Properties

Label 585.2.bu.a.316.1
Level $585$
Weight $2$
Character 585.316
Analytic conductor $4.671$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(316,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.316");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.bu (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 316.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 585.316
Dual form 585.2.bu.a.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.633975 + 0.366025i) q^{2} +(-0.732051 - 1.26795i) q^{4} +1.00000i q^{5} +(-3.86603 + 2.23205i) q^{7} -2.53590i q^{8} +(-0.366025 + 0.633975i) q^{10} +(3.00000 + 1.73205i) q^{11} +(0.866025 + 3.50000i) q^{13} -3.26795 q^{14} +(-0.535898 + 0.928203i) q^{16} +(3.36603 + 5.83013i) q^{17} +(-4.73205 + 2.73205i) q^{19} +(1.26795 - 0.732051i) q^{20} +(1.26795 + 2.19615i) q^{22} +(0.267949 - 0.464102i) q^{23} -1.00000 q^{25} +(-0.732051 + 2.53590i) q^{26} +(5.66025 + 3.26795i) q^{28} +(-1.36603 + 2.36603i) q^{29} -3.19615i q^{31} +(-5.07180 + 2.92820i) q^{32} +4.92820i q^{34} +(-2.23205 - 3.86603i) q^{35} +(3.46410 + 2.00000i) q^{37} -4.00000 q^{38} +2.53590 q^{40} +(-4.56218 - 2.63397i) q^{41} +(-0.133975 - 0.232051i) q^{43} -5.07180i q^{44} +(0.339746 - 0.196152i) q^{46} -0.196152i q^{47} +(6.46410 - 11.1962i) q^{49} +(-0.633975 - 0.366025i) q^{50} +(3.80385 - 3.66025i) q^{52} +6.92820 q^{53} +(-1.73205 + 3.00000i) q^{55} +(5.66025 + 9.80385i) q^{56} +(-1.73205 + 1.00000i) q^{58} +(-6.29423 + 3.63397i) q^{59} +(-2.23205 - 3.86603i) q^{61} +(1.16987 - 2.02628i) q^{62} -2.14359 q^{64} +(-3.50000 + 0.866025i) q^{65} +(-10.7942 - 6.23205i) q^{67} +(4.92820 - 8.53590i) q^{68} -3.26795i q^{70} +(11.0263 - 6.36603i) q^{71} +15.3923i q^{73} +(1.46410 + 2.53590i) q^{74} +(6.92820 + 4.00000i) q^{76} -15.4641 q^{77} +1.92820 q^{79} +(-0.928203 - 0.535898i) q^{80} +(-1.92820 - 3.33975i) q^{82} +2.53590i q^{83} +(-5.83013 + 3.36603i) q^{85} -0.196152i q^{86} +(4.39230 - 7.60770i) q^{88} +(1.09808 + 0.633975i) q^{89} +(-11.1603 - 11.5981i) q^{91} -0.784610 q^{92} +(0.0717968 - 0.124356i) q^{94} +(-2.73205 - 4.73205i) q^{95} +(-14.2583 + 8.23205i) q^{97} +(8.19615 - 4.73205i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{2} + 4 q^{4} - 12 q^{7} + 2 q^{10} + 12 q^{11} - 20 q^{14} - 16 q^{16} + 10 q^{17} - 12 q^{19} + 12 q^{20} + 12 q^{22} + 8 q^{23} - 4 q^{25} + 4 q^{26} - 12 q^{28} - 2 q^{29} - 48 q^{32} - 2 q^{35}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.633975 + 0.366025i 0.448288 + 0.258819i 0.707107 0.707107i \(-0.250000\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(3\) 0 0
\(4\) −0.732051 1.26795i −0.366025 0.633975i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) −3.86603 + 2.23205i −1.46122 + 0.843636i −0.999068 0.0431647i \(-0.986256\pi\)
−0.462152 + 0.886801i \(0.652923\pi\)
\(8\) 2.53590i 0.896575i
\(9\) 0 0
\(10\) −0.366025 + 0.633975i −0.115747 + 0.200480i
\(11\) 3.00000 + 1.73205i 0.904534 + 0.522233i 0.878668 0.477432i \(-0.158432\pi\)
0.0258656 + 0.999665i \(0.491766\pi\)
\(12\) 0 0
\(13\) 0.866025 + 3.50000i 0.240192 + 0.970725i
\(14\) −3.26795 −0.873396
\(15\) 0 0
\(16\) −0.535898 + 0.928203i −0.133975 + 0.232051i
\(17\) 3.36603 + 5.83013i 0.816381 + 1.41401i 0.908332 + 0.418250i \(0.137356\pi\)
−0.0919509 + 0.995764i \(0.529310\pi\)
\(18\) 0 0
\(19\) −4.73205 + 2.73205i −1.08561 + 0.626775i −0.932403 0.361419i \(-0.882292\pi\)
−0.153203 + 0.988195i \(0.548959\pi\)
\(20\) 1.26795 0.732051i 0.283522 0.163692i
\(21\) 0 0
\(22\) 1.26795 + 2.19615i 0.270328 + 0.468221i
\(23\) 0.267949 0.464102i 0.0558713 0.0967719i −0.836737 0.547605i \(-0.815540\pi\)
0.892608 + 0.450833i \(0.148873\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −0.732051 + 2.53590i −0.143567 + 0.497331i
\(27\) 0 0
\(28\) 5.66025 + 3.26795i 1.06969 + 0.617584i
\(29\) −1.36603 + 2.36603i −0.253665 + 0.439360i −0.964532 0.263966i \(-0.914969\pi\)
0.710867 + 0.703326i \(0.248303\pi\)
\(30\) 0 0
\(31\) 3.19615i 0.574046i −0.957924 0.287023i \(-0.907334\pi\)
0.957924 0.287023i \(-0.0926656\pi\)
\(32\) −5.07180 + 2.92820i −0.896575 + 0.517638i
\(33\) 0 0
\(34\) 4.92820i 0.845180i
\(35\) −2.23205 3.86603i −0.377285 0.653478i
\(36\) 0 0
\(37\) 3.46410 + 2.00000i 0.569495 + 0.328798i 0.756948 0.653476i \(-0.226690\pi\)
−0.187453 + 0.982274i \(0.560023\pi\)
\(38\) −4.00000 −0.648886
\(39\) 0 0
\(40\) 2.53590 0.400961
\(41\) −4.56218 2.63397i −0.712492 0.411358i 0.0994908 0.995038i \(-0.468279\pi\)
−0.811983 + 0.583681i \(0.801612\pi\)
\(42\) 0 0
\(43\) −0.133975 0.232051i −0.0204309 0.0353874i 0.855629 0.517589i \(-0.173170\pi\)
−0.876060 + 0.482202i \(0.839837\pi\)
\(44\) 5.07180i 0.764602i
\(45\) 0 0
\(46\) 0.339746 0.196152i 0.0500928 0.0289211i
\(47\) 0.196152i 0.0286118i −0.999898 0.0143059i \(-0.995446\pi\)
0.999898 0.0143059i \(-0.00455386\pi\)
\(48\) 0 0
\(49\) 6.46410 11.1962i 0.923443 1.59945i
\(50\) −0.633975 0.366025i −0.0896575 0.0517638i
\(51\) 0 0
\(52\) 3.80385 3.66025i 0.527499 0.507586i
\(53\) 6.92820 0.951662 0.475831 0.879537i \(-0.342147\pi\)
0.475831 + 0.879537i \(0.342147\pi\)
\(54\) 0 0
\(55\) −1.73205 + 3.00000i −0.233550 + 0.404520i
\(56\) 5.66025 + 9.80385i 0.756383 + 1.31009i
\(57\) 0 0
\(58\) −1.73205 + 1.00000i −0.227429 + 0.131306i
\(59\) −6.29423 + 3.63397i −0.819439 + 0.473103i −0.850223 0.526423i \(-0.823533\pi\)
0.0307841 + 0.999526i \(0.490200\pi\)
\(60\) 0 0
\(61\) −2.23205 3.86603i −0.285785 0.494994i 0.687014 0.726644i \(-0.258921\pi\)
−0.972799 + 0.231650i \(0.925588\pi\)
\(62\) 1.16987 2.02628i 0.148574 0.257338i
\(63\) 0 0
\(64\) −2.14359 −0.267949
\(65\) −3.50000 + 0.866025i −0.434122 + 0.107417i
\(66\) 0 0
\(67\) −10.7942 6.23205i −1.31872 0.761366i −0.335201 0.942146i \(-0.608804\pi\)
−0.983524 + 0.180780i \(0.942138\pi\)
\(68\) 4.92820 8.53590i 0.597632 1.03513i
\(69\) 0 0
\(70\) 3.26795i 0.390595i
\(71\) 11.0263 6.36603i 1.30858 0.755508i 0.326720 0.945121i \(-0.394057\pi\)
0.981859 + 0.189613i \(0.0607234\pi\)
\(72\) 0 0
\(73\) 15.3923i 1.80153i 0.434304 + 0.900767i \(0.356994\pi\)
−0.434304 + 0.900767i \(0.643006\pi\)
\(74\) 1.46410 + 2.53590i 0.170198 + 0.294792i
\(75\) 0 0
\(76\) 6.92820 + 4.00000i 0.794719 + 0.458831i
\(77\) −15.4641 −1.76230
\(78\) 0 0
\(79\) 1.92820 0.216940 0.108470 0.994100i \(-0.465405\pi\)
0.108470 + 0.994100i \(0.465405\pi\)
\(80\) −0.928203 0.535898i −0.103776 0.0599153i
\(81\) 0 0
\(82\) −1.92820 3.33975i −0.212934 0.368813i
\(83\) 2.53590i 0.278351i 0.990268 + 0.139176i \(0.0444452\pi\)
−0.990268 + 0.139176i \(0.955555\pi\)
\(84\) 0 0
\(85\) −5.83013 + 3.36603i −0.632366 + 0.365097i
\(86\) 0.196152i 0.0211517i
\(87\) 0 0
\(88\) 4.39230 7.60770i 0.468221 0.810983i
\(89\) 1.09808 + 0.633975i 0.116396 + 0.0672012i 0.557068 0.830467i \(-0.311926\pi\)
−0.440672 + 0.897668i \(0.645260\pi\)
\(90\) 0 0
\(91\) −11.1603 11.5981i −1.16991 1.21581i
\(92\) −0.784610 −0.0818012
\(93\) 0 0
\(94\) 0.0717968 0.124356i 0.00740527 0.0128263i
\(95\) −2.73205 4.73205i −0.280302 0.485498i
\(96\) 0 0
\(97\) −14.2583 + 8.23205i −1.44771 + 0.835838i −0.998345 0.0575081i \(-0.981685\pi\)
−0.449369 + 0.893346i \(0.648351\pi\)
\(98\) 8.19615 4.73205i 0.827936 0.478009i
\(99\) 0 0
\(100\) 0.732051 + 1.26795i 0.0732051 + 0.126795i
\(101\) 2.46410 4.26795i 0.245187 0.424677i −0.716997 0.697076i \(-0.754484\pi\)
0.962184 + 0.272399i \(0.0878172\pi\)
\(102\) 0 0
\(103\) 3.19615 0.314926 0.157463 0.987525i \(-0.449668\pi\)
0.157463 + 0.987525i \(0.449668\pi\)
\(104\) 8.87564 2.19615i 0.870329 0.215350i
\(105\) 0 0
\(106\) 4.39230 + 2.53590i 0.426618 + 0.246308i
\(107\) 8.56218 14.8301i 0.827737 1.43368i −0.0720725 0.997399i \(-0.522961\pi\)
0.899809 0.436283i \(-0.143705\pi\)
\(108\) 0 0
\(109\) 8.26795i 0.791926i −0.918266 0.395963i \(-0.870411\pi\)
0.918266 0.395963i \(-0.129589\pi\)
\(110\) −2.19615 + 1.26795i −0.209395 + 0.120894i
\(111\) 0 0
\(112\) 4.78461i 0.452103i
\(113\) 9.73205 + 16.8564i 0.915514 + 1.58572i 0.806147 + 0.591716i \(0.201549\pi\)
0.109368 + 0.994001i \(0.465117\pi\)
\(114\) 0 0
\(115\) 0.464102 + 0.267949i 0.0432777 + 0.0249864i
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) −5.32051 −0.489792
\(119\) −26.0263 15.0263i −2.38583 1.37746i
\(120\) 0 0
\(121\) 0.500000 + 0.866025i 0.0454545 + 0.0787296i
\(122\) 3.26795i 0.295866i
\(123\) 0 0
\(124\) −4.05256 + 2.33975i −0.363931 + 0.210115i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 7.33013 12.6962i 0.650444 1.12660i −0.332572 0.943078i \(-0.607916\pi\)
0.983015 0.183523i \(-0.0587503\pi\)
\(128\) 8.78461 + 5.07180i 0.776457 + 0.448288i
\(129\) 0 0
\(130\) −2.53590 0.732051i −0.222413 0.0642051i
\(131\) −1.26795 −0.110781 −0.0553906 0.998465i \(-0.517640\pi\)
−0.0553906 + 0.998465i \(0.517640\pi\)
\(132\) 0 0
\(133\) 12.1962 21.1244i 1.05754 1.83171i
\(134\) −4.56218 7.90192i −0.394112 0.682622i
\(135\) 0 0
\(136\) 14.7846 8.53590i 1.26777 0.731947i
\(137\) 7.90192 4.56218i 0.675107 0.389773i −0.122902 0.992419i \(-0.539220\pi\)
0.798009 + 0.602646i \(0.205887\pi\)
\(138\) 0 0
\(139\) 8.96410 + 15.5263i 0.760325 + 1.31692i 0.942683 + 0.333690i \(0.108294\pi\)
−0.182358 + 0.983232i \(0.558373\pi\)
\(140\) −3.26795 + 5.66025i −0.276192 + 0.478379i
\(141\) 0 0
\(142\) 9.32051 0.782160
\(143\) −3.46410 + 12.0000i −0.289683 + 1.00349i
\(144\) 0 0
\(145\) −2.36603 1.36603i −0.196488 0.113442i
\(146\) −5.63397 + 9.75833i −0.466271 + 0.807605i
\(147\) 0 0
\(148\) 5.85641i 0.481394i
\(149\) 3.46410 2.00000i 0.283790 0.163846i −0.351348 0.936245i \(-0.614277\pi\)
0.635138 + 0.772399i \(0.280943\pi\)
\(150\) 0 0
\(151\) 17.8564i 1.45313i 0.687096 + 0.726567i \(0.258885\pi\)
−0.687096 + 0.726567i \(0.741115\pi\)
\(152\) 6.92820 + 12.0000i 0.561951 + 0.973329i
\(153\) 0 0
\(154\) −9.80385 5.66025i −0.790017 0.456116i
\(155\) 3.19615 0.256721
\(156\) 0 0
\(157\) 9.73205 0.776702 0.388351 0.921511i \(-0.373045\pi\)
0.388351 + 0.921511i \(0.373045\pi\)
\(158\) 1.22243 + 0.705771i 0.0972515 + 0.0561482i
\(159\) 0 0
\(160\) −2.92820 5.07180i −0.231495 0.400961i
\(161\) 2.39230i 0.188540i
\(162\) 0 0
\(163\) 4.79423 2.76795i 0.375513 0.216803i −0.300351 0.953829i \(-0.597104\pi\)
0.675864 + 0.737026i \(0.263771\pi\)
\(164\) 7.71281i 0.602270i
\(165\) 0 0
\(166\) −0.928203 + 1.60770i −0.0720425 + 0.124781i
\(167\) 15.1244 + 8.73205i 1.17036 + 0.675706i 0.953764 0.300556i \(-0.0971721\pi\)
0.216593 + 0.976262i \(0.430505\pi\)
\(168\) 0 0
\(169\) −11.5000 + 6.06218i −0.884615 + 0.466321i
\(170\) −4.92820 −0.377976
\(171\) 0 0
\(172\) −0.196152 + 0.339746i −0.0149565 + 0.0259054i
\(173\) −1.63397 2.83013i −0.124229 0.215171i 0.797202 0.603712i \(-0.206312\pi\)
−0.921431 + 0.388542i \(0.872979\pi\)
\(174\) 0 0
\(175\) 3.86603 2.23205i 0.292244 0.168727i
\(176\) −3.21539 + 1.85641i −0.242369 + 0.139932i
\(177\) 0 0
\(178\) 0.464102 + 0.803848i 0.0347859 + 0.0602509i
\(179\) −4.56218 + 7.90192i −0.340993 + 0.590618i −0.984617 0.174724i \(-0.944097\pi\)
0.643624 + 0.765342i \(0.277430\pi\)
\(180\) 0 0
\(181\) 14.5359 1.08044 0.540222 0.841522i \(-0.318340\pi\)
0.540222 + 0.841522i \(0.318340\pi\)
\(182\) −2.83013 11.4378i −0.209783 0.847828i
\(183\) 0 0
\(184\) −1.17691 0.679492i −0.0867633 0.0500928i
\(185\) −2.00000 + 3.46410i −0.147043 + 0.254686i
\(186\) 0 0
\(187\) 23.3205i 1.70536i
\(188\) −0.248711 + 0.143594i −0.0181391 + 0.0104726i
\(189\) 0 0
\(190\) 4.00000i 0.290191i
\(191\) −13.7583 23.8301i −0.995518 1.72429i −0.579662 0.814857i \(-0.696816\pi\)
−0.415855 0.909431i \(-0.636518\pi\)
\(192\) 0 0
\(193\) 5.25833 + 3.03590i 0.378503 + 0.218529i 0.677167 0.735830i \(-0.263208\pi\)
−0.298664 + 0.954358i \(0.596541\pi\)
\(194\) −12.0526 −0.865323
\(195\) 0 0
\(196\) −18.9282 −1.35201
\(197\) 2.53590 + 1.46410i 0.180675 + 0.104313i 0.587610 0.809144i \(-0.300069\pi\)
−0.406935 + 0.913457i \(0.633402\pi\)
\(198\) 0 0
\(199\) −7.50000 12.9904i −0.531661 0.920864i −0.999317 0.0369532i \(-0.988235\pi\)
0.467656 0.883911i \(-0.345099\pi\)
\(200\) 2.53590i 0.179315i
\(201\) 0 0
\(202\) 3.12436 1.80385i 0.219829 0.126918i
\(203\) 12.1962i 0.856002i
\(204\) 0 0
\(205\) 2.63397 4.56218i 0.183965 0.318636i
\(206\) 2.02628 + 1.16987i 0.141178 + 0.0815089i
\(207\) 0 0
\(208\) −3.71281 1.07180i −0.257437 0.0743157i
\(209\) −18.9282 −1.30929
\(210\) 0 0
\(211\) −5.76795 + 9.99038i −0.397082 + 0.687766i −0.993365 0.115008i \(-0.963310\pi\)
0.596283 + 0.802775i \(0.296644\pi\)
\(212\) −5.07180 8.78461i −0.348332 0.603329i
\(213\) 0 0
\(214\) 10.8564 6.26795i 0.742129 0.428468i
\(215\) 0.232051 0.133975i 0.0158257 0.00913699i
\(216\) 0 0
\(217\) 7.13397 + 12.3564i 0.484286 + 0.838808i
\(218\) 3.02628 5.24167i 0.204966 0.355011i
\(219\) 0 0
\(220\) 5.07180 0.341940
\(221\) −17.4904 + 16.8301i −1.17653 + 1.13212i
\(222\) 0 0
\(223\) −10.2679 5.92820i −0.687593 0.396982i 0.115117 0.993352i \(-0.463276\pi\)
−0.802710 + 0.596370i \(0.796609\pi\)
\(224\) 13.0718 22.6410i 0.873396 1.51277i
\(225\) 0 0
\(226\) 14.2487i 0.947810i
\(227\) −10.0981 + 5.83013i −0.670233 + 0.386959i −0.796165 0.605080i \(-0.793141\pi\)
0.125932 + 0.992039i \(0.459808\pi\)
\(228\) 0 0
\(229\) 18.3923i 1.21540i −0.794168 0.607699i \(-0.792093\pi\)
0.794168 0.607699i \(-0.207907\pi\)
\(230\) 0.196152 + 0.339746i 0.0129339 + 0.0224022i
\(231\) 0 0
\(232\) 6.00000 + 3.46410i 0.393919 + 0.227429i
\(233\) 23.8564 1.56289 0.781443 0.623977i \(-0.214484\pi\)
0.781443 + 0.623977i \(0.214484\pi\)
\(234\) 0 0
\(235\) 0.196152 0.0127956
\(236\) 9.21539 + 5.32051i 0.599871 + 0.346336i
\(237\) 0 0
\(238\) −11.0000 19.0526i −0.713024 1.23499i
\(239\) 5.46410i 0.353443i 0.984261 + 0.176722i \(0.0565492\pi\)
−0.984261 + 0.176722i \(0.943451\pi\)
\(240\) 0 0
\(241\) 1.39230 0.803848i 0.0896862 0.0517804i −0.454486 0.890754i \(-0.650177\pi\)
0.544172 + 0.838973i \(0.316844\pi\)
\(242\) 0.732051i 0.0470580i
\(243\) 0 0
\(244\) −3.26795 + 5.66025i −0.209209 + 0.362361i
\(245\) 11.1962 + 6.46410i 0.715296 + 0.412976i
\(246\) 0 0
\(247\) −13.6603 14.1962i −0.869181 0.903280i
\(248\) −8.10512 −0.514675
\(249\) 0 0
\(250\) 0.366025 0.633975i 0.0231495 0.0400961i
\(251\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 0 0
\(253\) 1.60770 0.928203i 0.101075 0.0583556i
\(254\) 9.29423 5.36603i 0.583172 0.336694i
\(255\) 0 0
\(256\) 5.85641 + 10.1436i 0.366025 + 0.633975i
\(257\) −5.36603 + 9.29423i −0.334723 + 0.579758i −0.983432 0.181279i \(-0.941976\pi\)
0.648708 + 0.761037i \(0.275310\pi\)
\(258\) 0 0
\(259\) −17.8564 −1.10954
\(260\) 3.66025 + 3.80385i 0.226999 + 0.235905i
\(261\) 0 0
\(262\) −0.803848 0.464102i −0.0496619 0.0286723i
\(263\) −3.16987 + 5.49038i −0.195463 + 0.338551i −0.947052 0.321080i \(-0.895954\pi\)
0.751589 + 0.659631i \(0.229288\pi\)
\(264\) 0 0
\(265\) 6.92820i 0.425596i
\(266\) 15.4641 8.92820i 0.948165 0.547423i
\(267\) 0 0
\(268\) 18.2487i 1.11472i
\(269\) 7.83013 + 13.5622i 0.477411 + 0.826901i 0.999665 0.0258897i \(-0.00824187\pi\)
−0.522254 + 0.852790i \(0.674909\pi\)
\(270\) 0 0
\(271\) −3.23205 1.86603i −0.196333 0.113353i 0.398611 0.917120i \(-0.369492\pi\)
−0.594944 + 0.803767i \(0.702826\pi\)
\(272\) −7.21539 −0.437497
\(273\) 0 0
\(274\) 6.67949 0.403523
\(275\) −3.00000 1.73205i −0.180907 0.104447i
\(276\) 0 0
\(277\) 10.1244 + 17.5359i 0.608314 + 1.05363i 0.991518 + 0.129967i \(0.0414870\pi\)
−0.383205 + 0.923663i \(0.625180\pi\)
\(278\) 13.1244i 0.787147i
\(279\) 0 0
\(280\) −9.80385 + 5.66025i −0.585892 + 0.338265i
\(281\) 21.1244i 1.26017i −0.776525 0.630087i \(-0.783019\pi\)
0.776525 0.630087i \(-0.216981\pi\)
\(282\) 0 0
\(283\) −0.133975 + 0.232051i −0.00796396 + 0.0137940i −0.869980 0.493087i \(-0.835868\pi\)
0.862016 + 0.506881i \(0.169202\pi\)
\(284\) −16.1436 9.32051i −0.957946 0.553070i
\(285\) 0 0
\(286\) −6.58846 + 6.33975i −0.389584 + 0.374877i
\(287\) 23.5167 1.38814
\(288\) 0 0
\(289\) −14.1603 + 24.5263i −0.832956 + 1.44272i
\(290\) −1.00000 1.73205i −0.0587220 0.101710i
\(291\) 0 0
\(292\) 19.5167 11.2679i 1.14213 0.659407i
\(293\) −21.2942 + 12.2942i −1.24402 + 0.718237i −0.969911 0.243461i \(-0.921717\pi\)
−0.274112 + 0.961698i \(0.588384\pi\)
\(294\) 0 0
\(295\) −3.63397 6.29423i −0.211578 0.366464i
\(296\) 5.07180 8.78461i 0.294792 0.510595i
\(297\) 0 0
\(298\) 2.92820 0.169626
\(299\) 1.85641 + 0.535898i 0.107359 + 0.0309918i
\(300\) 0 0
\(301\) 1.03590 + 0.598076i 0.0597082 + 0.0344725i
\(302\) −6.53590 + 11.3205i −0.376099 + 0.651422i
\(303\) 0 0
\(304\) 5.85641i 0.335888i
\(305\) 3.86603 2.23205i 0.221368 0.127807i
\(306\) 0 0
\(307\) 12.0718i 0.688974i 0.938791 + 0.344487i \(0.111947\pi\)
−0.938791 + 0.344487i \(0.888053\pi\)
\(308\) 11.3205 + 19.6077i 0.645046 + 1.11725i
\(309\) 0 0
\(310\) 2.02628 + 1.16987i 0.115085 + 0.0664443i
\(311\) 10.1962 0.578171 0.289085 0.957303i \(-0.406649\pi\)
0.289085 + 0.957303i \(0.406649\pi\)
\(312\) 0 0
\(313\) −10.8038 −0.610670 −0.305335 0.952245i \(-0.598768\pi\)
−0.305335 + 0.952245i \(0.598768\pi\)
\(314\) 6.16987 + 3.56218i 0.348186 + 0.201025i
\(315\) 0 0
\(316\) −1.41154 2.44486i −0.0794055 0.137534i
\(317\) 17.4641i 0.980882i −0.871474 0.490441i \(-0.836836\pi\)
0.871474 0.490441i \(-0.163164\pi\)
\(318\) 0 0
\(319\) −8.19615 + 4.73205i −0.458896 + 0.264944i
\(320\) 2.14359i 0.119831i
\(321\) 0 0
\(322\) −0.875644 + 1.51666i −0.0487978 + 0.0845202i
\(323\) −31.8564 18.3923i −1.77254 1.02338i
\(324\) 0 0
\(325\) −0.866025 3.50000i −0.0480384 0.194145i
\(326\) 4.05256 0.224450
\(327\) 0 0
\(328\) −6.67949 + 11.5692i −0.368813 + 0.638803i
\(329\) 0.437822 + 0.758330i 0.0241379 + 0.0418081i
\(330\) 0 0
\(331\) 7.03590 4.06218i 0.386728 0.223277i −0.294013 0.955801i \(-0.594991\pi\)
0.680741 + 0.732524i \(0.261658\pi\)
\(332\) 3.21539 1.85641i 0.176467 0.101884i
\(333\) 0 0
\(334\) 6.39230 + 11.0718i 0.349771 + 0.605822i
\(335\) 6.23205 10.7942i 0.340493 0.589752i
\(336\) 0 0
\(337\) −31.0526 −1.69154 −0.845770 0.533547i \(-0.820859\pi\)
−0.845770 + 0.533547i \(0.820859\pi\)
\(338\) −9.50962 0.366025i −0.517255 0.0199092i
\(339\) 0 0
\(340\) 8.53590 + 4.92820i 0.462924 + 0.267269i
\(341\) 5.53590 9.58846i 0.299786 0.519244i
\(342\) 0 0
\(343\) 26.4641i 1.42893i
\(344\) −0.588457 + 0.339746i −0.0317275 + 0.0183179i
\(345\) 0 0
\(346\) 2.39230i 0.128611i
\(347\) 3.26795 + 5.66025i 0.175433 + 0.303858i 0.940311 0.340317i \(-0.110534\pi\)
−0.764878 + 0.644175i \(0.777201\pi\)
\(348\) 0 0
\(349\) 25.9641 + 14.9904i 1.38983 + 0.802417i 0.993295 0.115605i \(-0.0368805\pi\)
0.396531 + 0.918021i \(0.370214\pi\)
\(350\) 3.26795 0.174679
\(351\) 0 0
\(352\) −20.2872 −1.08131
\(353\) 31.9808 + 18.4641i 1.70216 + 0.982745i 0.943565 + 0.331187i \(0.107449\pi\)
0.758599 + 0.651558i \(0.225884\pi\)
\(354\) 0 0
\(355\) 6.36603 + 11.0263i 0.337874 + 0.585214i
\(356\) 1.85641i 0.0983893i
\(357\) 0 0
\(358\) −5.78461 + 3.33975i −0.305726 + 0.176511i
\(359\) 33.6603i 1.77652i 0.459341 + 0.888260i \(0.348086\pi\)
−0.459341 + 0.888260i \(0.651914\pi\)
\(360\) 0 0
\(361\) 5.42820 9.40192i 0.285695 0.494838i
\(362\) 9.21539 + 5.32051i 0.484350 + 0.279640i
\(363\) 0 0
\(364\) −6.53590 + 22.6410i −0.342574 + 1.18671i
\(365\) −15.3923 −0.805670
\(366\) 0 0
\(367\) 9.06218 15.6962i 0.473042 0.819332i −0.526482 0.850186i \(-0.676489\pi\)
0.999524 + 0.0308537i \(0.00982261\pi\)
\(368\) 0.287187 + 0.497423i 0.0149707 + 0.0259299i
\(369\) 0 0
\(370\) −2.53590 + 1.46410i −0.131835 + 0.0761150i
\(371\) −26.7846 + 15.4641i −1.39059 + 0.802856i
\(372\) 0 0
\(373\) 0.937822 + 1.62436i 0.0485586 + 0.0841059i 0.889283 0.457357i \(-0.151204\pi\)
−0.840724 + 0.541463i \(0.817871\pi\)
\(374\) −8.53590 + 14.7846i −0.441381 + 0.764494i
\(375\) 0 0
\(376\) −0.497423 −0.0256526
\(377\) −9.46410 2.73205i −0.487426 0.140708i
\(378\) 0 0
\(379\) −17.0885 9.86603i −0.877775 0.506784i −0.00785092 0.999969i \(-0.502499\pi\)
−0.869924 + 0.493185i \(0.835832\pi\)
\(380\) −4.00000 + 6.92820i −0.205196 + 0.355409i
\(381\) 0 0
\(382\) 20.1436i 1.03064i
\(383\) −7.22243 + 4.16987i −0.369049 + 0.213071i −0.673043 0.739603i \(-0.735013\pi\)
0.303994 + 0.952674i \(0.401680\pi\)
\(384\) 0 0
\(385\) 15.4641i 0.788124i
\(386\) 2.22243 + 3.84936i 0.113119 + 0.195928i
\(387\) 0 0
\(388\) 20.8756 + 12.0526i 1.05980 + 0.611876i
\(389\) 17.4641 0.885465 0.442733 0.896654i \(-0.354009\pi\)
0.442733 + 0.896654i \(0.354009\pi\)
\(390\) 0 0
\(391\) 3.60770 0.182449
\(392\) −28.3923 16.3923i −1.43403 0.827936i
\(393\) 0 0
\(394\) 1.07180 + 1.85641i 0.0539963 + 0.0935244i
\(395\) 1.92820i 0.0970184i
\(396\) 0 0
\(397\) 21.0622 12.1603i 1.05708 0.610306i 0.132457 0.991189i \(-0.457713\pi\)
0.924623 + 0.380883i \(0.124380\pi\)
\(398\) 10.9808i 0.550416i
\(399\) 0 0
\(400\) 0.535898 0.928203i 0.0267949 0.0464102i
\(401\) 13.2679 + 7.66025i 0.662570 + 0.382535i 0.793255 0.608889i \(-0.208385\pi\)
−0.130686 + 0.991424i \(0.541718\pi\)
\(402\) 0 0
\(403\) 11.1865 2.76795i 0.557241 0.137881i
\(404\) −7.21539 −0.358979
\(405\) 0 0
\(406\) 4.46410 7.73205i 0.221550 0.383735i
\(407\) 6.92820 + 12.0000i 0.343418 + 0.594818i
\(408\) 0 0
\(409\) 2.30385 1.33013i 0.113918 0.0657705i −0.441958 0.897036i \(-0.645716\pi\)
0.555876 + 0.831265i \(0.312383\pi\)
\(410\) 3.33975 1.92820i 0.164938 0.0952272i
\(411\) 0 0
\(412\) −2.33975 4.05256i −0.115271 0.199655i
\(413\) 16.2224 28.0981i 0.798254 1.38262i
\(414\) 0 0
\(415\) −2.53590 −0.124482
\(416\) −14.6410 15.2154i −0.717835 0.745996i
\(417\) 0 0
\(418\) −12.0000 6.92820i −0.586939 0.338869i
\(419\) 10.2224 17.7058i 0.499398 0.864984i −0.500601 0.865678i \(-0.666888\pi\)
1.00000 0.000694440i \(0.000221047\pi\)
\(420\) 0 0
\(421\) 23.5885i 1.14963i −0.818283 0.574816i \(-0.805074\pi\)
0.818283 0.574816i \(-0.194926\pi\)
\(422\) −7.31347 + 4.22243i −0.356014 + 0.205545i
\(423\) 0 0
\(424\) 17.5692i 0.853237i
\(425\) −3.36603 5.83013i −0.163276 0.282803i
\(426\) 0 0
\(427\) 17.2583 + 9.96410i 0.835189 + 0.482197i
\(428\) −25.0718 −1.21189
\(429\) 0 0
\(430\) 0.196152 0.00945931
\(431\) 20.1962 + 11.6603i 0.972814 + 0.561655i 0.900093 0.435698i \(-0.143498\pi\)
0.0727213 + 0.997352i \(0.476832\pi\)
\(432\) 0 0
\(433\) 2.40192 + 4.16025i 0.115429 + 0.199929i 0.917951 0.396693i \(-0.129842\pi\)
−0.802522 + 0.596622i \(0.796509\pi\)
\(434\) 10.4449i 0.501370i
\(435\) 0 0
\(436\) −10.4833 + 6.05256i −0.502061 + 0.289865i
\(437\) 2.92820i 0.140075i
\(438\) 0 0
\(439\) 7.69615 13.3301i 0.367317 0.636212i −0.621828 0.783154i \(-0.713610\pi\)
0.989145 + 0.146942i \(0.0469430\pi\)
\(440\) 7.60770 + 4.39230i 0.362683 + 0.209395i
\(441\) 0 0
\(442\) −17.2487 + 4.26795i −0.820438 + 0.203006i
\(443\) −3.12436 −0.148443 −0.0742213 0.997242i \(-0.523647\pi\)
−0.0742213 + 0.997242i \(0.523647\pi\)
\(444\) 0 0
\(445\) −0.633975 + 1.09808i −0.0300533 + 0.0520538i
\(446\) −4.33975 7.51666i −0.205493 0.355924i
\(447\) 0 0
\(448\) 8.28719 4.78461i 0.391533 0.226052i
\(449\) −9.58846 + 5.53590i −0.452507 + 0.261255i −0.708889 0.705321i \(-0.750803\pi\)
0.256381 + 0.966576i \(0.417470\pi\)
\(450\) 0 0
\(451\) −9.12436 15.8038i −0.429649 0.744174i
\(452\) 14.2487 24.6795i 0.670203 1.16083i
\(453\) 0 0
\(454\) −8.53590 −0.400610
\(455\) 11.5981 11.1603i 0.543726 0.523201i
\(456\) 0 0
\(457\) −4.66987 2.69615i −0.218447 0.126121i 0.386784 0.922170i \(-0.373586\pi\)
−0.605231 + 0.796050i \(0.706919\pi\)
\(458\) 6.73205 11.6603i 0.314568 0.544848i
\(459\) 0 0
\(460\) 0.784610i 0.0365826i
\(461\) −9.97372 + 5.75833i −0.464522 + 0.268192i −0.713944 0.700203i \(-0.753093\pi\)
0.249421 + 0.968395i \(0.419760\pi\)
\(462\) 0 0
\(463\) 1.78461i 0.0829378i −0.999140 0.0414689i \(-0.986796\pi\)
0.999140 0.0414689i \(-0.0132038\pi\)
\(464\) −1.46410 2.53590i −0.0679692 0.117726i
\(465\) 0 0
\(466\) 15.1244 + 8.73205i 0.700622 + 0.404504i
\(467\) −23.6603 −1.09487 −0.547433 0.836850i \(-0.684395\pi\)
−0.547433 + 0.836850i \(0.684395\pi\)
\(468\) 0 0
\(469\) 55.6410 2.56926
\(470\) 0.124356 + 0.0717968i 0.00573610 + 0.00331174i
\(471\) 0 0
\(472\) 9.21539 + 15.9615i 0.424173 + 0.734689i
\(473\) 0.928203i 0.0426788i
\(474\) 0 0
\(475\) 4.73205 2.73205i 0.217121 0.125355i
\(476\) 44.0000i 2.01674i
\(477\) 0 0
\(478\) −2.00000 + 3.46410i −0.0914779 + 0.158444i
\(479\) 31.0981 + 17.9545i 1.42091 + 0.820361i 0.996376 0.0850522i \(-0.0271057\pi\)
0.424531 + 0.905413i \(0.360439\pi\)
\(480\) 0 0
\(481\) −4.00000 + 13.8564i −0.182384 + 0.631798i
\(482\) 1.17691 0.0536070
\(483\) 0 0
\(484\) 0.732051 1.26795i 0.0332750 0.0576341i
\(485\) −8.23205 14.2583i −0.373798 0.647437i
\(486\) 0 0
\(487\) 18.0000 10.3923i 0.815658 0.470920i −0.0332590 0.999447i \(-0.510589\pi\)
0.848917 + 0.528526i \(0.177255\pi\)
\(488\) −9.80385 + 5.66025i −0.443799 + 0.256228i
\(489\) 0 0
\(490\) 4.73205 + 8.19615i 0.213772 + 0.370264i
\(491\) −3.56218 + 6.16987i −0.160759 + 0.278442i −0.935141 0.354276i \(-0.884727\pi\)
0.774382 + 0.632718i \(0.218061\pi\)
\(492\) 0 0
\(493\) −18.3923 −0.828348
\(494\) −3.46410 14.0000i −0.155857 0.629890i
\(495\) 0 0
\(496\) 2.96668 + 1.71281i 0.133208 + 0.0769076i
\(497\) −28.4186 + 49.2224i −1.27475 + 2.20793i
\(498\) 0 0
\(499\) 0.392305i 0.0175620i −0.999961 0.00878099i \(-0.997205\pi\)
0.999961 0.00878099i \(-0.00279511\pi\)
\(500\) −1.26795 + 0.732051i −0.0567044 + 0.0327383i
\(501\) 0 0
\(502\) 0 0
\(503\) −15.3923 26.6603i −0.686309 1.18872i −0.973024 0.230706i \(-0.925896\pi\)
0.286715 0.958016i \(-0.407437\pi\)
\(504\) 0 0
\(505\) 4.26795 + 2.46410i 0.189921 + 0.109651i
\(506\) 1.35898 0.0604142
\(507\) 0 0
\(508\) −21.4641 −0.952316
\(509\) −11.1962 6.46410i −0.496261 0.286516i 0.230907 0.972976i \(-0.425831\pi\)
−0.727168 + 0.686459i \(0.759164\pi\)
\(510\) 0 0
\(511\) −34.3564 59.5070i −1.51984 2.63244i
\(512\) 11.7128i 0.517638i
\(513\) 0 0
\(514\) −6.80385 + 3.92820i −0.300105 + 0.173266i
\(515\) 3.19615i 0.140839i
\(516\) 0 0
\(517\) 0.339746 0.588457i 0.0149420 0.0258803i
\(518\) −11.3205 6.53590i −0.497395 0.287171i
\(519\) 0 0
\(520\) 2.19615 + 8.87564i 0.0963077 + 0.389223i
\(521\) 12.7321 0.557801 0.278901 0.960320i \(-0.410030\pi\)
0.278901 + 0.960320i \(0.410030\pi\)
\(522\) 0 0
\(523\) 18.7321 32.4449i 0.819095 1.41871i −0.0872541 0.996186i \(-0.527809\pi\)
0.906350 0.422529i \(-0.138857\pi\)
\(524\) 0.928203 + 1.60770i 0.0405487 + 0.0702325i
\(525\) 0 0
\(526\) −4.01924 + 2.32051i −0.175247 + 0.101179i
\(527\) 18.6340 10.7583i 0.811709 0.468640i
\(528\) 0 0
\(529\) 11.3564 + 19.6699i 0.493757 + 0.855212i
\(530\) −2.53590 + 4.39230i −0.110152 + 0.190790i
\(531\) 0 0
\(532\) −35.7128 −1.54835
\(533\) 5.26795 18.2487i 0.228180 0.790439i
\(534\) 0 0
\(535\) 14.8301 + 8.56218i 0.641162 + 0.370175i
\(536\) −15.8038 + 27.3731i −0.682622 + 1.18234i
\(537\) 0 0
\(538\) 11.4641i 0.494253i
\(539\) 38.7846 22.3923i 1.67057 0.964505i
\(540\) 0 0
\(541\) 17.5885i 0.756187i 0.925767 + 0.378093i \(0.123420\pi\)
−0.925767 + 0.378093i \(0.876580\pi\)
\(542\) −1.36603 2.36603i −0.0586758 0.101629i
\(543\) 0 0
\(544\) −34.1436 19.7128i −1.46389 0.845180i
\(545\) 8.26795 0.354160
\(546\) 0 0
\(547\) −24.6603 −1.05440 −0.527198 0.849742i \(-0.676757\pi\)
−0.527198 + 0.849742i \(0.676757\pi\)
\(548\) −11.5692 6.67949i −0.494213 0.285334i
\(549\) 0 0
\(550\) −1.26795 2.19615i −0.0540655 0.0936443i
\(551\) 14.9282i 0.635963i
\(552\) 0 0
\(553\) −7.45448 + 4.30385i −0.316997 + 0.183018i
\(554\) 14.8231i 0.629773i
\(555\) 0 0
\(556\) 13.1244 22.7321i 0.556597 0.964054i
\(557\) 18.5885 + 10.7321i 0.787618 + 0.454732i 0.839123 0.543941i \(-0.183069\pi\)
−0.0515052 + 0.998673i \(0.516402\pi\)
\(558\) 0 0
\(559\) 0.696152 0.669873i 0.0294441 0.0283326i
\(560\) 4.78461 0.202187
\(561\) 0 0
\(562\) 7.73205 13.3923i 0.326157 0.564920i
\(563\) 1.73205 + 3.00000i 0.0729972 + 0.126435i 0.900214 0.435449i \(-0.143410\pi\)
−0.827216 + 0.561884i \(0.810077\pi\)
\(564\) 0 0
\(565\) −16.8564 + 9.73205i −0.709154 + 0.409430i
\(566\) −0.169873 + 0.0980762i −0.00714029 + 0.00412245i
\(567\) 0 0
\(568\) −16.1436 27.9615i −0.677370 1.17324i
\(569\) 22.0981 38.2750i 0.926400 1.60457i 0.137105 0.990557i \(-0.456220\pi\)
0.789295 0.614015i \(-0.210446\pi\)
\(570\) 0 0
\(571\) 3.85641 0.161386 0.0806928 0.996739i \(-0.474287\pi\)
0.0806928 + 0.996739i \(0.474287\pi\)
\(572\) 17.7513 4.39230i 0.742219 0.183651i
\(573\) 0 0
\(574\) 14.9090 + 8.60770i 0.622288 + 0.359278i
\(575\) −0.267949 + 0.464102i −0.0111743 + 0.0193544i
\(576\) 0 0
\(577\) 11.7128i 0.487611i 0.969824 + 0.243805i \(0.0783958\pi\)
−0.969824 + 0.243805i \(0.921604\pi\)
\(578\) −17.9545 + 10.3660i −0.746808 + 0.431170i
\(579\) 0 0
\(580\) 4.00000i 0.166091i
\(581\) −5.66025 9.80385i −0.234827 0.406732i
\(582\) 0 0
\(583\) 20.7846 + 12.0000i 0.860811 + 0.496989i
\(584\) 39.0333 1.61521
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 22.2224 + 12.8301i 0.917218 + 0.529556i 0.882746 0.469850i \(-0.155692\pi\)
0.0344715 + 0.999406i \(0.489025\pi\)
\(588\) 0 0
\(589\) 8.73205 + 15.1244i 0.359798 + 0.623188i
\(590\) 5.32051i 0.219042i
\(591\) 0 0
\(592\) −3.71281 + 2.14359i −0.152596 + 0.0881012i
\(593\) 21.3205i 0.875528i −0.899090 0.437764i \(-0.855770\pi\)
0.899090 0.437764i \(-0.144230\pi\)
\(594\) 0 0
\(595\) 15.0263 26.0263i 0.616017 1.06697i
\(596\) −5.07180 2.92820i −0.207749 0.119944i
\(597\) 0 0
\(598\) 0.980762 + 1.01924i 0.0401063 + 0.0416797i
\(599\) 23.1244 0.944836 0.472418 0.881375i \(-0.343381\pi\)
0.472418 + 0.881375i \(0.343381\pi\)
\(600\) 0 0
\(601\) 11.1244 19.2679i 0.453772 0.785956i −0.544845 0.838537i \(-0.683411\pi\)
0.998617 + 0.0525809i \(0.0167447\pi\)
\(602\) 0.437822 + 0.758330i 0.0178443 + 0.0309072i
\(603\) 0 0
\(604\) 22.6410 13.0718i 0.921250 0.531884i
\(605\) −0.866025 + 0.500000i −0.0352089 + 0.0203279i
\(606\) 0 0
\(607\) −8.80385 15.2487i −0.357337 0.618926i 0.630178 0.776451i \(-0.282982\pi\)
−0.987515 + 0.157525i \(0.949649\pi\)
\(608\) 16.0000 27.7128i 0.648886 1.12390i
\(609\) 0 0
\(610\) 3.26795 0.132315
\(611\) 0.686533 0.169873i 0.0277742 0.00687233i
\(612\) 0 0
\(613\) −1.91858 1.10770i −0.0774909 0.0447394i 0.460754 0.887528i \(-0.347579\pi\)
−0.538245 + 0.842789i \(0.680912\pi\)
\(614\) −4.41858 + 7.65321i −0.178320 + 0.308859i
\(615\) 0 0
\(616\) 39.2154i 1.58003i
\(617\) 21.3397 12.3205i 0.859106 0.496005i −0.00460693 0.999989i \(-0.501466\pi\)
0.863713 + 0.503984i \(0.168133\pi\)
\(618\) 0 0
\(619\) 11.5885i 0.465779i −0.972503 0.232890i \(-0.925182\pi\)
0.972503 0.232890i \(-0.0748181\pi\)
\(620\) −2.33975 4.05256i −0.0939665 0.162755i
\(621\) 0 0
\(622\) 6.46410 + 3.73205i 0.259187 + 0.149642i
\(623\) −5.66025 −0.226773
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −6.84936 3.95448i −0.273756 0.158053i
\(627\) 0 0
\(628\) −7.12436 12.3397i −0.284293 0.492409i
\(629\) 26.9282i 1.07370i
\(630\) 0 0
\(631\) −9.01666 + 5.20577i −0.358948 + 0.207238i −0.668619 0.743605i \(-0.733114\pi\)
0.309671 + 0.950844i \(0.399781\pi\)
\(632\) 4.88973i 0.194503i
\(633\) 0 0
\(634\) 6.39230 11.0718i 0.253871 0.439717i
\(635\) 12.6962 + 7.33013i 0.503831 + 0.290887i
\(636\) 0 0
\(637\) 44.7846 + 12.9282i 1.77443 + 0.512234i
\(638\) −6.92820 −0.274290
\(639\) 0 0
\(640\) −5.07180 + 8.78461i −0.200480 + 0.347242i
\(641\) −19.3923 33.5885i −0.765950 1.32666i −0.939743 0.341882i \(-0.888936\pi\)
0.173793 0.984782i \(-0.444398\pi\)
\(642\) 0 0
\(643\) −3.27757 + 1.89230i −0.129255 + 0.0746252i −0.563233 0.826298i \(-0.690443\pi\)
0.433978 + 0.900923i \(0.357109\pi\)
\(644\) 3.03332 1.75129i 0.119530 0.0690104i
\(645\) 0 0
\(646\) −13.4641 23.3205i −0.529738 0.917533i
\(647\) −1.00000 + 1.73205i −0.0393141 + 0.0680939i −0.885013 0.465566i \(-0.845851\pi\)
0.845699 + 0.533660i \(0.179184\pi\)
\(648\) 0 0
\(649\) −25.1769 −0.988280
\(650\) 0.732051 2.53590i 0.0287134 0.0994661i
\(651\) 0 0
\(652\) −7.01924 4.05256i −0.274895 0.158710i
\(653\) −0.241670 + 0.418584i −0.00945727 + 0.0163805i −0.870715 0.491787i \(-0.836344\pi\)
0.861258 + 0.508168i \(0.169677\pi\)
\(654\) 0 0
\(655\) 1.26795i 0.0495429i
\(656\) 4.88973 2.82309i 0.190912 0.110223i
\(657\) 0 0
\(658\) 0.641016i 0.0249894i
\(659\) −18.5885 32.1962i −0.724103 1.25418i −0.959342 0.282246i \(-0.908920\pi\)
0.235238 0.971938i \(-0.424413\pi\)
\(660\) 0 0
\(661\) 18.2321 + 10.5263i 0.709145 + 0.409425i 0.810744 0.585401i \(-0.199063\pi\)
−0.101600 + 0.994825i \(0.532396\pi\)
\(662\) 5.94744 0.231154
\(663\) 0 0
\(664\) 6.43078 0.249563
\(665\) 21.1244 + 12.1962i 0.819167 + 0.472947i
\(666\) 0 0
\(667\) 0.732051 + 1.26795i 0.0283451 + 0.0490952i
\(668\) 25.5692i 0.989303i
\(669\) 0 0
\(670\) 7.90192 4.56218i 0.305278 0.176252i
\(671\) 15.4641i 0.596985i
\(672\) 0 0
\(673\) −9.33013 + 16.1603i −0.359650 + 0.622932i −0.987902 0.155078i \(-0.950437\pi\)
0.628252 + 0.778010i \(0.283771\pi\)
\(674\) −19.6865 11.3660i −0.758297 0.437803i
\(675\) 0 0
\(676\) 16.1051 + 10.1436i 0.619428 + 0.390138i
\(677\) −32.7846 −1.26001 −0.630007 0.776589i \(-0.716948\pi\)
−0.630007 + 0.776589i \(0.716948\pi\)
\(678\) 0 0
\(679\) 36.7487 63.6506i 1.41029 2.44269i
\(680\) 8.53590 + 14.7846i 0.327337 + 0.566964i
\(681\) 0 0
\(682\) 7.01924 4.05256i 0.268781 0.155180i
\(683\) −35.7391 + 20.6340i −1.36752 + 0.789537i −0.990611 0.136714i \(-0.956346\pi\)
−0.376908 + 0.926251i \(0.623013\pi\)
\(684\) 0 0
\(685\) 4.56218 + 7.90192i 0.174312 + 0.301917i
\(686\) −9.68653 + 16.7776i −0.369834 + 0.640571i
\(687\) 0 0
\(688\) 0.287187 0.0109489
\(689\) 6.00000 + 24.2487i 0.228582 + 0.923802i
\(690\) 0 0
\(691\) −37.7487 21.7942i −1.43603 0.829092i −0.438458 0.898752i \(-0.644475\pi\)
−0.997571 + 0.0696602i \(0.977808\pi\)
\(692\) −2.39230 + 4.14359i −0.0909418 + 0.157516i
\(693\) 0 0
\(694\) 4.78461i 0.181621i
\(695\) −15.5263 + 8.96410i −0.588945 + 0.340028i
\(696\) 0 0
\(697\) 35.4641i 1.34330i
\(698\) 10.9737 + 19.0070i 0.415361 + 0.719427i
\(699\) 0 0
\(700\) −5.66025 3.26795i −0.213937 0.123517i
\(701\) −8.78461 −0.331790 −0.165895 0.986143i \(-0.553051\pi\)
−0.165895 + 0.986143i \(0.553051\pi\)
\(702\) 0 0
\(703\) −21.8564 −0.824330
\(704\) −6.43078 3.71281i −0.242369 0.139932i
\(705\) 0 0
\(706\) 13.5167 + 23.4115i 0.508706 + 0.881105i
\(707\) 22.0000i 0.827395i
\(708\) 0 0
\(709\) −26.5526 + 15.3301i −0.997202 + 0.575735i −0.907419 0.420226i \(-0.861951\pi\)
−0.0897830 + 0.995961i \(0.528617\pi\)
\(710\) 9.32051i 0.349792i
\(711\) 0 0
\(712\) 1.60770 2.78461i 0.0602509 0.104358i
\(713\) −1.48334 0.856406i −0.0555515 0.0320727i
\(714\) 0 0
\(715\) −12.0000 3.46410i −0.448775 0.129550i
\(716\) 13.3590 0.499249
\(717\) 0 0
\(718\) −12.3205 + 21.3397i −0.459797 + 0.796392i
\(719\) −17.3660 30.0788i −0.647643 1.12175i −0.983684 0.179904i \(-0.942421\pi\)
0.336041 0.941847i \(-0.390912\pi\)
\(720\) 0 0
\(721\) −12.3564 + 7.13397i −0.460177 + 0.265683i
\(722\) 6.88269 3.97372i 0.256147 0.147887i
\(723\) 0 0
\(724\) −10.6410 18.4308i −0.395470 0.684975i
\(725\) 1.36603 2.36603i 0.0507329 0.0878720i
\(726\) 0 0
\(727\) 6.26795 0.232465 0.116233 0.993222i \(-0.462918\pi\)
0.116233 + 0.993222i \(0.462918\pi\)
\(728\) −29.4115 + 28.3013i −1.09006 + 1.04891i
\(729\) 0 0
\(730\) −9.75833 5.63397i −0.361172 0.208523i
\(731\) 0.901924 1.56218i 0.0333589 0.0577792i
\(732\) 0 0
\(733\) 2.32051i 0.0857099i 0.999081 + 0.0428550i \(0.0136453\pi\)
−0.999081 + 0.0428550i \(0.986355\pi\)
\(734\) 11.4904 6.63397i 0.424118 0.244864i
\(735\) 0 0
\(736\) 3.13844i 0.115684i
\(737\) −21.5885 37.3923i −0.795221 1.37736i
\(738\) 0 0
\(739\) 9.00000 + 5.19615i 0.331070 + 0.191144i 0.656316 0.754486i \(-0.272114\pi\)
−0.325246 + 0.945629i \(0.605447\pi\)
\(740\) 5.85641 0.215286
\(741\) 0 0
\(742\) −22.6410 −0.831178
\(743\) −34.5622 19.9545i −1.26796 0.732059i −0.293361 0.956002i \(-0.594774\pi\)
−0.974602 + 0.223943i \(0.928107\pi\)
\(744\) 0 0
\(745\) 2.00000 + 3.46410i 0.0732743 + 0.126915i
\(746\) 1.37307i 0.0502716i
\(747\) 0 0
\(748\) 29.5692 17.0718i 1.08116 0.624207i
\(749\) 76.4449i 2.79323i
\(750\) 0 0
\(751\) −10.6603 + 18.4641i −0.388998 + 0.673765i −0.992315 0.123737i \(-0.960512\pi\)
0.603317 + 0.797502i \(0.293845\pi\)
\(752\) 0.182069 + 0.105118i 0.00663938 + 0.00383325i
\(753\) 0 0
\(754\) −5.00000 5.19615i −0.182089 0.189233i
\(755\) −17.8564 −0.649861
\(756\) 0 0
\(757\) −13.4641 + 23.3205i −0.489361 + 0.847598i −0.999925 0.0122415i \(-0.996103\pi\)
0.510564 + 0.859840i \(0.329437\pi\)
\(758\) −7.22243 12.5096i −0.262331 0.454370i
\(759\) 0 0
\(760\) −12.0000 + 6.92820i −0.435286 + 0.251312i
\(761\) 5.07180 2.92820i 0.183852 0.106147i −0.405249 0.914206i \(-0.632815\pi\)
0.589101 + 0.808059i \(0.299482\pi\)
\(762\) 0 0
\(763\) 18.4545 + 31.9641i 0.668097 + 1.15718i
\(764\) −20.1436 + 34.8897i −0.728770 + 1.26227i
\(765\) 0 0
\(766\) −6.10512 −0.220587
\(767\) −18.1699 18.8827i −0.656076 0.681814i
\(768\) 0 0
\(769\) 43.6410 + 25.1962i 1.57374 + 0.908596i 0.995705 + 0.0925811i \(0.0295117\pi\)
0.578030 + 0.816015i \(0.303822\pi\)
\(770\) 5.66025 9.80385i 0.203981 0.353306i
\(771\) 0 0
\(772\) 8.88973i 0.319948i
\(773\) −6.80385 + 3.92820i −0.244717 + 0.141288i −0.617343 0.786694i \(-0.711791\pi\)
0.372626 + 0.927982i \(0.378458\pi\)
\(774\) 0 0
\(775\) 3.19615i 0.114809i
\(776\) 20.8756 + 36.1577i 0.749392 + 1.29798i
\(777\) 0 0
\(778\) 11.0718 + 6.39230i 0.396943 + 0.229175i
\(779\) 28.7846 1.03132
\(780\) 0 0
\(781\) 44.1051 1.57821
\(782\) 2.28719 + 1.32051i 0.0817896 + 0.0472213i
\(783\) 0 0
\(784\) 6.92820 + 12.0000i 0.247436 + 0.428571i
\(785\) 9.73205i 0.347352i
\(786\) 0 0
\(787\) −18.6506 + 10.7679i −0.664823 + 0.383836i −0.794112 0.607771i \(-0.792064\pi\)
0.129289 + 0.991607i \(0.458731\pi\)
\(788\) 4.28719i 0.152725i
\(789\) 0 0
\(790\) −0.705771 + 1.22243i −0.0251102 + 0.0434922i
\(791\) −75.2487 43.4449i −2.67554 1.54472i
\(792\) 0 0
\(793\) 11.5981 11.1603i 0.411860 0.396312i
\(794\) 17.8038 0.631835
\(795\) 0 0
\(796\) −10.9808 + 19.0192i −0.389203 + 0.674119i
\(797\) 15.2224 + 26.3660i 0.539206 + 0.933933i 0.998947 + 0.0458794i \(0.0146090\pi\)
−0.459741 + 0.888053i \(0.652058\pi\)
\(798\) 0 0
\(799\) 1.14359 0.660254i 0.0404574 0.0233581i
\(800\) 5.07180 2.92820i 0.179315 0.103528i
\(801\) 0 0
\(802\) 5.60770 + 9.71281i 0.198015 + 0.342971i
\(803\) −26.6603 + 46.1769i −0.940820 + 1.62955i
\(804\) 0 0
\(805\) −2.39230 −0.0843177
\(806\) 8.10512 + 2.33975i 0.285491 + 0.0824140i
\(807\) 0 0
\(808\) −10.8231 6.24871i −0.380755 0.219829i
\(809\) 18.0000 31.1769i 0.632846 1.09612i −0.354121 0.935200i \(-0.615220\pi\)
0.986967 0.160922i \(-0.0514468\pi\)
\(810\) 0 0
\(811\) 0.947441i 0.0332692i 0.999862 + 0.0166346i \(0.00529520\pi\)
−0.999862 + 0.0166346i \(0.994705\pi\)
\(812\) −15.4641 + 8.92820i −0.542684 + 0.313319i
\(813\) 0 0
\(814\) 10.1436i 0.355533i
\(815\) 2.76795 + 4.79423i 0.0969570 + 0.167935i
\(816\) 0 0
\(817\) 1.26795 + 0.732051i 0.0443599 + 0.0256112i
\(818\) 1.94744 0.0680907
\(819\) 0 0
\(820\) −7.71281 −0.269343
\(821\) 0.803848 + 0.464102i 0.0280545 + 0.0161973i 0.513962 0.857813i \(-0.328177\pi\)
−0.485907 + 0.874010i \(0.661511\pi\)
\(822\) 0 0
\(823\) −6.58846 11.4115i −0.229659 0.397781i 0.728048 0.685526i \(-0.240428\pi\)
−0.957707 + 0.287745i \(0.907094\pi\)
\(824\) 8.10512i 0.282355i
\(825\) 0 0
\(826\) 20.5692 11.8756i 0.715695 0.413207i
\(827\) 2.58846i 0.0900095i 0.998987 + 0.0450047i \(0.0143303\pi\)
−0.998987 + 0.0450047i \(0.985670\pi\)
\(828\) 0 0
\(829\) −19.0885 + 33.0622i −0.662970 + 1.14830i 0.316862 + 0.948472i \(0.397371\pi\)
−0.979832 + 0.199825i \(0.935963\pi\)
\(830\) −1.60770 0.928203i −0.0558039 0.0322184i
\(831\) 0 0
\(832\) −1.85641 7.50258i −0.0643593 0.260105i
\(833\) 87.0333 3.01553
\(834\) 0 0
\(835\) −8.73205 + 15.1244i −0.302185 + 0.523400i
\(836\) 13.8564 + 24.0000i 0.479234 + 0.830057i
\(837\) 0 0
\(838\) 12.9615 7.48334i 0.447748 0.258508i
\(839\) 17.7846 10.2679i 0.613993 0.354489i −0.160534 0.987030i \(-0.551322\pi\)
0.774527 + 0.632541i \(0.217988\pi\)
\(840\) 0 0
\(841\) 10.7679 + 18.6506i 0.371309 + 0.643125i
\(842\) 8.63397 14.9545i 0.297546 0.515366i
\(843\) 0 0
\(844\) 16.8897 0.581368
\(845\) −6.06218 11.5000i −0.208545 0.395612i
\(846\) 0 0
\(847\) −3.86603 2.23205i −0.132838 0.0766942i
\(848\) −3.71281 + 6.43078i −0.127499 + 0.220834i
\(849\) 0 0
\(850\) 4.92820i 0.169036i
\(851\) 1.85641 1.07180i 0.0636368 0.0367407i
\(852\) 0 0
\(853\) 16.6077i 0.568637i −0.958730 0.284318i \(-0.908233\pi\)
0.958730 0.284318i \(-0.0917673\pi\)
\(854\) 7.29423 + 12.6340i 0.249603 + 0.432326i
\(855\) 0 0
\(856\) −37.6077 21.7128i −1.28540 0.742129i
\(857\) −17.1244 −0.584957 −0.292478 0.956272i \(-0.594480\pi\)
−0.292478 + 0.956272i \(0.594480\pi\)
\(858\) 0 0
\(859\) 7.78461 0.265607 0.132804 0.991142i \(-0.457602\pi\)
0.132804 + 0.991142i \(0.457602\pi\)
\(860\) −0.339746 0.196152i −0.0115852 0.00668874i
\(861\) 0 0
\(862\) 8.53590 + 14.7846i 0.290734 + 0.503566i
\(863\) 34.3923i 1.17073i 0.810771 + 0.585364i \(0.199048\pi\)
−0.810771 + 0.585364i \(0.800952\pi\)
\(864\) 0 0
\(865\) 2.83013 1.63397i 0.0962272 0.0555568i
\(866\) 3.51666i 0.119501i
\(867\) 0 0
\(868\) 10.4449 18.0910i 0.354522 0.614050i
\(869\) 5.78461 + 3.33975i 0.196229 + 0.113293i
\(870\) 0 0
\(871\) 12.4641 43.1769i 0.422330 1.46299i
\(872\) −20.9667 −0.710021
\(873\) 0 0
\(874\) −1.07180 + 1.85641i −0.0362541 + 0.0627939i
\(875\) 2.23205 + 3.86603i 0.0754571 + 0.130696i
\(876\) 0 0
\(877\) −16.1436 + 9.32051i −0.545130 + 0.314731i −0.747156 0.664649i \(-0.768581\pi\)
0.202025 + 0.979380i \(0.435248\pi\)
\(878\) 9.75833 5.63397i 0.329328 0.190137i
\(879\) 0 0
\(880\) −1.85641 3.21539i −0.0625794 0.108391i
\(881\) 12.5885 21.8038i 0.424116 0.734590i −0.572222 0.820099i \(-0.693918\pi\)
0.996337 + 0.0855088i \(0.0272516\pi\)
\(882\) 0 0
\(883\) 0.660254 0.0222193 0.0111097 0.999938i \(-0.496464\pi\)
0.0111097 + 0.999938i \(0.496464\pi\)
\(884\) 34.1436 + 9.85641i 1.14837 + 0.331507i
\(885\) 0 0
\(886\) −1.98076 1.14359i −0.0665450 0.0384198i
\(887\) −1.49038 + 2.58142i −0.0500421 + 0.0866755i −0.889961 0.456036i \(-0.849269\pi\)
0.839919 + 0.542711i \(0.182602\pi\)
\(888\) 0 0
\(889\) 65.4449i 2.19495i
\(890\) −0.803848 + 0.464102i −0.0269450 + 0.0155567i
\(891\) 0 0
\(892\) 17.3590i 0.581222i
\(893\) 0.535898 + 0.928203i 0.0179332 + 0.0310611i
\(894\) 0 0
\(895\) −7.90192 4.56218i −0.264132 0.152497i
\(896\) −45.2820 −1.51277
\(897\) 0 0
\(898\) −8.10512 −0.270471
\(899\) 7.56218 + 4.36603i 0.252213 + 0.145615i
\(900\) 0 0
\(901\) 23.3205 + 40.3923i 0.776919 + 1.34566i
\(902\) 13.3590i 0.444806i
\(903\) 0 0
\(904\) 42.7461 24.6795i 1.42172 0.820828i
\(905\) 14.5359i 0.483190i
\(906\) 0 0
\(907\) −12.2679 + 21.2487i −0.407351 + 0.705552i −0.994592 0.103860i \(-0.966881\pi\)
0.587241 + 0.809412i \(0.300214\pi\)
\(908\) 14.7846 + 8.53590i 0.490645 + 0.283274i
\(909\) 0 0
\(910\) 11.4378 2.83013i 0.379160 0.0938178i
\(911\) 7.71281 0.255537 0.127768 0.991804i \(-0.459219\pi\)
0.127768 + 0.991804i \(0.459219\pi\)
\(912\) 0 0
\(913\) −4.39230 + 7.60770i −0.145364 + 0.251778i
\(914\) −1.97372 3.41858i −0.0652849 0.113077i
\(915\) 0 0
\(916\) −23.3205 + 13.4641i −0.770531 + 0.444866i
\(917\) 4.90192 2.83013i 0.161876 0.0934590i
\(918\) 0 0
\(919\) 9.53590 + 16.5167i 0.314560 + 0.544834i 0.979344 0.202202i \(-0.0648096\pi\)
−0.664784 + 0.747036i \(0.731476\pi\)
\(920\) 0.679492 1.17691i 0.0224022 0.0388017i
\(921\) 0 0
\(922\) −8.43078 −0.277653
\(923\) 31.8301 + 33.0788i 1.04770 + 1.08880i
\(924\) 0 0
\(925\) −3.46410 2.00000i −0.113899 0.0657596i
\(926\) 0.653212 1.13140i 0.0214659 0.0371800i
\(927\) 0 0
\(928\) 16.0000i 0.525226i
\(929\) 13.2679 7.66025i 0.435307 0.251325i −0.266298 0.963891i \(-0.585800\pi\)
0.701605 + 0.712566i \(0.252467\pi\)
\(930\) 0 0
\(931\) 70.6410i 2.31517i
\(932\) −17.4641 30.2487i −0.572056 0.990829i
\(933\) 0 0
\(934\) −15.0000 8.66025i −0.490815 0.283372i
\(935\) −23.3205 −0.762662
\(936\) 0 0
\(937\) 32.2487 1.05352 0.526760 0.850014i \(-0.323407\pi\)
0.526760 + 0.850014i \(0.323407\pi\)
\(938\) 35.2750 + 20.3660i 1.15177 + 0.664974i
\(939\) 0 0
\(940\) −0.143594 0.248711i −0.00468350 0.00811207i
\(941\) 9.41154i 0.306808i −0.988164 0.153404i \(-0.950976\pi\)
0.988164 0.153404i \(-0.0490235\pi\)
\(942\) 0 0
\(943\) −2.44486 + 1.41154i −0.0796157 + 0.0459662i
\(944\) 7.78976i 0.253535i
\(945\) 0 0
\(946\) 0.339746 0.588457i 0.0110461 0.0191324i
\(947\) 4.68653 + 2.70577i 0.152292 + 0.0879258i 0.574209 0.818708i \(-0.305310\pi\)
−0.421918 + 0.906634i \(0.638643\pi\)
\(948\) 0 0
\(949\) −53.8731 + 13.3301i −1.74879 + 0.432714i
\(950\) 4.00000 0.129777
\(951\) 0 0
\(952\) −38.1051 + 66.0000i −1.23499 + 2.13907i
\(953\) −12.1244 21.0000i −0.392746 0.680257i 0.600064 0.799952i \(-0.295142\pi\)
−0.992811 + 0.119695i \(0.961808\pi\)
\(954\) 0 0
\(955\) 23.8301 13.7583i 0.771125 0.445209i
\(956\) 6.92820 4.00000i 0.224074 0.129369i
\(957\) 0 0
\(958\) 13.1436 + 22.7654i 0.424650 + 0.735516i
\(959\) −20.3660 + 35.2750i −0.657653 + 1.13909i
\(960\) 0 0
\(961\) 20.7846 0.670471
\(962\) −7.60770 + 7.32051i −0.245282 + 0.236023i
\(963\) 0 0
\(964\) −2.03848 1.17691i −0.0656549 0.0379059i
\(965\) −3.03590 + 5.25833i −0.0977290 + 0.169272i
\(966\) 0 0
\(967\) 16.2487i 0.522523i −0.965268 0.261262i \(-0.915861\pi\)
0.965268 0.261262i \(-0.0841385\pi\)
\(968\) 2.19615 1.26795i 0.0705870 0.0407534i
\(969\) 0 0
\(970\) 12.0526i 0.386984i
\(971\) 30.5885 + 52.9808i 0.981630 + 1.70023i 0.656047 + 0.754720i \(0.272227\pi\)
0.325584 + 0.945513i \(0.394439\pi\)
\(972\) 0 0
\(973\) −69.3109 40.0167i −2.22201 1.28288i
\(974\) 15.2154 0.487533
\(975\) 0 0
\(976\) 4.78461 0.153152
\(977\) 12.9282 + 7.46410i 0.413610 + 0.238798i 0.692340 0.721572i \(-0.256580\pi\)
−0.278730 + 0.960370i \(0.589913\pi\)
\(978\) 0 0
\(979\) 2.19615 + 3.80385i 0.0701893 + 0.121571i
\(980\) 18.9282i 0.604639i
\(981\) 0 0
\(982\) −4.51666 + 2.60770i −0.144132 + 0.0832149i
\(983\) 3.85641i 0.123000i 0.998107 + 0.0615001i \(0.0195885\pi\)
−0.998107 + 0.0615001i \(0.980412\pi\)
\(984\) 0 0
\(985\) −1.46410 + 2.53590i −0.0466502 + 0.0808004i
\(986\) −11.6603 6.73205i −0.371338 0.214392i
\(987\) 0 0
\(988\) −8.00000 + 27.7128i −0.254514 + 0.881662i
\(989\) −0.143594 −0.00456601
\(990\) 0 0
\(991\) −7.53590 + 13.0526i −0.239386 + 0.414628i −0.960538 0.278148i \(-0.910279\pi\)
0.721152 + 0.692776i \(0.243613\pi\)
\(992\) 9.35898 + 16.2102i 0.297148 + 0.514675i
\(993\) 0 0
\(994\) −36.0333 + 20.8038i −1.14291 + 0.659858i
\(995\) 12.9904 7.50000i 0.411823 0.237766i
\(996\) 0 0
\(997\) 13.2058 + 22.8731i 0.418231 + 0.724397i 0.995762 0.0919717i \(-0.0293169\pi\)
−0.577531 + 0.816369i \(0.695984\pi\)
\(998\) 0.143594 0.248711i 0.00454537 0.00787282i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.bu.a.316.1 4
3.2 odd 2 195.2.bb.a.121.2 4
13.6 odd 12 7605.2.a.bk.1.1 2
13.7 odd 12 7605.2.a.y.1.2 2
13.10 even 6 inner 585.2.bu.a.361.1 4
15.2 even 4 975.2.w.a.199.2 4
15.8 even 4 975.2.w.f.199.1 4
15.14 odd 2 975.2.bc.h.901.1 4
39.20 even 12 2535.2.a.s.1.1 2
39.23 odd 6 195.2.bb.a.166.2 yes 4
39.32 even 12 2535.2.a.n.1.2 2
195.23 even 12 975.2.w.a.49.2 4
195.62 even 12 975.2.w.f.49.1 4
195.179 odd 6 975.2.bc.h.751.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bb.a.121.2 4 3.2 odd 2
195.2.bb.a.166.2 yes 4 39.23 odd 6
585.2.bu.a.316.1 4 1.1 even 1 trivial
585.2.bu.a.361.1 4 13.10 even 6 inner
975.2.w.a.49.2 4 195.23 even 12
975.2.w.a.199.2 4 15.2 even 4
975.2.w.f.49.1 4 195.62 even 12
975.2.w.f.199.1 4 15.8 even 4
975.2.bc.h.751.1 4 195.179 odd 6
975.2.bc.h.901.1 4 15.14 odd 2
2535.2.a.n.1.2 2 39.32 even 12
2535.2.a.s.1.1 2 39.20 even 12
7605.2.a.y.1.2 2 13.7 odd 12
7605.2.a.bk.1.1 2 13.6 odd 12