Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [585,2,Mod(11,585)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(585, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([2, 0, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("585.11");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 585 = 3^{2} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 585.cm (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.67124851824\) |
Analytic rank: | \(0\) |
Dimension: | \(224\) |
Relative dimension: | \(56\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −1.97601 | + | 1.97601i | −1.72888 | + | 0.104699i | − | 5.80920i | −0.965926 | − | 0.258819i | 3.20940 | − | 3.62317i | 3.76955 | + | 1.01005i | 7.52701 | + | 7.52701i | 2.97808 | − | 0.362024i | 2.42010 | − | 1.39725i | |
11.2 | −1.95804 | + | 1.95804i | 1.69798 | − | 0.341849i | − | 5.66785i | 0.965926 | + | 0.258819i | −2.65536 | + | 3.99407i | −1.12826 | − | 0.302317i | 7.18181 | + | 7.18181i | 2.76628 | − | 1.16091i | −2.39810 | + | 1.38454i | |
11.3 | −1.80633 | + | 1.80633i | 0.0891243 | − | 1.72976i | − | 4.52566i | −0.965926 | − | 0.258819i | 2.96352 | + | 3.28550i | −3.55730 | − | 0.953176i | 4.56218 | + | 4.56218i | −2.98411 | − | 0.308327i | 2.21229 | − | 1.27727i | |
11.4 | −1.63542 | + | 1.63542i | 1.32331 | + | 1.11752i | − | 3.34923i | −0.965926 | − | 0.258819i | −3.99179 | + | 0.336552i | 2.92001 | + | 0.782415i | 2.20656 | + | 2.20656i | 0.502295 | + | 2.95765i | 2.00298 | − | 1.15642i | |
11.5 | −1.61918 | + | 1.61918i | −1.59381 | + | 0.678060i | − | 3.24348i | 0.965926 | + | 0.258819i | 1.48276 | − | 3.67856i | −0.733430 | − | 0.196522i | 2.01341 | + | 2.01341i | 2.08047 | − | 2.16140i | −1.98308 | + | 1.14493i | |
11.6 | −1.59769 | + | 1.59769i | −0.917692 | + | 1.46896i | − | 3.10520i | 0.965926 | + | 0.258819i | −0.880751 | − | 3.81312i | 2.65105 | + | 0.710347i | 1.76576 | + | 1.76576i | −1.31568 | − | 2.69611i | −1.95676 | + | 1.12973i | |
11.7 | −1.53708 | + | 1.53708i | 0.382966 | − | 1.68918i | − | 2.72522i | 0.965926 | + | 0.258819i | 2.00776 | + | 3.18505i | 0.186034 | + | 0.0498475i | 1.11472 | + | 1.11472i | −2.70667 | − | 1.29380i | −1.88253 | + | 1.08688i | |
11.8 | −1.52334 | + | 1.52334i | 1.49953 | + | 0.866843i | − | 2.64114i | 0.965926 | + | 0.258819i | −3.60479 | + | 0.963794i | 1.24140 | + | 0.332631i | 0.976667 | + | 0.976667i | 1.49717 | + | 2.59971i | −1.86570 | + | 1.07716i | |
11.9 | −1.46697 | + | 1.46697i | −0.594527 | − | 1.62682i | − | 2.30401i | −0.965926 | − | 0.258819i | 3.25865 | + | 1.51434i | 2.58328 | + | 0.692188i | 0.445979 | + | 0.445979i | −2.29307 | + | 1.93438i | 1.79667 | − | 1.03731i | |
11.10 | −1.42201 | + | 1.42201i | −0.734312 | + | 1.56869i | − | 2.04423i | −0.965926 | − | 0.258819i | −1.18649 | − | 3.27489i | −1.26945 | − | 0.340148i | 0.0628911 | + | 0.0628911i | −1.92157 | − | 2.30381i | 1.74160 | − | 1.00551i | |
11.11 | −1.34437 | + | 1.34437i | −1.72320 | + | 0.174851i | − | 1.61467i | −0.965926 | − | 0.258819i | 2.08156 | − | 2.55169i | −3.00692 | − | 0.805701i | −0.518028 | − | 0.518028i | 2.93885 | − | 0.602608i | 1.64651 | − | 0.950614i | |
11.12 | −1.31977 | + | 1.31977i | 0.842789 | + | 1.51318i | − | 1.48358i | 0.965926 | + | 0.258819i | −3.10933 | − | 0.884758i | −4.84339 | − | 1.29778i | −0.681550 | − | 0.681550i | −1.57941 | + | 2.55058i | −1.61638 | + | 0.933218i | |
11.13 | −1.24886 | + | 1.24886i | 1.17421 | − | 1.27328i | − | 1.11930i | 0.965926 | + | 0.258819i | 0.123720 | + | 3.05657i | −3.10288 | − | 0.831413i | −1.09987 | − | 1.09987i | −0.242464 | − | 2.99019i | −1.52953 | + | 0.883077i | |
11.14 | −1.21445 | + | 1.21445i | 1.70129 | − | 0.325000i | − | 0.949755i | −0.965926 | − | 0.258819i | −1.67142 | + | 2.46081i | −3.76044 | − | 1.00761i | −1.27547 | − | 1.27547i | 2.78875 | − | 1.10583i | 1.48739 | − | 0.858742i | |
11.15 | −1.08997 | + | 1.08997i | −1.49138 | − | 0.880790i | − | 0.376070i | 0.965926 | + | 0.258819i | 2.58559 | − | 0.665522i | 4.54048 | + | 1.21662i | −1.77004 | − | 1.77004i | 1.44842 | + | 2.62718i | −1.33494 | + | 0.770725i | |
11.16 | −1.04871 | + | 1.04871i | 1.68095 | − | 0.417629i | − | 0.199578i | −0.965926 | − | 0.258819i | −1.32485 | + | 2.20080i | −0.536552 | − | 0.143769i | −1.88812 | − | 1.88812i | 2.65117 | − | 1.40403i | 1.28440 | − | 0.741549i | |
11.17 | −0.841957 | + | 0.841957i | 0.384397 | + | 1.68886i | 0.582217i | −0.965926 | − | 0.258819i | −1.74559 | − | 1.09830i | 3.93897 | + | 1.05544i | −2.17412 | − | 2.17412i | −2.70448 | + | 1.29838i | 1.03118 | − | 0.595353i | ||
11.18 | −0.814519 | + | 0.814519i | 0.169661 | + | 1.72372i | 0.673118i | 0.965926 | + | 0.258819i | −1.54220 | − | 1.26581i | 2.16964 | + | 0.581354i | −2.17731 | − | 2.17731i | −2.94243 | + | 0.584896i | −0.997578 | + | 0.575952i | ||
11.19 | −0.765254 | + | 0.765254i | −1.61613 | + | 0.623007i | 0.828771i | −0.965926 | − | 0.258819i | 0.759988 | − | 1.71351i | 3.59901 | + | 0.964350i | −2.16473 | − | 2.16473i | 2.22372 | − | 2.01372i | 0.937241 | − | 0.541117i | ||
11.20 | −0.757603 | + | 0.757603i | −0.500254 | − | 1.65824i | 0.852077i | 0.965926 | + | 0.258819i | 1.63528 | + | 0.877290i | −0.842470 | − | 0.225739i | −2.16074 | − | 2.16074i | −2.49949 | + | 1.65908i | −0.927870 | + | 0.535706i | ||
See next 80 embeddings (of 224 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.x | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 585.2.cm.a | ✓ | 224 |
9.d | odd | 6 | 1 | 585.2.dd.a | yes | 224 | |
13.f | odd | 12 | 1 | 585.2.dd.a | yes | 224 | |
117.x | even | 12 | 1 | inner | 585.2.cm.a | ✓ | 224 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
585.2.cm.a | ✓ | 224 | 1.a | even | 1 | 1 | trivial |
585.2.cm.a | ✓ | 224 | 117.x | even | 12 | 1 | inner |
585.2.dd.a | yes | 224 | 9.d | odd | 6 | 1 | |
585.2.dd.a | yes | 224 | 13.f | odd | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(585, [\chi])\).