Properties

Label 585.2.cm.a
Level $585$
Weight $2$
Character orbit 585.cm
Analytic conductor $4.671$
Analytic rank $0$
Dimension $224$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(11,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.11");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.cm (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(224\)
Relative dimension: \(56\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 224 q + 24 q^{6} + 4 q^{7} - 36 q^{8} + 8 q^{15} - 224 q^{16} - 4 q^{18} - 8 q^{19} - 24 q^{21} - 8 q^{24} + 48 q^{26} + 24 q^{27} - 16 q^{28} - 48 q^{30} + 32 q^{31} - 72 q^{32} + 4 q^{33} - 12 q^{36}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1 −1.97601 + 1.97601i −1.72888 + 0.104699i 5.80920i −0.965926 0.258819i 3.20940 3.62317i 3.76955 + 1.01005i 7.52701 + 7.52701i 2.97808 0.362024i 2.42010 1.39725i
11.2 −1.95804 + 1.95804i 1.69798 0.341849i 5.66785i 0.965926 + 0.258819i −2.65536 + 3.99407i −1.12826 0.302317i 7.18181 + 7.18181i 2.76628 1.16091i −2.39810 + 1.38454i
11.3 −1.80633 + 1.80633i 0.0891243 1.72976i 4.52566i −0.965926 0.258819i 2.96352 + 3.28550i −3.55730 0.953176i 4.56218 + 4.56218i −2.98411 0.308327i 2.21229 1.27727i
11.4 −1.63542 + 1.63542i 1.32331 + 1.11752i 3.34923i −0.965926 0.258819i −3.99179 + 0.336552i 2.92001 + 0.782415i 2.20656 + 2.20656i 0.502295 + 2.95765i 2.00298 1.15642i
11.5 −1.61918 + 1.61918i −1.59381 + 0.678060i 3.24348i 0.965926 + 0.258819i 1.48276 3.67856i −0.733430 0.196522i 2.01341 + 2.01341i 2.08047 2.16140i −1.98308 + 1.14493i
11.6 −1.59769 + 1.59769i −0.917692 + 1.46896i 3.10520i 0.965926 + 0.258819i −0.880751 3.81312i 2.65105 + 0.710347i 1.76576 + 1.76576i −1.31568 2.69611i −1.95676 + 1.12973i
11.7 −1.53708 + 1.53708i 0.382966 1.68918i 2.72522i 0.965926 + 0.258819i 2.00776 + 3.18505i 0.186034 + 0.0498475i 1.11472 + 1.11472i −2.70667 1.29380i −1.88253 + 1.08688i
11.8 −1.52334 + 1.52334i 1.49953 + 0.866843i 2.64114i 0.965926 + 0.258819i −3.60479 + 0.963794i 1.24140 + 0.332631i 0.976667 + 0.976667i 1.49717 + 2.59971i −1.86570 + 1.07716i
11.9 −1.46697 + 1.46697i −0.594527 1.62682i 2.30401i −0.965926 0.258819i 3.25865 + 1.51434i 2.58328 + 0.692188i 0.445979 + 0.445979i −2.29307 + 1.93438i 1.79667 1.03731i
11.10 −1.42201 + 1.42201i −0.734312 + 1.56869i 2.04423i −0.965926 0.258819i −1.18649 3.27489i −1.26945 0.340148i 0.0628911 + 0.0628911i −1.92157 2.30381i 1.74160 1.00551i
11.11 −1.34437 + 1.34437i −1.72320 + 0.174851i 1.61467i −0.965926 0.258819i 2.08156 2.55169i −3.00692 0.805701i −0.518028 0.518028i 2.93885 0.602608i 1.64651 0.950614i
11.12 −1.31977 + 1.31977i 0.842789 + 1.51318i 1.48358i 0.965926 + 0.258819i −3.10933 0.884758i −4.84339 1.29778i −0.681550 0.681550i −1.57941 + 2.55058i −1.61638 + 0.933218i
11.13 −1.24886 + 1.24886i 1.17421 1.27328i 1.11930i 0.965926 + 0.258819i 0.123720 + 3.05657i −3.10288 0.831413i −1.09987 1.09987i −0.242464 2.99019i −1.52953 + 0.883077i
11.14 −1.21445 + 1.21445i 1.70129 0.325000i 0.949755i −0.965926 0.258819i −1.67142 + 2.46081i −3.76044 1.00761i −1.27547 1.27547i 2.78875 1.10583i 1.48739 0.858742i
11.15 −1.08997 + 1.08997i −1.49138 0.880790i 0.376070i 0.965926 + 0.258819i 2.58559 0.665522i 4.54048 + 1.21662i −1.77004 1.77004i 1.44842 + 2.62718i −1.33494 + 0.770725i
11.16 −1.04871 + 1.04871i 1.68095 0.417629i 0.199578i −0.965926 0.258819i −1.32485 + 2.20080i −0.536552 0.143769i −1.88812 1.88812i 2.65117 1.40403i 1.28440 0.741549i
11.17 −0.841957 + 0.841957i 0.384397 + 1.68886i 0.582217i −0.965926 0.258819i −1.74559 1.09830i 3.93897 + 1.05544i −2.17412 2.17412i −2.70448 + 1.29838i 1.03118 0.595353i
11.18 −0.814519 + 0.814519i 0.169661 + 1.72372i 0.673118i 0.965926 + 0.258819i −1.54220 1.26581i 2.16964 + 0.581354i −2.17731 2.17731i −2.94243 + 0.584896i −0.997578 + 0.575952i
11.19 −0.765254 + 0.765254i −1.61613 + 0.623007i 0.828771i −0.965926 0.258819i 0.759988 1.71351i 3.59901 + 0.964350i −2.16473 2.16473i 2.22372 2.01372i 0.937241 0.541117i
11.20 −0.757603 + 0.757603i −0.500254 1.65824i 0.852077i 0.965926 + 0.258819i 1.63528 + 0.877290i −0.842470 0.225739i −2.16074 2.16074i −2.49949 + 1.65908i −0.927870 + 0.535706i
See next 80 embeddings (of 224 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 11.56
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
117.x even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 585.2.cm.a 224
9.d odd 6 1 585.2.dd.a yes 224
13.f odd 12 1 585.2.dd.a yes 224
117.x even 12 1 inner 585.2.cm.a 224
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
585.2.cm.a 224 1.a even 1 1 trivial
585.2.cm.a 224 117.x even 12 1 inner
585.2.dd.a yes 224 9.d odd 6 1
585.2.dd.a yes 224 13.f odd 12 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(585, [\chi])\).