Properties

Label 5808.2.a.br
Level $5808$
Weight $2$
Character orbit 5808.a
Self dual yes
Analytic conductor $46.377$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5808,2,Mod(1,5808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5808 = 2^{4} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.3771134940\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 264)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + (3 \beta - 1) q^{5} - 3 \beta q^{7} + q^{9} + ( - 2 \beta + 2) q^{13} + ( - 3 \beta + 1) q^{15} - 4 q^{17} + (2 \beta + 2) q^{19} + 3 \beta q^{21} + (2 \beta - 6) q^{23} + (3 \beta + 5) q^{25} + \cdots + ( - 15 \beta + 7) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + q^{5} - 3 q^{7} + 2 q^{9} + 2 q^{13} - q^{15} - 8 q^{17} + 6 q^{19} + 3 q^{21} - 10 q^{23} + 13 q^{25} - 2 q^{27} + 3 q^{29} + 5 q^{31} - 24 q^{35} - 8 q^{37} - 2 q^{39} + 10 q^{41} + 6 q^{43}+ \cdots - q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
0 −1.00000 0 −2.85410 0 1.85410 0 1.00000 0
1.2 0 −1.00000 0 3.85410 0 −4.85410 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5808.2.a.br 2
4.b odd 2 1 2904.2.a.w 2
11.b odd 2 1 5808.2.a.bs 2
11.c even 5 2 528.2.y.e 4
12.b even 2 1 8712.2.a.bg 2
44.c even 2 1 2904.2.a.v 2
44.h odd 10 2 264.2.q.a 4
132.d odd 2 1 8712.2.a.bf 2
132.o even 10 2 792.2.r.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
264.2.q.a 4 44.h odd 10 2
528.2.y.e 4 11.c even 5 2
792.2.r.e 4 132.o even 10 2
2904.2.a.v 2 44.c even 2 1
2904.2.a.w 2 4.b odd 2 1
5808.2.a.br 2 1.a even 1 1 trivial
5808.2.a.bs 2 11.b odd 2 1
8712.2.a.bf 2 132.d odd 2 1
8712.2.a.bg 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5808))\):

\( T_{5}^{2} - T_{5} - 11 \) Copy content Toggle raw display
\( T_{7}^{2} + 3T_{7} - 9 \) Copy content Toggle raw display
\( T_{13}^{2} - 2T_{13} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - T - 11 \) Copy content Toggle raw display
$7$ \( T^{2} + 3T - 9 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$17$ \( (T + 4)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$23$ \( T^{2} + 10T + 20 \) Copy content Toggle raw display
$29$ \( T^{2} - 3T + 1 \) Copy content Toggle raw display
$31$ \( T^{2} - 5T - 5 \) Copy content Toggle raw display
$37$ \( (T + 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 10T + 20 \) Copy content Toggle raw display
$43$ \( T^{2} - 6T - 36 \) Copy content Toggle raw display
$47$ \( T^{2} - 80 \) Copy content Toggle raw display
$53$ \( T^{2} - 17T + 61 \) Copy content Toggle raw display
$59$ \( T^{2} + 13T + 41 \) Copy content Toggle raw display
$61$ \( T^{2} - 6T - 116 \) Copy content Toggle raw display
$67$ \( (T + 8)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 4T - 76 \) Copy content Toggle raw display
$73$ \( T^{2} + 31T + 239 \) Copy content Toggle raw display
$79$ \( T^{2} - 3T + 1 \) Copy content Toggle raw display
$83$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$89$ \( T^{2} - 18T + 76 \) Copy content Toggle raw display
$97$ \( T^{2} + T - 281 \) Copy content Toggle raw display
show more
show less