.202811\pi\)
\(132\) 24.5430 107.530i 0.185932 0.814622i
\(133\) −35.9869 + 35.9869i −0.270578 + 0.270578i
\(134\) 23.4024 14.7047i 0.174645 0.109736i
\(135\) −43.4672 4.89758i −0.321979 0.0362783i
\(136\) −6.70805 29.3899i −0.0493239 0.216102i
\(137\) −71.8274 45.1321i −0.524288 0.329432i 0.243748 0.969839i \(-0.421623\pi\)
−0.768036 + 0.640407i \(0.778766\pi\)
\(138\) −102.026 81.3633i −0.739321 0.589589i
\(139\) 125.698 60.5329i 0.904301 0.435488i 0.0768606 0.997042i \(-0.475510\pi\)
0.827441 + 0.561553i \(0.189796\pi\)
\(140\) 11.1446 + 5.36696i 0.0796044 + 0.0383355i
\(141\) 41.4218 + 51.9413i 0.293772 + 0.368378i
\(142\) −175.491 + 19.7731i −1.23585 + 0.139247i
\(143\) −11.7878 33.6876i −0.0824321 0.235577i
\(144\) 14.4175i 0.100122i
\(145\) 28.3597 59.8412i 0.195584 0.412698i
\(146\) 67.6313 0.463228
\(147\) −139.618 + 48.8544i −0.949782 + 0.332343i
\(148\) −12.2292 108.537i −0.0826294 0.733356i
\(149\) 164.312 131.034i 1.10276 0.879425i 0.109350 0.994003i \(-0.465123\pi\)
0.993414 + 0.114578i \(0.0365517\pi\)
\(150\) −43.1023 + 89.5028i −0.287348 + 0.596685i
\(151\) 23.0038 + 47.7678i 0.152343 + 0.316343i 0.963148 0.268974i \(-0.0866844\pi\)
−0.810805 + 0.585317i \(0.800970\pi\)
\(152\) −33.1365 + 41.5519i −0.218003 + 0.273368i
\(153\) −20.4385 + 32.5277i −0.133585 + 0.212599i
\(154\) −58.0071 + 13.2397i −0.376669 + 0.0859723i
\(155\) −7.22555 + 64.1286i −0.0466165 + 0.413733i
\(156\) 8.67987 + 13.8139i 0.0556402 + 0.0885508i
\(157\) −141.983 141.983i −0.904353 0.904353i 0.0914559 0.995809i \(-0.470848\pi\)
−0.995809 + 0.0914559i \(0.970848\pi\)
\(158\) 85.9499 + 19.6175i 0.543987 + 0.124161i
\(159\) 45.4538 129.900i 0.285873 0.816979i
\(160\) 12.1925 + 4.26633i 0.0762030 + 0.0266646i
\(161\) −15.6647 + 68.6314i −0.0972960 + 0.426282i
\(162\) −100.448 + 100.448i −0.620049 + 0.620049i
\(163\) 181.832 114.253i 1.11553 0.700937i 0.157480 0.987522i \(-0.449663\pi\)
0.958055 + 0.286586i \(0.0925203\pi\)
\(164\) 110.940 + 12.5000i 0.676465 + 0.0762193i
\(165\) 28.0219 + 122.772i 0.169830 + 0.744072i
\(166\) 12.7867 + 8.03439i 0.0770281 + 0.0483999i
\(167\) 110.632 + 88.2260i 0.662466 + 0.528299i 0.896003 0.444049i \(-0.146458\pi\)
−0.233536 + 0.972348i \(0.575030\pi\)
\(168\) 24.5043 11.8006i 0.145859 0.0702419i
\(169\) −147.507 71.0358i −0.872824 0.420330i
\(170\) 21.4597 + 26.9096i 0.126234 + 0.158292i
\(171\) 67.3013 7.58303i 0.393575 0.0443452i
\(172\) 37.4968 + 107.160i 0.218004 + 0.623021i
\(173\) 60.6696i 0.350691i 0.984507 + 0.175346i \(0.0561043\pi\)
−0.984507 + 0.175346i \(0.943896\pi\)
\(174\) −63.9919 130.788i −0.367770 0.751657i
\(175\) 53.5892 0.306224
\(176\) −58.6469 + 20.5214i −0.333221 + 0.116599i
\(177\) −41.0365 364.209i −0.231845 2.05768i
\(178\) 56.5571 45.1028i 0.317736 0.253386i
\(179\) −102.695 + 213.249i −0.573716 + 1.19133i 0.389105 + 0.921194i \(0.372784\pi\)
−0.962821 + 0.270141i \(0.912930\pi\)
\(180\) −7.14221 14.8309i −0.0396789 0.0823941i
\(181\) −192.088 + 240.871i −1.06126 + 1.33078i −0.120121 + 0.992759i \(0.538328\pi\)
−0.941139 + 0.338019i \(0.890243\pi\)
\(182\) 4.68235 7.45192i 0.0257272 0.0409446i
\(183\) 90.0127 20.5448i 0.491873 0.112267i
\(184\) −8.23093 + 73.0515i −0.0447333 + 0.397019i
\(185\) 66.3472 + 105.591i 0.358634 + 0.570762i
\(186\) 100.335 + 100.335i 0.539436 + 0.539436i
\(187\) −161.406 36.8399i −0.863134 0.197005i
\(188\) 12.3609 35.3254i 0.0657495 0.187901i
\(189\) 48.9719 + 17.1360i 0.259111 + 0.0906668i
\(190\) 13.5026 59.1587i 0.0710663 0.311362i
\(191\) 156.315 156.315i 0.818403 0.818403i −0.167473 0.985877i \(-0.553561\pi\)
0.985877 + 0.167473i \(0.0535609\pi\)
\(192\) 24.0488 15.1108i 0.125254 0.0787023i
\(193\) −137.733 15.5187i −0.713640 0.0804079i −0.252323 0.967643i \(-0.581194\pi\)
−0.461317 + 0.887235i \(0.652623\pi\)
\(194\) 8.67865 + 38.0237i 0.0447353 + 0.195998i
\(195\) −15.7720 9.91019i −0.0808819 0.0508215i
\(196\) 65.1486 + 51.9543i 0.332391 + 0.265073i
\(197\) 60.8446 29.3012i 0.308856 0.148737i −0.273035 0.962004i \(-0.588027\pi\)
0.581891 + 0.813267i \(0.302313\pi\)
\(198\) 71.3382 + 34.3546i 0.360294 + 0.173508i
\(199\) 78.2591 + 98.1338i 0.393262 + 0.493135i 0.938564 0.345105i \(-0.112157\pi\)
−0.545302 + 0.838239i \(0.683585\pi\)
\(200\) 55.6105 6.26580i 0.278052 0.0313290i
\(201\) 22.9163 + 65.4910i 0.114011 + 0.325826i
\(202\) 18.6037i 0.0920974i
\(203\) −48.5889 + 61.7139i −0.239354 + 0.304010i
\(204\) 75.6783 0.370972
\(205\) −120.314 + 42.0996i −0.586897 + 0.205364i
\(206\) −23.2309 206.180i −0.112771 1.00087i
\(207\) 73.2431 58.4094i 0.353832 0.282171i
\(208\) 3.98766 8.28046i 0.0191714 0.0398099i
\(209\) 126.641 + 262.972i 0.605935 + 1.25824i
\(210\) −19.3611 + 24.2781i −0.0921958 + 0.115610i
\(211\) −167.370 + 266.368i −0.793224 + 1.26241i 0.167766 + 0.985827i \(0.446345\pi\)
−0.960990 + 0.276582i \(0.910798\pi\)
\(212\) −75.5842 + 17.2516i −0.356529 + 0.0813755i
\(213\) 49.6388 440.556i 0.233046 2.06834i
\(214\) −48.8787 77.7900i −0.228405 0.363505i
\(215\) −91.6572 91.6572i −0.426312 0.426312i
\(216\) 52.8226 + 12.0564i 0.244549 + 0.0558167i
\(217\) 25.2813 72.2499i 0.116504 0.332949i
\(218\) 200.203 + 70.0541i 0.918362 + 0.321349i
\(219\) −37.7802 + 165.526i −0.172512 + 0.755826i
\(220\) 50.1627 50.1627i 0.228012 0.228012i
\(221\) 20.7351 13.0288i 0.0938242 0.0589536i
\(222\) 272.472 + 30.7003i 1.22735 + 0.138289i
\(223\) −28.1428 123.301i −0.126201 0.552921i −0.998009 0.0630739i \(-0.979910\pi\)
0.871808 0.489847i \(-0.162948\pi\)
\(224\) −12.9731 8.15154i −0.0579156 0.0363908i
\(225\) −55.7564 44.4642i −0.247806 0.197619i
\(226\) 158.750 76.4499i 0.702433 0.338274i
\(227\) 107.051 + 51.5530i 0.471589 + 0.227106i 0.654556 0.756014i \(-0.272856\pi\)
−0.182966 + 0.983119i \(0.558570\pi\)
\(228\) −83.1864 104.312i −0.364853 0.457511i
\(229\) 72.2330 8.13871i 0.315428 0.0355402i 0.0471687 0.998887i \(-0.484980\pi\)
0.268259 + 0.963347i \(0.413552\pi\)
\(230\) −27.7216 79.2238i −0.120529 0.344451i
\(231\) 149.367i 0.646610i
\(232\) −43.2058 + 69.7228i −0.186232 + 0.300529i
\(233\) 116.308 0.499176 0.249588 0.968352i \(-0.419705\pi\)
0.249588 + 0.968352i \(0.419705\pi\)
\(234\) −11.0547 + 3.86822i −0.0472424 + 0.0165308i
\(235\) 4.78430 + 42.4618i 0.0203587 + 0.180688i
\(236\) −161.426 + 128.733i −0.684007 + 0.545477i
\(237\) −96.0267 + 199.401i −0.405176 + 0.841356i
\(238\) −17.7131 36.7817i −0.0744249 0.154545i
\(239\) −23.5682 + 29.5536i −0.0986118 + 0.123655i −0.828689 0.559710i \(-0.810913\pi\)
0.730077 + 0.683365i \(0.239484\pi\)
\(240\) −17.2527 + 27.4575i −0.0718863 + 0.114406i
\(241\) −214.124 + 48.8725i −0.888483 + 0.202790i −0.642319 0.766438i \(-0.722027\pi\)
−0.246164 + 0.969228i \(0.579170\pi\)
\(242\) −19.0464 + 169.042i −0.0787042 + 0.698519i
\(243\) −98.0075 155.978i −0.403323 0.641885i
\(244\) −36.7778 36.7778i −0.150729 0.150729i
\(245\) −92.7541 21.1705i −0.378588 0.0864103i
\(246\) −92.5668 + 264.541i −0.376288 + 1.07537i
\(247\) −40.7507 14.2593i −0.164983 0.0577299i
\(248\) 17.7872 77.9309i 0.0717227 0.314238i
\(249\) −26.8069 + 26.8069i −0.107658 + 0.107658i
\(250\) −122.460 + 76.9468i −0.489841 + 0.307787i
\(251\) −286.224 32.2497i −1.14033 0.128485i −0.478467 0.878106i \(-0.658807\pi\)
−0.661868 + 0.749621i \(0.730236\pi\)
\(252\) 4.34468 + 19.0353i 0.0172408 + 0.0755368i
\(253\) 341.847 + 214.797i 1.35118 + 0.849000i
\(254\) −190.075 151.580i −0.748329 0.596772i
\(255\) −77.8484 + 37.4898i −0.305288 + 0.147019i
\(256\) −14.4155 6.94214i −0.0563106 0.0271177i
\(257\) −175.185 219.675i −0.681655 0.854768i 0.313850 0.949472i \(-0.398381\pi\)
−0.995505 + 0.0947040i \(0.969810\pi\)
\(258\) −283.217 + 31.9109i −1.09774 + 0.123686i
\(259\) −48.8533 139.615i −0.188623 0.539053i
\(260\) 10.4933i 0.0403590i
\(261\) 101.759 23.8943i 0.389882 0.0915491i
\(262\) 353.915 1.35082
\(263\) −260.644 + 91.2034i −0.991043 + 0.346781i −0.776627 0.629961i \(-0.783071\pi\)
−0.214417 + 0.976742i \(0.568785\pi\)
\(264\) −17.4644 155.001i −0.0661529 0.587123i
\(265\) 69.2055 55.1895i 0.261153 0.208262i
\(266\) −31.2282 + 64.8461i −0.117399 + 0.243782i
\(267\) 78.7939 + 163.617i 0.295108 + 0.612799i
\(268\) 24.3704 30.5595i 0.0909342 0.114028i
\(269\) 217.477 346.112i 0.808464 1.28666i −0.146283 0.989243i \(-0.546731\pi\)
0.954747 0.297420i \(-0.0961261\pi\)
\(270\) −60.3099 + 13.7653i −0.223370 + 0.0509827i
\(271\) 32.8753 291.776i 0.121311 1.07666i −0.774606 0.632444i \(-0.782052\pi\)
0.895917 0.444221i \(-0.146520\pi\)
\(272\) −22.6818 36.0979i −0.0833891 0.132713i
\(273\) 15.6227 + 15.6227i 0.0572261 + 0.0572261i
\(274\) −116.960 26.6952i −0.426860 0.0974279i
\(275\) 101.508 290.092i 0.369119 1.05488i
\(276\) −174.194 60.9530i −0.631137 0.220844i
\(277\) −1.98600 + 8.70123i −0.00716967 + 0.0314124i −0.978386 0.206786i \(-0.933700\pi\)
0.971217 + 0.238198i \(0.0765568\pi\)
\(278\) 139.514 139.514i 0.501849 0.501849i
\(279\) −86.2511 + 54.1951i −0.309144 + 0.194248i
\(280\) 17.3832 + 1.95862i 0.0620830 + 0.00699508i
\(281\) 35.9542 + 157.526i 0.127951 + 0.560589i 0.997742 + 0.0671685i \(0.0213965\pi\)
−0.869791 + 0.493421i \(0.835746\pi\)
\(282\) 79.5530 + 49.9865i 0.282103 + 0.177257i
\(283\) 87.5998 + 69.8585i 0.309540 + 0.246850i 0.765921 0.642934i \(-0.222283\pi\)
−0.456381 + 0.889784i \(0.650855\pi\)
\(284\) −225.019 + 108.364i −0.792322 + 0.381562i
\(285\) 137.247 + 66.0945i 0.481567 + 0.231910i
\(286\) −31.4699 39.4620i −0.110035 0.137979i
\(287\) 150.240 16.9280i 0.523484 0.0589825i
\(288\) 6.73421 + 19.2453i 0.0233827 + 0.0668238i
\(289\) 175.405i 0.606936i
\(290\) 9.90517 93.1256i 0.0341557 0.321123i
\(291\) −97.9100 −0.336461
\(292\) 90.2778 31.5896i 0.309171 0.108183i
\(293\) 27.4715 + 243.817i 0.0937595 + 0.832139i 0.949293 + 0.314392i \(0.101801\pi\)
−0.855534 + 0.517747i \(0.826771\pi\)
\(294\) −163.550 + 130.427i −0.556293 + 0.443629i
\(295\) 102.282 212.392i 0.346720 0.719972i
\(296\) −67.0200 139.169i −0.226419 0.470164i
\(297\) 185.523 232.639i 0.624657 0.783296i
\(298\) 158.128 251.659i 0.530631 0.844494i
\(299\) −58.2211 + 13.2886i −0.194719 + 0.0444434i
\(300\) −15.7298 + 139.605i −0.0524325 + 0.465352i
\(301\) 81.7989 + 130.182i 0.271757 + 0.432499i
\(302\) 53.0183 + 53.0183i 0.175557 + 0.175557i
\(303\) −45.5320 10.3924i −0.150271 0.0342983i
\(304\) −24.8241 + 70.9432i −0.0816582 + 0.233366i
\(305\) 56.0515 + 19.6133i 0.183776 + 0.0643058i
\(306\) −12.0892 + 52.9661i −0.0395071 + 0.173092i
\(307\) −57.5756 + 57.5756i −0.187543 + 0.187543i −0.794633 0.607090i \(-0.792337\pi\)
0.607090 + 0.794633i \(0.292337\pi\)
\(308\) −71.2468 + 44.7673i −0.231321 + 0.145348i
\(309\) 517.597 + 58.3192i 1.67507 + 0.188735i
\(310\) 20.3085 + 88.9771i 0.0655111 + 0.287023i
\(311\) 129.424 + 81.3226i 0.416155 + 0.261488i 0.723795 0.690015i \(-0.242396\pi\)
−0.307640 + 0.951503i \(0.599539\pi\)
\(312\) 18.0386 + 14.3853i 0.0578161 + 0.0461068i
\(313\) −287.549 + 138.476i −0.918687 + 0.442416i −0.832602 0.553872i \(-0.813150\pi\)
−0.0860845 + 0.996288i \(0.527436\pi\)
\(314\) −255.845 123.209i −0.814794 0.392384i
\(315\) −13.8990 17.4289i −0.0441240 0.0553297i
\(316\) 123.893 13.9594i 0.392068 0.0441755i
\(317\) 59.9041 + 171.196i 0.188972 + 0.540051i 0.998921 0.0464499i \(-0.0147908\pi\)
−0.809949 + 0.586501i \(0.800505\pi\)
\(318\) 194.628i 0.612037i
\(319\) 242.037 + 379.921i 0.758737 + 1.19098i
\(320\) 18.2679 0.0570872
\(321\) 217.694 76.1743i 0.678174 0.237303i
\(322\) 11.1467 + 98.9295i 0.0346170 + 0.307234i
\(323\) −156.576 + 124.865i −0.484756 + 0.386580i
\(324\) −87.1654 + 181.001i −0.269029 + 0.558644i
\(325\) 19.7246 + 40.9586i 0.0606912 + 0.126027i
\(326\) 189.353 237.442i 0.580838 0.728348i
\(327\) −283.293 + 450.858i −0.866339 + 1.37877i
\(328\) 153.927 35.1329i 0.469291 0.107113i
\(329\) 5.67474 50.3647i 0.0172484 0.153084i
\(330\) 94.7500 + 150.794i 0.287121 + 0.456951i
\(331\) −9.52679 9.52679i −0.0287819 0.0287819i 0.692569 0.721351i \(-0.256479\pi\)
−0.721351 + 0.692569i \(0.756479\pi\)
\(332\) 20.8210 + 4.75227i 0.0627140 + 0.0143141i
\(333\) −65.0126 + 185.795i −0.195233 + 0.557944i
\(334\) 188.886 + 66.0942i 0.565528 + 0.197887i
\(335\) −9.93053 + 43.5085i −0.0296434 + 0.129876i
\(336\) 27.1977 27.1977i 0.0809456 0.0809456i
\(337\) 477.344 299.935i 1.41645 0.890015i 0.416632 0.909075i \(-0.363210\pi\)
0.999818 + 0.0190600i \(0.00606735\pi\)
\(338\) −230.080 25.9238i −0.680711 0.0766977i
\(339\) 98.4284 + 431.243i 0.290349 + 1.27210i
\(340\) 41.2146 + 25.8969i 0.121219 + 0.0761672i
\(341\) −343.220 273.709i −1.00651 0.802664i
\(342\) 86.2954 41.5577i 0.252326 0.121514i
\(343\) 221.244 + 106.546i 0.645027 + 0.310628i
\(344\) 100.105 + 125.528i 0.291004 + 0.364907i
\(345\) 209.384 23.5919i 0.606910 0.0683823i
\(346\) 28.3379 + 80.9849i 0.0819013 + 0.234060i
\(347\) 152.996i 0.440911i 0.975397 + 0.220456i \(0.0707544\pi\)
−0.975397 + 0.220456i \(0.929246\pi\)
\(348\) −146.509 144.694i −0.421003 0.415786i
\(349\) −486.523 −1.39405 −0.697024 0.717048i \(-0.745493\pi\)
−0.697024 + 0.717048i \(0.745493\pi\)
\(350\) 71.5337 25.0307i 0.204382 0.0715164i
\(351\) 4.92796 + 43.7368i 0.0140398 + 0.124606i
\(352\) −68.6997 + 54.7862i −0.195170 + 0.155643i
\(353\) 278.025 577.324i 0.787606 1.63548i 0.0155882 0.999878i \(-0.495038\pi\)
0.772017 0.635601i \(-0.219248\pi\)
\(354\) −224.894 466.998i −0.635294 1.31920i
\(355\) 177.790 222.942i 0.500818 0.628006i
\(356\) 54.4285 86.6225i 0.152889 0.243322i
\(357\) 99.9172 22.8055i 0.279880 0.0638808i
\(358\) −37.4776 + 332.623i −0.104686 + 0.929115i
\(359\) −164.396 261.635i −0.457928 0.728789i 0.535339 0.844638i \(-0.320184\pi\)
−0.993267 + 0.115849i \(0.963041\pi\)
\(360\) −16.4611 16.4611i −0.0457253 0.0457253i
\(361\) −7.72794 1.76385i −0.0214070 0.00488602i
\(362\) −143.902 + 411.249i −0.397520 + 1.13605i
\(363\) −403.085 141.046i −1.11043 0.388556i
\(364\) 2.76957 12.1343i 0.00760870 0.0333359i
\(365\) −77.2176 + 77.2176i −0.211555 + 0.211555i
\(366\) 110.557 69.4679i 0.302070 0.189803i
\(367\) −244.250 27.5203i −0.665531 0.0749873i −0.227265 0.973833i \(-0.572978\pi\)
−0.438265 + 0.898846i \(0.644407\pi\)
\(368\) 23.1342 + 101.358i 0.0628646 + 0.275428i
\(369\) −170.361 107.045i −0.461683 0.290095i
\(370\) 137.884 + 109.959i 0.372659 + 0.297185i
\(371\) −94.5943 + 45.5542i −0.254971 + 0.122788i
\(372\) 180.798 + 87.0675i 0.486015 + 0.234053i
\(373\) −413.144 518.066i −1.10762 1.38892i −0.912962 0.408046i \(-0.866210\pi\)
−0.194662 0.980870i \(-0.562361\pi\)
\(374\) −232.661 + 26.2146i −0.622087 + 0.0700924i
\(375\) −119.917 342.702i −0.319778 0.913873i
\(376\) 52.9278i 0.140765i
\(377\) −65.0525 14.4217i −0.172553 0.0382539i
\(378\) 73.3743 0.194112
\(379\) 56.1640 19.6526i 0.148190 0.0518539i −0.255165 0.966898i \(-0.582130\pi\)
0.403355 + 0.915044i \(0.367844\pi\)
\(380\) −9.60819 85.2750i −0.0252847 0.224408i
\(381\) 477.168 380.529i 1.25241 0.998764i
\(382\) 135.645 281.670i 0.355092 0.737356i
\(383\) −8.47289 17.5941i −0.0221224 0.0459377i 0.889615 0.456712i \(-0.150973\pi\)
−0.911737 + 0.410774i \(0.865259\pi\)
\(384\) 25.0435 31.4036i 0.0652175 0.0817801i
\(385\) 51.1128 81.3456i 0.132761 0.211287i
\(386\) −191.101 + 43.6176i −0.495081 + 0.112999i
\(387\) 22.9083 203.317i 0.0591946 0.525367i
\(388\) 29.3450 + 46.7023i 0.0756315 + 0.120367i
\(389\) −425.674 425.674i −1.09428 1.09428i −0.995066 0.0992120i \(-0.968368\pi\)
−0.0992120 0.995066i \(-0.531632\pi\)
\(390\) −25.6822 5.86179i −0.0658517 0.0150302i
\(391\) −91.4924 + 261.470i −0.233996 + 0.668722i
\(392\) 111.231 + 38.9214i 0.283752 + 0.0992892i
\(393\) −197.704 + 866.197i −0.503063 + 2.20406i
\(394\) 67.5324 67.5324i 0.171402 0.171402i
\(395\) −120.531 + 75.7346i −0.305142 + 0.191733i
\(396\) 111.272 + 12.5374i 0.280991 + 0.0316601i
\(397\) −19.8555 86.9928i −0.0500139 0.219125i 0.943745 0.330674i \(-0.107276\pi\)
−0.993759 + 0.111549i \(0.964419\pi\)
\(398\) 150.301 + 94.4405i 0.377641 + 0.237288i
\(399\) −141.264 112.655i −0.354046 0.282342i
\(400\) 71.3051 34.3387i 0.178263 0.0858469i
\(401\) −482.803 232.506i −1.20400 0.579815i −0.279185 0.960237i \(-0.590064\pi\)
−0.924813 + 0.380423i \(0.875779\pi\)
\(402\) 61.1798 + 76.7170i 0.152188 + 0.190838i
\(403\) 64.5264 7.27038i 0.160115 0.0180406i
\(404\) 8.68950 + 24.8332i 0.0215087 + 0.0614683i
\(405\) 229.371i 0.566349i
\(406\) −36.0333 + 105.074i −0.0887520 + 0.258803i
\(407\) −848.307 −2.08429
\(408\) 101.019 35.3482i 0.247596 0.0866377i
\(409\) 86.7017 + 769.499i 0.211985 + 1.88141i 0.426201 + 0.904628i \(0.359852\pi\)
−0.214217 + 0.976786i \(0.568720\pi\)
\(410\) −140.937 + 112.394i −0.343749 + 0.274131i
\(411\) 130.672 271.343i 0.317936 0.660202i
\(412\) −127.313 264.369i −0.309013 0.641672i
\(413\) −174.335 + 218.609i −0.422119 + 0.529321i
\(414\) 70.4866 112.179i 0.170257 0.270963i
\(415\) −23.7723 + 5.42587i −0.0572827 + 0.0130744i
\(416\) 1.45526 12.9158i 0.00349822 0.0310475i
\(417\) 263.522 + 419.393i 0.631947 + 1.00574i
\(418\) 291.877 + 291.877i 0.698269 + 0.698269i
\(419\) 554.847 + 126.640i 1.32422 + 0.302244i 0.825442 0.564487i \(-0.190926\pi\)
0.498775 + 0.866731i \(0.333783\pi\)
\(420\) −14.5043 + 41.4509i −0.0345341 + 0.0986927i
\(421\) −645.610 225.909i −1.53352 0.536600i −0.574146 0.818753i \(-0.694666\pi\)
−0.959369 + 0.282153i \(0.908951\pi\)
\(422\) −98.9980 + 433.739i −0.234592 + 1.02782i
\(423\) −47.6930 + 47.6930i −0.112749 + 0.112749i
\(424\) −92.8359 + 58.3326i −0.218952 + 0.137577i
\(425\) 209.552 + 23.6109i 0.493064 + 0.0555550i
\(426\) −139.517 611.263i −0.327504 1.43489i
\(427\) −59.6402 37.4744i −0.139673 0.0877621i
\(428\) −101.580 81.0077i −0.237337 0.189270i
\(429\) 114.162 54.9776i 0.266112 0.128153i
\(430\) −165.161 79.5371i −0.384094 0.184970i
\(431\) 392.936 + 492.726i 0.911684 + 1.14321i 0.989251 + 0.146228i \(0.0467133\pi\)
−0.0775674 + 0.996987i \(0.524715\pi\)
\(432\) 76.1418 8.57911i 0.176254 0.0198591i
\(433\) 179.497 + 512.973i 0.414543 + 1.18470i 0.942146 + 0.335204i \(0.108805\pi\)
−0.527603 + 0.849491i \(0.676909\pi\)
\(434\) 108.251i 0.249427i
\(435\) 222.389 + 76.2645i 0.511240 + 0.175321i
\(436\) 299.963 0.687988
\(437\) 460.972 161.301i 1.05486 0.369110i
\(438\) 26.8837 + 238.599i 0.0613783 + 0.544747i
\(439\) −305.411 + 243.557i −0.695697 + 0.554800i −0.906229 0.422787i \(-0.861052\pi\)
0.210532 + 0.977587i \(0.432480\pi\)
\(440\) 43.5295 90.3900i 0.0989307 0.205432i
\(441\) −65.1577 135.301i −0.147750 0.306806i
\(442\) 21.5928 27.0765i 0.0488525 0.0612592i
\(443\) −28.6695 + 45.6272i −0.0647167 + 0.102996i −0.877515 0.479549i \(-0.840800\pi\)
0.812798 + 0.582545i \(0.197943\pi\)
\(444\) 378.050 86.2875i 0.851464 0.194341i
\(445\) −13.0779 + 116.069i −0.0293885 + 0.260830i
\(446\) −95.1587 151.444i −0.213360 0.339561i
\(447\) 527.596 + 527.596i 1.18030 + 1.18030i
\(448\) −21.1246 4.82156i −0.0471532 0.0107624i
\(449\) 184.766 528.032i 0.411506 1.17602i −0.532597 0.846369i \(-0.678784\pi\)
0.944104 0.329649i \(-0.106930\pi\)
\(450\) −95.1951 33.3102i −0.211545 0.0740227i
\(451\) 192.946 845.352i 0.427818 1.87440i
\(452\) 176.199 176.199i 0.389821 0.389821i
\(453\) −159.378 + 100.144i −0.351828 + 0.221068i
\(454\) 166.977 + 18.8138i 0.367790 + 0.0414400i
\(455\) 3.16214 + 13.8542i 0.00694975 + 0.0304489i
\(456\) −159.764 100.387i −0.350361 0.220146i
\(457\) −87.1724 69.5177i −0.190749 0.152117i 0.523459 0.852051i \(-0.324641\pi\)
−0.714208 + 0.699934i \(0.753213\pi\)
\(458\) 92.6189 44.6029i 0.202225 0.0973863i
\(459\) 183.947 + 88.5842i 0.400756 + 0.192994i
\(460\) −74.0085 92.8037i −0.160888 0.201747i
\(461\) −164.868 + 18.5762i −0.357631 + 0.0402954i −0.288952 0.957343i \(-0.593307\pi\)
−0.0686788 + 0.997639i \(0.521878\pi\)
\(462\) −69.7670 199.383i −0.151011 0.431564i
\(463\) 144.703i 0.312533i 0.987715 + 0.156266i \(0.0499458\pi\)
−0.987715 + 0.156266i \(0.950054\pi\)
\(464\) −25.1069 + 113.250i −0.0541096 + 0.244074i
\(465\) −229.114 −0.492718
\(466\) 155.254 54.3258i 0.333163 0.116579i
\(467\) 60.0796 + 533.221i 0.128650 + 1.14180i 0.877674 + 0.479259i \(0.159094\pi\)
−0.749024 + 0.662543i \(0.769477\pi\)
\(468\) −12.9497 + 10.3270i −0.0276702 + 0.0220662i
\(469\) 22.9669 47.6913i 0.0489700 0.101687i
\(470\) 26.2196 + 54.4456i 0.0557864 + 0.115842i
\(471\) 444.470 557.348i 0.943674 1.18333i
\(472\) −155.350 + 247.239i −0.329132 + 0.523810i
\(473\) 859.651 196.210i 1.81744 0.414820i
\(474\) −35.0440 + 311.024i −0.0739325 + 0.656169i
\(475\) −197.798 314.793i −0.416416 0.662723i
\(476\) −40.8246 40.8246i −0.0857660 0.0857660i
\(477\) 136.217 + 31.0907i 0.285570 + 0.0651796i
\(478\) −17.6560 + 50.4581i −0.0369373 + 0.105561i
\(479\) −0.319423 0.111771i −0.000666853 0.000233342i 0.329946 0.944000i \(-0.392970\pi\)
−0.330612 + 0.943767i \(0.607255\pi\)
\(480\) −10.2048 + 44.7102i −0.0212600 + 0.0931463i
\(481\) 88.7270 88.7270i 0.184464 0.184464i
\(482\) −262.997 + 165.252i −0.545637 + 0.342846i
\(483\) −248.354 27.9828i −0.514191 0.0579354i
\(484\) 53.5327 + 234.542i 0.110605 + 0.484591i
\(485\) −53.3221 33.5045i −0.109942 0.0690814i
\(486\) −203.681 162.430i −0.419096 0.334218i
\(487\) 343.309 165.329i 0.704947 0.339485i −0.0468291 0.998903i \(-0.514912\pi\)
0.751776 + 0.659418i \(0.229197\pi\)
\(488\) −66.2713 31.9146i −0.135802 0.0653987i
\(489\) 475.356 + 596.077i 0.972097 + 1.21897i
\(490\) −133.702 + 15.0645i −0.272860 + 0.0307440i
\(491\) −147.599 421.814i −0.300610 0.859093i −0.990784 0.135450i \(-0.956752\pi\)
0.690175 0.723643i \(-0.257534\pi\)
\(492\) 396.359i 0.805608i
\(493\) −217.190 + 219.915i −0.440547 + 0.446075i
\(494\) −61.0565 −0.123596
\(495\) −120.674 + 42.2257i −0.243786 + 0.0853044i
\(496\) −12.6570 112.334i −0.0255182 0.226481i
\(497\) −264.436 + 210.880i −0.532063 + 0.424306i
\(498\) −23.2621 + 48.3043i −0.0467111 + 0.0969965i
\(499\) −32.6856 67.8724i −0.0655023 0.136017i 0.865647 0.500654i \(-0.166907\pi\)
−0.931150 + 0.364637i \(0.881193\pi\)
\(500\) −127.526 + 159.912i −0.255051 + 0.319824i
\(501\) −267.279 + 425.373i −0.533492 + 0.849048i
\(502\) −397.130 + 90.6424i −0.791096 + 0.180562i
\(503\) −57.0083 + 505.963i −0.113337 + 1.00589i 0.800367 + 0.599510i \(0.204638\pi\)
−0.913704 + 0.406381i \(0.866791\pi\)
\(504\) 14.6906 + 23.3800i 0.0291480 + 0.0463888i
\(505\) −21.2406 21.2406i −0.0420607 0.0420607i
\(506\) 556.644 + 127.050i 1.10009 + 0.251088i
\(507\) 191.975 548.634i 0.378650 1.08212i
\(508\) −324.524 113.556i −0.638826 0.223535i
\(509\) −38.9060 + 170.458i −0.0764361 + 0.334888i −0.998659 0.0517702i \(-0.983514\pi\)
0.922223 + 0.386659i \(0.126371\pi\)
\(510\) −86.4052 + 86.4052i −0.169422 + 0.169422i
\(511\) 109.673 68.9124i 0.214625 0.134858i
\(512\) −22.4851 2.53347i −0.0439163 0.00494818i
\(513\) −80.0950 350.919i −0.156131 0.684053i
\(514\) −336.454 211.408i −0.654579 0.411299i
\(515\) 261.928 + 208.881i 0.508598 + 0.405594i
\(516\) −363.148 + 174.883i −0.703775 + 0.338920i
\(517\) −261.888 126.119i −0.506553 0.243943i
\(518\) −130.424 163.546i −0.251784 0.315727i
\(519\) −214.039 + 24.1164i −0.412406 + 0.0464670i
\(520\) 4.90128 + 14.0070i 0.00942554 + 0.0269366i
\(521\) 421.266i 0.808571i 0.914633 + 0.404286i \(0.132480\pi\)
−0.914633 + 0.404286i \(0.867520\pi\)
\(522\) 124.673 79.4256i 0.238837 0.152156i
\(523\) 992.586 1.89787 0.948935 0.315470i \(-0.102162\pi\)
0.948935 + 0.315470i \(0.102162\pi\)
\(524\) 472.424 165.308i 0.901572 0.315474i
\(525\) 21.3019 + 189.060i 0.0405751 + 0.360114i
\(526\) −305.322 + 243.486i −0.580460 + 0.462902i
\(527\) 130.691 271.383i 0.247991 0.514958i
\(528\) −95.7108 198.745i −0.181270 0.376412i
\(529\) 91.3621 114.564i 0.172707 0.216568i
\(530\) 66.6009 105.995i 0.125662 0.199990i
\(531\) 362.771 82.8000i 0.683184 0.155932i
\(532\) −11.3964 + 101.146i −0.0214219 + 0.190124i
\(533\) 68.2371 + 108.599i 0.128025 + 0.203750i
\(534\) 181.602 + 181.602i 0.340078 + 0.340078i
\(535\) 144.623 + 33.0093i 0.270324 + 0.0616997i
\(536\) 18.2570 52.1754i 0.0340615 0.0973422i
\(537\) −793.151 277.536i −1.47700 0.516826i
\(538\) 128.635 563.589i 0.239099 1.04756i
\(539\) 457.629 457.629i 0.849034 0.849034i
\(540\) −74.0752 + 46.5445i −0.137176 + 0.0861936i
\(541\) −306.380 34.5207i −0.566321 0.0638091i −0.175838 0.984419i \(-0.556263\pi\)
−0.390483 + 0.920610i \(0.627692\pi\)
\(542\) −92.4007 404.834i −0.170481 0.746926i
\(543\) −926.134 581.928i −1.70559 1.07169i
\(544\) −47.1377 37.5911i −0.0866502 0.0691013i
\(545\) −308.564 + 148.597i −0.566173 + 0.272655i
\(546\) 28.1512 + 13.5569i 0.0515589 + 0.0248295i
\(547\) −89.9844 112.837i −0.164505 0.206283i 0.692746 0.721182i \(-0.256401\pi\)
−0.857251 + 0.514899i \(0.827829\pi\)
\(548\) −168.593 + 18.9958i −0.307651 + 0.0346639i
\(549\) 30.9586 + 88.4747i 0.0563910 + 0.161156i
\(550\) 434.643i 0.790260i
\(551\) 541.861 + 57.6342i 0.983413 + 0.104599i
\(552\) −260.993 −0.472814
\(553\) 159.369 55.7655i 0.288189 0.100842i
\(554\) 1.41320 + 12.5425i 0.00255090 + 0.0226399i
\(555\) −346.146 + 276.042i −0.623686 + 0.497373i
\(556\) 121.066 251.396i 0.217744 0.452151i
\(557\) 256.794 + 533.239i 0.461031 + 0.957342i 0.993811 + 0.111087i \(0.0354333\pi\)
−0.532779 + 0.846254i \(0.678852\pi\)
\(558\) −89.8187 + 112.629i −0.160965 + 0.201844i
\(559\) −69.3913 + 110.436i −0.124135 + 0.197559i
\(560\) 24.1189 5.50499i 0.0430695 0.00983033i
\(561\) 65.8095 584.075i 0.117307 1.04113i
\(562\) 121.571 + 193.480i 0.216319 + 0.344270i
\(563\) −93.5795 93.5795i −0.166216 0.166216i 0.619098 0.785314i \(-0.287498\pi\)
−0.785314 + 0.619098i \(0.787498\pi\)
\(564\) 129.540 + 29.5665i 0.229680 + 0.0524230i
\(565\) −93.9655 + 268.538i −0.166311 + 0.475289i
\(566\) 149.563 + 52.3343i 0.264245 + 0.0924634i
\(567\) −60.5394 + 265.240i −0.106771 + 0.467796i
\(568\) −249.753 + 249.753i −0.439705 + 0.439705i
\(569\) −305.734 + 192.106i −0.537318 + 0.337620i −0.773200 0.634162i \(-0.781345\pi\)
0.235882 + 0.971782i \(0.424202\pi\)
\(570\) 214.076 + 24.1205i 0.375572 + 0.0423167i
\(571\) −200.488 878.394i −0.351117 1.53834i −0.774607 0.632443i \(-0.782052\pi\)
0.423491 0.905901i \(-0.360805\pi\)
\(572\) −60.4399 37.9769i −0.105664 0.0663931i
\(573\) 613.606 + 489.334i 1.07087 + 0.853987i
\(574\) 192.641 92.7712i 0.335612 0.161622i
\(575\) −463.323 223.125i −0.805780 0.388043i
\(576\) 17.9783 + 22.5441i 0.0312124 + 0.0391391i
\(577\) −563.949 + 63.5418i −0.977381 + 0.110124i −0.586180 0.810181i \(-0.699369\pi\)
−0.391201 + 0.920305i \(0.627940\pi\)
\(578\) 81.9288 + 234.139i 0.141745 + 0.405085i
\(579\) 492.081i 0.849881i
\(580\) −30.2756 128.935i −0.0521994 0.222302i
\(581\) 28.9219 0.0497795
\(582\) −130.695 + 45.7323i −0.224563 + 0.0785779i
\(583\) 67.4180 + 598.351i 0.115640 + 1.02633i
\(584\) 105.753 84.3348i 0.181083 0.144409i
\(585\) 8.20516 17.0382i 0.0140259 0.0291251i
\(586\) 150.554 + 312.628i 0.256917 + 0.533495i
\(587\) −118.853 + 149.037i −0.202476 + 0.253897i −0.872694 0.488267i \(-0.837629\pi\)
0.670218 + 0.742164i \(0.266201\pi\)
\(588\) −157.395 + 250.492i −0.267678 + 0.426008i
\(589\) −517.723 + 118.167i −0.878986 + 0.200623i
\(590\) 37.3270 331.286i 0.0632661 0.561502i
\(591\) 127.559 + 203.009i 0.215836 + 0.343501i
\(592\) −154.465 154.465i −0.260921 0.260921i
\(593\) 686.503 + 156.690i 1.15768 + 0.264232i 0.757894 0.652377i \(-0.226228\pi\)
0.399783 + 0.916610i \(0.369085\pi\)
\(594\) 138.984 397.194i 0.233980 0.668676i
\(595\) 62.2192 + 21.7714i 0.104570 + 0.0365906i
\(596\) 93.5312 409.787i 0.156932 0.687562i
\(597\) −315.102 + 315.102i −0.527809 + 0.527809i
\(598\) −71.5097 + 44.9325i −0.119581 + 0.0751380i
\(599\) 132.025 + 14.8756i 0.220409 + 0.0248341i 0.221478 0.975165i \(-0.428912\pi\)
−0.00106950 + 0.999999i \(0.500340\pi\)
\(600\) 44.2107 + 193.700i 0.0736845 + 0.322833i
\(601\) −582.397 365.945i −0.969047 0.608893i −0.0482089 0.998837i \(-0.515351\pi\)
−0.920838 + 0.389945i \(0.872494\pi\)
\(602\) 169.996 + 135.567i 0.282385 + 0.225194i
\(603\) −63.4663 + 30.5637i −0.105251 + 0.0506861i
\(604\) 95.5357 + 46.0076i 0.158172 + 0.0761714i
\(605\) −171.256 214.748i −0.283068 0.354956i
\(606\) −65.6327 + 7.39503i −0.108305 + 0.0122030i
\(607\) 154.543 + 441.658i 0.254601 + 0.727607i 0.998255 + 0.0590433i \(0.0188050\pi\)
−0.743655 + 0.668564i \(0.766909\pi\)
\(608\) 106.294i 0.174825i
\(609\) −237.037 146.887i −0.389224 0.241194i
\(610\) 83.9816 0.137675
\(611\) 40.5828 14.2005i 0.0664203 0.0232415i
\(612\) 8.60243 + 76.3487i 0.0140563 + 0.124753i
\(613\) 493.014 393.166i 0.804265 0.641380i −0.132562 0.991175i \(-0.542320\pi\)
0.936826 + 0.349795i \(0.113749\pi\)
\(614\) −49.9622 + 103.748i −0.0813717 + 0.168970i
\(615\) −196.350 407.725i −0.319269 0.662968i
\(616\) −74.1938 + 93.0361i −0.120445 + 0.151033i
\(617\) −39.3446 + 62.6166i −0.0637676 + 0.101486i −0.877086 0.480333i \(-0.840516\pi\)
0.813319 + 0.581819i \(0.197659\pi\)
\(618\) 718.156 163.914i 1.16206 0.265234i
\(619\) −49.2840 + 437.407i −0.0796187 + 0.706636i 0.888970 + 0.457966i \(0.151422\pi\)
−0.968588 + 0.248670i \(0.920007\pi\)
\(620\) 68.6687 + 109.286i 0.110756 + 0.176267i
\(621\) −352.055 352.055i −0.566916 0.566916i
\(622\) 210.747 + 48.1016i 0.338821 + 0.0773337i
\(623\) 45.7579 130.769i 0.0734477 0.209902i
\(624\) 30.7981 + 10.7767i 0.0493559 + 0.0172704i
\(625\) −58.1036 + 254.569i −0.0929658 + 0.407310i
\(626\) −319.155 + 319.155i −0.509833 + 0.509833i
\(627\) −877.409 + 551.312i −1.39938 + 0.879286i
\(628\) −399.065 44.9638i −0.635453 0.0715984i
\(629\) −129.520 567.465i −0.205914 0.902170i
\(630\) −26.6939 16.7729i −0.0423713 0.0266237i
\(631\) 300.982 + 240.025i 0.476992 + 0.380389i 0.832268 0.554373i \(-0.187042\pi\)
−0.355276 + 0.934761i \(0.615613\pi\)
\(632\) 158.859 76.5026i 0.251360 0.121048i
\(633\) −1006.26 484.590i −1.58967 0.765545i
\(634\) 159.926 + 200.541i 0.252250 + 0.316311i
\(635\) 390.083 43.9518i 0.614304 0.0692155i
\(636\) −90.9077 259.799i −0.142937 0.408489i
\(637\) 95.7297i 0.150282i
\(638\) 500.540 + 394.087i 0.784545 + 0.617691i
\(639\) 450.101 0.704384
\(640\) 24.3850 8.53267i 0.0381015 0.0133323i
\(641\) −58.6713 520.722i −0.0915309 0.812359i −0.952673 0.303996i \(-0.901679\pi\)
0.861143 0.508364i \(-0.169749\pi\)
\(642\) 255.009 203.363i 0.397211 0.316765i
\(643\) 306.048 635.516i 0.475969 0.988361i −0.515362 0.856973i \(-0.672342\pi\)
0.991331 0.131388i \(-0.0419433\pi\)
\(644\) 61.0876 + 126.850i 0.0948566 + 0.196972i
\(645\) 286.927 359.795i 0.444848 0.557822i
\(646\) −150.684 + 239.811i −0.233256 + 0.371225i
\(647\) 438.854 100.166i 0.678291 0.154815i 0.130522 0.991445i \(-0.458335\pi\)
0.547768 + 0.836630i \(0.315477\pi\)
\(648\) −31.8102 + 282.323i −0.0490898 + 0.435684i
\(649\) 853.167 + 1357.81i 1.31459 + 2.09215i
\(650\) 45.4607 + 45.4607i 0.0699395 + 0.0699395i
\(651\) 264.943 + 60.4715i 0.406978 + 0.0928901i
\(652\) 141.853 405.394i 0.217566 0.621769i
\(653\) 1184.83 + 414.589i 1.81444 + 0.634900i 0.998378 + 0.0569337i \(0.0181324\pi\)
0.816061 + 0.577966i \(0.196153\pi\)
\(654\) −167.565 + 734.151i −0.256216 + 1.12256i
\(655\) −404.080 + 404.080i −0.616916 + 0.616916i
\(656\) 189.060 118.794i 0.288202 0.181089i
\(657\) −171.287 19.2994i −0.260710 0.0293750i
\(658\) −15.9497 69.8800i −0.0242396 0.106201i
\(659\) −606.273 380.946i −0.919989 0.578067i −0.0133205 0.999911i \(-0.504240\pi\)
−0.906668 + 0.421844i \(0.861383\pi\)
\(660\) 196.911 + 157.031i 0.298350 + 0.237926i
\(661\) 576.555 277.654i 0.872247 0.420052i 0.0564601 0.998405i \(-0.482019\pi\)
0.815787 + 0.578353i \(0.196304\pi\)
\(662\) −17.1667 8.26704i −0.0259316 0.0124880i
\(663\) 54.2070 + 67.9734i 0.0817601 + 0.102524i
\(664\) 30.0127 3.38162i 0.0451999 0.00509281i
\(665\) −38.3830 109.692i −0.0577188 0.164951i
\(666\) 278.376i 0.417982i
\(667\) 677.044 331.263i 1.01506 0.496646i
\(668\) 283.007 0.423663
\(669\) 423.814 148.299i 0.633503 0.221672i
\(670\) 7.06638 + 62.7158i 0.0105468 + 0.0936057i
\(671\) −315.828 + 251.864i −0.470682 + 0.375357i
\(672\) 23.6013 49.0086i 0.0351210 0.0729294i
\(673\) −434.835 902.944i −0.646115 1.34167i −0.924493 0.381199i \(-0.875511\pi\)
0.278378 0.960472i \(-0.410203\pi\)
\(674\) 497.089 623.329i 0.737520 0.924821i
\(675\) −201.647 + 320.919i −0.298736 + 0.475435i
\(676\) −319.232 + 72.8626i −0.472237 + 0.107785i
\(677\) −42.1922 + 374.466i −0.0623223 + 0.553126i 0.923290 + 0.384104i \(0.125489\pi\)
−0.985612 + 0.169022i \(0.945939\pi\)
\(678\) 332.815 + 529.671i 0.490877 + 0.781226i
\(679\) 52.8175 + 52.8175i 0.0777872 + 0.0777872i
\(680\) 67.1115 + 15.3178i 0.0986933 + 0.0225261i
\(681\) −139.323 + 398.161i −0.204585 + 0.584672i
\(682\) −585.993 205.048i −0.859227 0.300657i
\(683\) 29.0381 127.224i 0.0425156 0.186273i −0.949211 0.314640i \(-0.898116\pi\)
0.991727 + 0.128367i \(0.0409735\pi\)
\(684\) 95.7806 95.7806i 0.140030 0.140030i
\(685\) 164.017 103.059i 0.239441 0.150451i
\(686\) 345.094 + 38.8828i 0.503053 + 0.0566804i
\(687\) 57.4257 + 251.599i 0.0835891 + 0.366228i
\(688\) 192.258 + 120.804i 0.279445 + 0.175587i
\(689\) −69.6348 55.5319i −0.101067 0.0805979i
\(690\) 268.477 129.292i 0.389098 0.187380i
\(691\) 145.255 + 69.9511i 0.210210 + 0.101232i 0.536026 0.844201i \(-0.319925\pi\)
−0.325816 + 0.945433i \(0.605639\pi\)
\(692\) 75.6537 + 94.8668i 0.109326 + 0.137091i
\(693\) 150.690 16.9787i 0.217446 0.0245003i
\(694\) 71.4622 + 204.227i 0.102972 + 0.294276i
\(695\) 318.579i 0.458387i
\(696\) −263.152 124.712i −0.378092 0.179184i
\(697\) 594.948 0.853584
\(698\) −649.436 + 227.248i −0.930424 + 0.325570i
\(699\) 46.2329 + 410.328i 0.0661415 + 0.587022i
\(700\) 83.7955 66.8247i 0.119708 0.0954639i
\(701\) −163.094 + 338.669i −0.232660 + 0.483123i −0.984312 0.176437i \(-0.943543\pi\)
0.751652 + 0.659560i \(0.229257\pi\)
\(702\) 27.0069 + 56.0805i 0.0384714 + 0.0798867i
\(703\) −639.806 + 802.291i −0.910107 + 1.14124i
\(704\) −66.1142 + 105.220i −0.0939122 + 0.149460i
\(705\) −147.901 + 33.7574i −0.209789 + 0.0478829i
\(706\) 101.462 900.504i 0.143715 1.27550i
\(707\) 18.9561 + 30.1684i 0.0268120 + 0.0426710i
\(708\) −518.328 518.328i −0.732102 0.732102i
\(709\) −520.222 118.737i −0.733740 0.167471i −0.160705 0.987002i \(-0.551377\pi\)
−0.573035 + 0.819531i \(0.694234\pi\)
\(710\) 133.191 380.638i 0.187593 0.536110i
\(711\) −212.083 74.2112i −0.298289 0.104376i
\(712\) 32.1940 141.051i 0.0452163 0.198105i
\(713\) −519.398 + 519.398i −0.728469 + 0.728469i
\(714\) 122.723 77.1118i 0.171880 0.108000i
\(715\) 80.9861 + 9.12495i 0.113267 + 0.0127622i
\(716\) 105.336 + 461.508i 0.147118 + 0.644564i
\(717\) −113.632 71.3996i −0.158482 0.0995811i
\(718\) −341.651 272.457i −0.475837 0.379467i
\(719\) −579.600 + 279.120i −0.806119 + 0.388206i −0.791105 0.611681i \(-0.790494\pi\)
−0.0150144 + 0.999887i \(0.504779\pi\)
\(720\) −29.6619 14.2844i −0.0411971 0.0198395i
\(721\) −247.757 310.678i −0.343630 0.430898i
\(722\) −11.1395 + 1.25512i −0.0154287 + 0.00173840i
\(723\) −257.535 735.991i −0.356203 1.01797i
\(724\) 616.171i 0.851065i
\(725\) −360.539 446.364i −0.497295 0.615674i
\(726\) −603.940 −0.831873
\(727\) 913.087 319.503i 1.25597 0.439481i 0.381409 0.924406i \(-0.375439\pi\)
0.874556 + 0.484925i \(0.161153\pi\)
\(728\) −1.97077 17.4911i −0.00270710 0.0240262i
\(729\) −195.477 + 155.887i −0.268144 + 0.213837i
\(730\) −67.0069 + 139.141i −0.0917903 + 0.190605i
\(731\) 262.504 + 545.096i 0.359103 + 0.745686i
\(732\) 115.131 144.369i 0.157282 0.197226i
\(733\) 7.42301 11.8137i 0.0101269 0.0161169i −0.841622 0.540066i \(-0.818399\pi\)
0.851749 + 0.523950i \(0.175542\pi\)
\(734\) −338.892 + 77.3498i −0.461705 + 0.105381i
\(735\) 37.8183 335.646i 0.0514534 0.456662i
\(736\) 78.2233 + 124.492i 0.106282 + 0.169146i
\(737\) −214.662 214.662i −0.291264 0.291264i
\(738\) −277.406 63.3162i −0.375889 0.0857943i
\(739\) 227.281 649.532i 0.307552 0.878933i −0.681559 0.731763i \(-0.738698\pi\)
0.989111 0.147170i \(-0.0470166\pi\)
\(740\) 235.414 + 82.3751i 0.318128 + 0.111318i
\(741\) 34.1074 149.434i 0.0460289 0.201666i
\(742\) −104.992 + 104.992i −0.141498 + 0.141498i
\(743\) −417.535 + 262.355i −0.561958 + 0.353102i −0.782864 0.622193i \(-0.786242\pi\)
0.220905 + 0.975295i \(0.429099\pi\)
\(744\) 282.006 + 31.7745i 0.379041 + 0.0427076i
\(745\) 106.789 + 467.872i 0.143341 + 0.628016i
\(746\) −793.467 498.568i −1.06363 0.668322i
\(747\) −30.0915 23.9972i −0.0402831 0.0321247i
\(748\) −298.323 + 143.665i −0.398828 + 0.192065i
\(749\) −158.527 76.3426i −0.211652 0.101926i
\(750\) −320.142 401.446i −0.426856 0.535261i
\(751\) −799.783 + 90.1139i −1.06496 + 0.119992i −0.627012 0.779010i \(-0.715722\pi\)
−0.437945 + 0.899002i \(0.644294\pi\)
\(752\) −24.7218 70.6508i −0.0328747 0.0939506i
\(753\) 1022.60i 1.35804i
\(754\) −93.5717 + 11.1342i −0.124100 + 0.0147669i
\(755\) −121.067 −0.160353
\(756\) 97.9438 34.2720i 0.129555 0.0453334i
\(757\) −122.491 1087.14i −0.161811 1.43611i −0.767827 0.640657i \(-0.778662\pi\)
0.606016 0.795452i \(-0.292767\pi\)
\(758\) 65.7912 52.4668i 0.0867958 0.0692174i
\(759\) −621.905 + 1291.40i −0.819375 + 1.70145i
\(760\) −52.6562 109.342i −0.0692845 0.143871i
\(761\) 242.201 303.710i 0.318266 0.399093i −0.596804 0.802387i \(-0.703563\pi\)
0.915071 + 0.403293i \(0.132135\pi\)
\(762\) 459.210 730.829i 0.602638 0.959093i
\(763\) 396.038 90.3930i 0.519053 0.118470i
\(764\) 49.5024 439.346i 0.0647937 0.575060i
\(765\) −46.6710 74.2765i −0.0610079 0.0970935i
\(766\) −19.5280 19.5280i −0.0254935 0.0254935i
\(767\) −231.252 52.7819i −0.301503 0.0688160i
\(768\) 18.7612 53.6166i 0.0244287 0.0698132i
\(769\) 33.0267 + 11.5566i 0.0429476 + 0.0150280i 0.351667 0.936125i \(-0.385615\pi\)
−0.308720 + 0.951153i \(0.599901\pi\)
\(770\) 30.2328 132.458i 0.0392633 0.172024i
\(771\) 705.365 705.365i 0.914871 0.914871i
\(772\) −234.719 + 147.484i −0.304040 + 0.191041i
\(773\) 1128.42 + 127.143i 1.45980 + 0.164480i 0.805876 0.592084i \(-0.201695\pi\)
0.653920 + 0.756564i \(0.273123\pi\)
\(774\) −64.3871 282.098i −0.0831875 0.364468i
\(775\) 473.462 + 297.496i 0.610919 + 0.383866i
\(776\) 60.9852 + 48.6341i 0.0785892 + 0.0626728i
\(777\) 473.133 227.849i 0.608923 0.293242i
\(778\) −767.039 369.386i −0.985911 0.474790i
\(779\) −653.974 820.057i −0.839504 1.05270i
\(780\) −37.0198 + 4.17114i −0.0474613 + 0.00534761i
\(781\) 640.660 + 1830.90i 0.820308 + 2.34430i
\(782\) 391.759i 0.500971i
\(783\) −186.742 523.193i −0.238496 0.668190i
\(784\) 166.656 0.212572
\(785\) 432.783 151.437i 0.551315 0.192914i
\(786\) 140.682 + 1248.59i 0.178985 + 1.58854i
\(787\) −844.709 + 673.633i −1.07333 + 0.855950i −0.990070 0.140578i \(-0.955104\pi\)
−0.0832578 + 0.996528i \(0.526533\pi\)
\(788\) 58.6025 121.689i 0.0743686 0.154428i
\(789\) −425.367 883.285i −0.539122 1.11950i
\(790\) −125.517 + 157.393i −0.158882 + 0.199231i
\(791\) 179.537 285.731i 0.226974 0.361228i
\(792\) 154.388 35.2381i 0.194935 0.0444926i
\(793\) 6.69014 59.3767i 0.00843650 0.0748760i
\(794\) −67.1373 106.848i −0.0845557 0.134570i
\(795\) 222.215 + 222.215i 0.279516 + 0.279516i
\(796\) 244.742 + 55.8607i 0.307465 + 0.0701768i
\(797\) −282.632 + 807.715i −0.354620 + 1.01344i 0.619024 + 0.785372i \(0.287528\pi\)
−0.973644 + 0.228073i \(0.926758\pi\)
\(798\) −241.187 84.3948i −0.302239 0.105758i
\(799\) 44.3803 194.443i 0.0555448 0.243358i
\(800\) 79.1427 79.1427i 0.0989284 0.0989284i
\(801\) −156.110 + 98.0905i −0.194894 + 0.122460i
\(802\) −753.071 84.8507i −0.938991 0.105799i
\(803\) −165.299 724.222i −0.205852 0.901896i
\(804\) 117.499 + 73.8297i 0.146143 + 0.0918280i
\(805\) −125.679 100.225i −0.156123 0.124504i
\(806\) 82.7374 39.8442i 0.102652 0.0494345i
\(807\) 1307.51 + 629.664i 1.62021 + 0.780253i
\(808\) 23.1984 + 29.0899i 0.0287109 + 0.0360023i
\(809\) −143.830 + 16.2057i −0.177787 + 0.0200318i −0.200409 0.979712i \(-0.564227\pi\)
0.0226222 + 0.999744i \(0.492799\pi\)
\(810\) −107.136 306.177i −0.132267 0.377996i
\(811\) 999.043i 1.23187i 0.787799 + 0.615933i \(0.211221\pi\)
−0.787799 + 0.615933i \(0.788779\pi\)
\(812\) 0.979396 + 157.089i 0.00120615 + 0.193460i
\(813\) 1042.44 1.28221
\(814\) −1132.36 + 396.232i −1.39111 + 0.486771i
\(815\) 54.9044 + 487.290i 0.0673674 + 0.597902i
\(816\) 118.335 94.3693i 0.145019 0.115649i
\(817\) 462.795 961.004i 0.566456 1.17626i
\(818\) 475.155 + 986.670i 0.580874 + 1.20620i
\(819\) −13.9853 + 17.5370i −0.0170760 + 0.0214127i
\(820\) −135.633 + 215.858i −0.165406 + 0.263242i
\(821\) −651.111 + 148.612i −0.793070 + 0.181013i −0.599818 0.800136i \(-0.704761\pi\)
−0.193252 + 0.981149i \(0.561903\pi\)
\(822\) 47.6874 423.238i 0.0580139 0.514888i
\(823\) −517.138 823.021i −0.628358 1.00003i −0.997501 0.0706529i \(-0.977492\pi\)
0.369143 0.929372i \(-0.379651\pi\)
\(824\) −293.427 293.427i −0.356101 0.356101i
\(825\) 1063.78 + 242.800i 1.28943 + 0.294304i
\(826\) −130.603 + 373.241i −0.158115 + 0.451865i
\(827\) 149.197 + 52.2063i 0.180407 + 0.0631273i 0.418971 0.908000i \(-0.362391\pi\)
−0.238564 + 0.971127i \(0.576677\pi\)
\(828\) 41.6922 182.665i 0.0503529 0.220610i
\(829\) 293.612 293.612i 0.354176 0.354176i −0.507485 0.861661i \(-0.669425\pi\)
0.861661 + 0.507485i \(0.169425\pi\)
\(830\) −29.1982 + 18.3464i −0.0351785 + 0.0221041i
\(831\) −31.4869 3.54772i −0.0378903 0.00426922i
\(832\) −4.09021 17.9204i −0.00491612 0.0215389i
\(833\) 375.997 + 236.255i 0.451377 + 0.283619i
\(834\) 547.655 + 436.740i 0.656660 + 0.523669i
\(835\) −291.122 + 140.197i −0.348650 + 0.167901i
\(836\) 525.943 + 253.281i 0.629119 + 0.302968i
\(837\) 337.539 + 423.260i 0.403272 + 0.505687i
\(838\) 799.791 90.1148i 0.954404 0.107536i
\(839\) −359.707 1027.98i −0.428733 1.22525i −0.932424 0.361365i \(-0.882311\pi\)
0.503691 0.863884i \(-0.331975\pi\)
\(840\) 62.1056i 0.0739353i
\(841\) 840.935 10.4863i 0.999922 0.0124688i
\(842\) −967.313 −1.14883
\(843\) −541.449 + 189.461i −0.642288 + 0.224746i
\(844\) 70.4451 + 625.218i 0.0834658 + 0.740779i
\(845\) 292.291 233.094i 0.345907 0.275851i
\(846\) −41.3864 + 85.9398i −0.0489201 + 0.101584i
\(847\) 141.357 + 293.531i 0.166892 + 0.346554i
\(848\) −96.6759 + 121.228i −0.114005 + 0.142957i
\(849\) −211.636 + 336.816i −0.249276 + 0.396721i
\(850\) 290.750 66.3617i 0.342058 0.0780726i
\(851\) −158.924 + 1410.49i −0.186750 + 1.65745i
\(852\) −471.746 750.780i −0.553693 0.881197i
\(853\) 1090.21 + 1090.21i 1.27809 + 1.27809i 0.941733 + 0.336361i \(0.109196\pi\)
0.336361 + 0.941733i \(0.390804\pi\)
\(854\) −97.1146 22.1658i −0.113717 0.0259552i
\(855\) −51.0790 + 145.975i −0.0597415 + 0.170732i
\(856\) −173.432 60.6866i −0.202608 0.0708956i
\(857\) −181.311 + 794.377i −0.211565 + 0.926927i 0.751939 + 0.659233i \(0.229119\pi\)
−0.963504 + 0.267694i \(0.913738\pi\)
\(858\) 126.710 126.710i 0.147681 0.147681i
\(859\) 819.881 515.165i 0.954459 0.599727i 0.0377526 0.999287i \(-0.487980\pi\)
0.916707 + 0.399561i \(0.130837\pi\)
\(860\) −257.616 29.0263i −0.299553 0.0337515i
\(861\) 119.442 + 523.309i 0.138725 + 0.607792i
\(862\) 754.656 + 474.182i 0.875471 + 0.550095i
\(863\) −638.298 509.026i −0.739627 0.589833i 0.179517 0.983755i \(-0.442547\pi\)
−0.919144 + 0.393922i \(0.871118\pi\)
\(864\) 97.6308 47.0165i 0.112999 0.0544173i
\(865\) −124.819 60.1095i −0.144299 0.0694907i
\(866\) 479.204 + 600.903i 0.553353 + 0.693883i
\(867\) −618.817 + 69.7239i −0.713745 + 0.0804197i
\(868\) −50.5627 144.500i −0.0582519 0.166474i
\(869\) 968.333i 1.11431i
\(870\) 332.479 2.07289i 0.382160 0.00238263i
\(871\) 44.9042 0.0515548
\(872\) 400.406 140.108i 0.459181 0.160674i
\(873\) −11.1295 98.7773i −0.0127486 0.113147i
\(874\) 539.988 430.626i 0.617835 0.492707i
\(875\) −120.182 + 249.560i −0.137350 + 0.285211i
\(876\) 147.332 + 305.938i 0.168187 + 0.349244i
\(877\) −278.658 + 349.426i −0.317740 + 0.398433i −0.914894 0.403693i \(-0.867726\pi\)
0.597155 + 0.802126i \(0.296298\pi\)
\(878\) −293.917 + 467.766i −0.334757 + 0.532763i
\(879\) −849.251 + 193.836i −0.966156 + 0.220519i
\(880\) 15.8857 140.989i 0.0180519 0.160215i
\(881\) 242.681 + 386.225i 0.275461 + 0.438393i 0.955590 0.294699i \(-0.0952193\pi\)
−0.680129 + 0.733092i \(0.738076\pi\)
\(882\) −150.173 150.173i −0.170264 0.170264i
\(883\) −1548.91 353.528i −1.75414 0.400371i −0.779904 0.625900i \(-0.784732\pi\)
−0.974237 + 0.225528i \(0.927589\pi\)
\(884\) 16.1762 46.2289i 0.0182989 0.0522951i
\(885\) 789.963 + 276.420i 0.892614 + 0.312339i
\(886\) −16.9577 + 74.2967i −0.0191397 + 0.0838563i
\(887\) 1087.51 1087.51i 1.22605 1.22605i 0.260603 0.965446i \(-0.416079\pi\)
0.965446 0.260603i \(-0.0839215\pi\)
\(888\) 464.338 291.763i 0.522903 0.328562i
\(889\) −462.685 52.1320i −0.520455 0.0586412i
\(890\) 36.7573 + 161.044i 0.0413003 + 0.180948i
\(891\) 1321.14 + 830.128i 1.48276 + 0.931682i
\(892\) −197.760 157.709i −0.221704 0.176803i
\(893\) −316.797 + 152.561i −0.354756 + 0.170842i
\(894\) 950.695 + 457.831i 1.06342 + 0.512115i
\(895\) −336.981 422.560i −0.376515 0.472134i
\(896\) −30.4503 + 3.43093i −0.0339848 + 0.00382916i
\(897\) −70.0245 200.118i −0.0780652 0.223097i
\(898\) 791.146i 0.881009i
\(899\) −771.883 + 275.507i −0.858602 + 0.306460i
\(900\) −142.630 −0.158478
\(901\) −389.967 + 136.455i −0.432815 + 0.151449i
\(902\) −137.297 1218.54i −0.152214 1.35093i
\(903\) −426.760 + 340.329i −0.472602 + 0.376887i
\(904\) 152.900 317.500i 0.169137 0.351217i
\(905\) −305.241 633.840i −0.337283 0.700376i
\(906\) −165.970 + 208.120i −0.183190 + 0.229713i
\(907\) 868.698 1382.53i 0.957771 1.52428i 0.109993 0.993932i \(-0.464917\pi\)
0.847778 0.530351i \(-0.177940\pi\)
\(908\) 231.677 52.8787i 0.255151 0.0582365i
\(909\) 5.30878 47.1167i 0.00584024 0.0518336i
\(910\) 10.6921 + 17.0164i 0.0117496 + 0.0186993i
\(911\) 105.220 + 105.220i 0.115500 + 0.115500i 0.762495 0.646995i \(-0.223974\pi\)
−0.646995 + 0.762495i \(0.723974\pi\)
\(912\) −260.151 59.3778i −0.285253 0.0651072i
\(913\) 54.7833 156.562i 0.0600036 0.171480i
\(914\) −148.833 52.0789i −0.162837 0.0569791i
\(915\) −46.9138 + 205.543i −0.0512719 + 0.224637i
\(916\) 102.799 102.799i 0.112226 0.112226i
\(917\) 573.921 360.618i 0.625868 0.393259i
\(918\) 286.918 + 32.3279i 0.312547 + 0.0352156i
\(919\) 27.2271 + 119.290i 0.0296268 + 0.129804i 0.987579 0.157125i \(-0.0502227\pi\)
−0.957952 + 0.286929i \(0.907366\pi\)
\(920\) −142.138 89.3110i −0.154497 0.0970772i
\(921\) −226.010 180.237i −0.245396 0.195697i
\(922\) −211.398 + 101.804i −0.229282 + 0.110416i
\(923\) −258.508 124.491i −0.280074 0.134877i
\(924\) −186.257 233.559i −0.201577 0.252770i
\(925\) 1073.74 120.981i 1.16080 0.130790i
\(926\) 67.5885 + 193.157i 0.0729897 + 0.208593i
\(927\) 528.811i 0.570454i
\(928\) 19.3836 + 162.900i 0.0208875 + 0.175538i
\(929\) −986.910 −1.06234 −0.531168 0.847267i \(-0.678247\pi\)
−0.531168 + 0.847267i \(0.678247\pi\)
\(930\) −305.833 + 107.016i −0.328853 + 0.115071i
\(931\) −87.6546 777.956i −0.0941510 0.835613i
\(932\) 181.867 145.034i 0.195136 0.155616i
\(933\) −235.455 + 488.927i −0.252363 + 0.524037i
\(934\) 329.257 + 683.710i 0.352524 + 0.732023i
\(935\) 235.709 295.569i 0.252095 0.316117i
\(936\) −12.4623 + 19.8336i −0.0133144 + 0.0211898i
\(937\) 176.504 40.2860i 0.188372 0.0429947i −0.127294 0.991865i \(-0.540629\pi\)
0.315666 + 0.948870i \(0.397772\pi\)
\(938\) 8.38156 74.3884i 0.00893556 0.0793053i
\(939\) −602.838 959.411i −0.642000 1.02174i
\(940\) 60.4300 + 60.4300i 0.0642873 + 0.0642873i
\(941\) −1253.36 286.072i −1.33195 0.304009i −0.503463 0.864017i \(-0.667941\pi\)
−0.828487 + 0.560008i \(0.810798\pi\)
\(942\) 332.973 951.583i 0.353475 1.01017i
\(943\) −1369.43 479.185i −1.45221 0.508149i
\(944\) −91.8883 + 402.589i −0.0973393 + 0.426471i
\(945\) −83.7746 + 83.7746i −0.0886504 + 0.0886504i
\(946\) 1055.86 663.441i 1.11613 0.701312i
\(947\) 393.405 + 44.3261i 0.415423 + 0.0468069i 0.317202 0.948358i \(-0.397257\pi\)
0.0982201 + 0.995165i \(0.468685\pi\)
\(948\) 98.4962 + 431.540i 0.103899 + 0.455211i
\(949\) 93.0378 + 58.4595i 0.0980377 + 0.0616012i
\(950\) −411.066 327.814i −0.432701 0.345068i
\(951\) −580.158 + 279.389i −0.610050 + 0.293785i
\(952\) −73.5634 35.4263i −0.0772725 0.0372125i
\(953\) 77.4997 + 97.1815i 0.0813218 + 0.101974i 0.820828 0.571175i \(-0.193512\pi\)
−0.739506 + 0.673150i \(0.764941\pi\)
\(954\) 196.352 22.1235i 0.205819 0.0231903i
\(955\) 166.723 + 476.467i 0.174579 + 0.498918i
\(956\) 75.6010i 0.0790805i
\(957\) −1244.13 + 1004.91i −1.30003 + 1.05007i
\(958\) −0.478589 −0.000499571
\(959\) −216.867 + 75.8850i −0.226138 + 0.0791293i
\(960\) 7.26156 + 64.4481i 0.00756412 + 0.0671334i
\(961\) −126.890 + 101.191i −0.132040 + 0.105298i
\(962\) 76.9944 159.881i 0.0800358 0.166196i
\(963\) 101.595 + 210.963i 0.105498 + 0.219069i
\(964\) −273.875 + 343.429i −0.284103 + 0.356254i
\(965\) 168.388 267.989i 0.174496 0.277709i
\(966\) −344.586 + 78.6496i −0.356715 + 0.0814178i
\(967\) −19.1857 + 170.278i −0.0198404 + 0.176089i −0.999724 0.0234798i \(-0.992525\pi\)
0.979884 + 0.199568i \(0.0639540\pi\)
\(968\) 181.009 + 288.075i 0.186993 + 0.297598i
\(969\) −502.758 502.758i −0.518842 0.518842i
\(970\) −86.8266 19.8176i −0.0895119 0.0204305i
\(971\) −481.749 + 1376.76i −0.496137 + 1.41788i 0.375085 + 0.926990i \(0.377613\pi\)
−0.871223 + 0.490888i \(0.836672\pi\)
\(972\) −347.752 121.684i −0.357770 0.125189i
\(973\) 84.0844 368.398i 0.0864177 0.378621i
\(974\) 381.045 381.045i 0.391216 0.391216i
\(975\) −136.659 + 85.8686i −0.140163 + 0.0880703i
\(976\) −103.369 11.6469i −0.105911 0.0119333i
\(977\) 91.9511 + 402.864i 0.0941158 + 0.412348i 0.999936 0.0113141i \(-0.00360145\pi\)
−0.905820 + 0.423662i \(0.860744\pi\)
\(978\) 912.948 + 573.643i 0.933485 + 0.586547i
\(979\) −621.210 495.399i −0.634536 0.506025i
\(980\) −171.435 + 82.5589i −0.174934 + 0.0842438i
\(981\) −487.054 234.553i −0.496487 0.239096i
\(982\) −394.047 494.119i −0.401269 0.503176i
\(983\) 423.722 47.7420i 0.431050 0.0485676i 0.106225 0.994342i \(-0.466123\pi\)
0.324824 + 0.945774i \(0.394695\pi\)
\(984\) 185.134 + 529.081i 0.188144 + 0.537684i
\(985\) 154.210i 0.156558i
\(986\) −187.197 + 395.000i −0.189855 + 0.400608i
\(987\) 179.939 0.182309
\(988\) −81.5015 + 28.5186i −0.0824914 + 0.0288650i
\(989\) −165.191 1466.11i −0.167028 1.48242i
\(990\) −141.359 + 112.730i −0.142787 + 0.113869i
\(991\) −359.363 + 746.226i −0.362627 + 0.753003i −0.999844 0.0176819i \(-0.994371\pi\)
0.637217 + 0.770685i \(0.280086\pi\)
\(992\) −69.3650 144.038i −0.0699244 0.145200i
\(993\) 29.8230 37.3969i 0.0300333 0.0376605i
\(994\) −254.483 + 405.008i −0.256020 + 0.407453i
\(995\) −279.432 + 63.7786i −0.280837 + 0.0640991i
\(996\) −8.48928 + 75.3445i −0.00852338 + 0.0756471i
\(997\) −594.026 945.387i −0.595813 0.948232i −0.999445 0.0333101i \(-0.989395\pi\)
0.403632 0.914922i \(-0.367748\pi\)
\(998\) −75.3327 75.3327i −0.0754837 0.0754837i
\(999\) 1019.91 + 232.787i 1.02093 + 0.233020i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 58.3.f.b.11.3 36
29.8 odd 28 inner 58.3.f.b.37.3 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.3.f.b.11.3 36 1.1 even 1 trivial
58.3.f.b.37.3 yes 36 29.8 odd 28 inner