Properties

Label 585.2.j.i.451.3
Level $585$
Weight $2$
Character 585.451
Analytic conductor $4.671$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(406,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 10x^{8} - 8x^{7} + 50x^{6} - 42x^{5} + 124x^{4} - 12x^{3} + 96x^{2} - 36x + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 451.3
Root \(0.313396 + 0.542817i\) of defining polynomial
Character \(\chi\) \(=\) 585.451
Dual form 585.2.j.i.406.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.313396 - 0.542817i) q^{2} +(0.803566 + 1.39182i) q^{4} -1.00000 q^{5} +(-2.21563 - 3.83759i) q^{7} +2.26092 q^{8} +(-0.313396 + 0.542817i) q^{10} +(3.02903 - 5.24643i) q^{11} +(2.27075 + 2.80066i) q^{13} -2.77748 q^{14} +(-0.898570 + 1.55637i) q^{16} +(-2.92053 - 5.05850i) q^{17} +(1.80357 + 3.12387i) q^{19} +(-0.803566 - 1.39182i) q^{20} +(-1.89857 - 3.28842i) q^{22} +(1.13046 - 1.95801i) q^{23} +1.00000 q^{25} +(2.23189 - 0.354887i) q^{26} +(3.56082 - 6.16752i) q^{28} +(4.04253 - 7.00186i) q^{29} +6.45826 q^{31} +(2.82414 + 4.89155i) q^{32} -3.66112 q^{34} +(2.21563 + 3.83759i) q^{35} +(0.898570 - 1.55637i) q^{37} +2.26092 q^{38} -2.26092 q^{40} +(-3.99587 + 6.92106i) q^{41} +(-3.24375 - 5.61835i) q^{43} +9.73610 q^{44} +(-0.708563 - 1.22727i) q^{46} +3.22841 q^{47} +(-6.31807 + 10.9432i) q^{49} +(0.313396 - 0.542817i) q^{50} +(-2.07331 + 5.41098i) q^{52} -10.0768 q^{53} +(-3.02903 + 5.24643i) q^{55} +(-5.00937 - 8.67648i) q^{56} +(-2.53382 - 4.38871i) q^{58} +(1.56460 + 2.70997i) q^{59} +(1.22913 + 2.12892i) q^{61} +(2.02399 - 3.50566i) q^{62} -0.0539916 q^{64} +(-2.27075 - 2.80066i) q^{65} +(2.16932 - 3.75737i) q^{67} +(4.69368 - 8.12968i) q^{68} +2.77748 q^{70} +(4.24742 + 7.35675i) q^{71} -0.819388 q^{73} +(-0.563216 - 0.975519i) q^{74} +(-2.89857 + 5.02047i) q^{76} -26.8449 q^{77} -8.42187 q^{79} +(0.898570 - 1.55637i) q^{80} +(2.50458 + 4.33806i) q^{82} -2.35423 q^{83} +(2.92053 + 5.05850i) q^{85} -4.06631 q^{86} +(6.84839 - 11.8618i) q^{88} +(0.386706 - 0.669795i) q^{89} +(5.71664 - 14.9194i) q^{91} +3.63360 q^{92} +(1.01177 - 1.75244i) q^{94} +(-1.80357 - 3.12387i) q^{95} +(3.16052 + 5.47418i) q^{97} +(3.96011 + 6.85911i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 2 q^{2} - 6 q^{4} - 10 q^{5} - q^{7} - 12 q^{8} - 2 q^{10} + 8 q^{11} + q^{13} + 8 q^{14} - 4 q^{16} + 4 q^{19} + 6 q^{20} - 14 q^{22} - 6 q^{23} + 10 q^{25} + 10 q^{26} + 2 q^{28} + 16 q^{29}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.313396 0.542817i 0.221604 0.383830i −0.733691 0.679483i \(-0.762204\pi\)
0.955295 + 0.295653i \(0.0955374\pi\)
\(3\) 0 0
\(4\) 0.803566 + 1.39182i 0.401783 + 0.695909i
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.21563 3.83759i −0.837431 1.45047i −0.892036 0.451965i \(-0.850723\pi\)
0.0546047 0.998508i \(-0.482610\pi\)
\(8\) 2.26092 0.799356
\(9\) 0 0
\(10\) −0.313396 + 0.542817i −0.0991044 + 0.171654i
\(11\) 3.02903 5.24643i 0.913287 1.58186i 0.103897 0.994588i \(-0.466869\pi\)
0.809390 0.587271i \(-0.199798\pi\)
\(12\) 0 0
\(13\) 2.27075 + 2.80066i 0.629793 + 0.776763i
\(14\) −2.77748 −0.742313
\(15\) 0 0
\(16\) −0.898570 + 1.55637i −0.224642 + 0.389092i
\(17\) −2.92053 5.05850i −0.708332 1.22687i −0.965475 0.260494i \(-0.916115\pi\)
0.257143 0.966373i \(-0.417219\pi\)
\(18\) 0 0
\(19\) 1.80357 + 3.12387i 0.413766 + 0.716665i 0.995298 0.0968592i \(-0.0308797\pi\)
−0.581532 + 0.813524i \(0.697546\pi\)
\(20\) −0.803566 1.39182i −0.179683 0.311220i
\(21\) 0 0
\(22\) −1.89857 3.28842i −0.404776 0.701093i
\(23\) 1.13046 1.95801i 0.235717 0.408274i −0.723764 0.690048i \(-0.757589\pi\)
0.959481 + 0.281774i \(0.0909228\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 2.23189 0.354887i 0.437710 0.0695991i
\(27\) 0 0
\(28\) 3.56082 6.16752i 0.672931 1.16555i
\(29\) 4.04253 7.00186i 0.750679 1.30021i −0.196816 0.980441i \(-0.563060\pi\)
0.947494 0.319773i \(-0.103607\pi\)
\(30\) 0 0
\(31\) 6.45826 1.15994 0.579969 0.814638i \(-0.303065\pi\)
0.579969 + 0.814638i \(0.303065\pi\)
\(32\) 2.82414 + 4.89155i 0.499241 + 0.864711i
\(33\) 0 0
\(34\) −3.66112 −0.627878
\(35\) 2.21563 + 3.83759i 0.374511 + 0.648671i
\(36\) 0 0
\(37\) 0.898570 1.55637i 0.147724 0.255865i −0.782662 0.622447i \(-0.786139\pi\)
0.930386 + 0.366582i \(0.119472\pi\)
\(38\) 2.26092 0.366770
\(39\) 0 0
\(40\) −2.26092 −0.357483
\(41\) −3.99587 + 6.92106i −0.624051 + 1.08089i 0.364673 + 0.931136i \(0.381181\pi\)
−0.988724 + 0.149752i \(0.952153\pi\)
\(42\) 0 0
\(43\) −3.24375 5.61835i −0.494668 0.856790i 0.505313 0.862936i \(-0.331377\pi\)
−0.999981 + 0.00614624i \(0.998044\pi\)
\(44\) 9.73610 1.46777
\(45\) 0 0
\(46\) −0.708563 1.22727i −0.104472 0.180951i
\(47\) 3.22841 0.470912 0.235456 0.971885i \(-0.424342\pi\)
0.235456 + 0.971885i \(0.424342\pi\)
\(48\) 0 0
\(49\) −6.31807 + 10.9432i −0.902581 + 1.56332i
\(50\) 0.313396 0.542817i 0.0443208 0.0767660i
\(51\) 0 0
\(52\) −2.07331 + 5.41098i −0.287516 + 0.750369i
\(53\) −10.0768 −1.38416 −0.692078 0.721823i \(-0.743304\pi\)
−0.692078 + 0.721823i \(0.743304\pi\)
\(54\) 0 0
\(55\) −3.02903 + 5.24643i −0.408434 + 0.707429i
\(56\) −5.00937 8.67648i −0.669405 1.15944i
\(57\) 0 0
\(58\) −2.53382 4.38871i −0.332707 0.576266i
\(59\) 1.56460 + 2.70997i 0.203694 + 0.352809i 0.949716 0.313113i \(-0.101372\pi\)
−0.746022 + 0.665922i \(0.768039\pi\)
\(60\) 0 0
\(61\) 1.22913 + 2.12892i 0.157374 + 0.272580i 0.933921 0.357479i \(-0.116364\pi\)
−0.776547 + 0.630060i \(0.783030\pi\)
\(62\) 2.02399 3.50566i 0.257047 0.445219i
\(63\) 0 0
\(64\) −0.0539916 −0.00674895
\(65\) −2.27075 2.80066i −0.281652 0.347379i
\(66\) 0 0
\(67\) 2.16932 3.75737i 0.265025 0.459036i −0.702546 0.711639i \(-0.747953\pi\)
0.967570 + 0.252603i \(0.0812866\pi\)
\(68\) 4.69368 8.12968i 0.569192 0.985869i
\(69\) 0 0
\(70\) 2.77748 0.331972
\(71\) 4.24742 + 7.35675i 0.504076 + 0.873086i 0.999989 + 0.00471324i \(0.00150028\pi\)
−0.495913 + 0.868372i \(0.665166\pi\)
\(72\) 0 0
\(73\) −0.819388 −0.0959021 −0.0479511 0.998850i \(-0.515269\pi\)
−0.0479511 + 0.998850i \(0.515269\pi\)
\(74\) −0.563216 0.975519i −0.0654725 0.113402i
\(75\) 0 0
\(76\) −2.89857 + 5.02047i −0.332489 + 0.575887i
\(77\) −26.8449 −3.05926
\(78\) 0 0
\(79\) −8.42187 −0.947535 −0.473767 0.880650i \(-0.657106\pi\)
−0.473767 + 0.880650i \(0.657106\pi\)
\(80\) 0.898570 1.55637i 0.100463 0.174007i
\(81\) 0 0
\(82\) 2.50458 + 4.33806i 0.276584 + 0.479058i
\(83\) −2.35423 −0.258410 −0.129205 0.991618i \(-0.541243\pi\)
−0.129205 + 0.991618i \(0.541243\pi\)
\(84\) 0 0
\(85\) 2.92053 + 5.05850i 0.316776 + 0.548672i
\(86\) −4.06631 −0.438482
\(87\) 0 0
\(88\) 6.84839 11.8618i 0.730041 1.26447i
\(89\) 0.386706 0.669795i 0.0409908 0.0709982i −0.844802 0.535079i \(-0.820282\pi\)
0.885793 + 0.464081i \(0.153615\pi\)
\(90\) 0 0
\(91\) 5.71664 14.9194i 0.599267 1.56398i
\(92\) 3.63360 0.378829
\(93\) 0 0
\(94\) 1.01177 1.75244i 0.104356 0.180750i
\(95\) −1.80357 3.12387i −0.185042 0.320502i
\(96\) 0 0
\(97\) 3.16052 + 5.47418i 0.320902 + 0.555819i 0.980674 0.195647i \(-0.0626806\pi\)
−0.659772 + 0.751466i \(0.729347\pi\)
\(98\) 3.96011 + 6.85911i 0.400032 + 0.692875i
\(99\) 0 0
\(100\) 0.803566 + 1.39182i 0.0803566 + 0.139182i
\(101\) −4.45848 + 7.72231i −0.443635 + 0.768398i −0.997956 0.0639046i \(-0.979645\pi\)
0.554321 + 0.832303i \(0.312978\pi\)
\(102\) 0 0
\(103\) 0.112968 0.0111311 0.00556556 0.999985i \(-0.498228\pi\)
0.00556556 + 0.999985i \(0.498228\pi\)
\(104\) 5.13398 + 6.33207i 0.503428 + 0.620910i
\(105\) 0 0
\(106\) −3.15803 + 5.46986i −0.306735 + 0.531280i
\(107\) −3.87512 + 6.71191i −0.374622 + 0.648865i −0.990270 0.139156i \(-0.955561\pi\)
0.615648 + 0.788021i \(0.288894\pi\)
\(108\) 0 0
\(109\) −11.4744 −1.09905 −0.549525 0.835477i \(-0.685191\pi\)
−0.549525 + 0.835477i \(0.685191\pi\)
\(110\) 1.89857 + 3.28842i 0.181022 + 0.313539i
\(111\) 0 0
\(112\) 7.96361 0.752490
\(113\) 3.12369 + 5.41040i 0.293852 + 0.508967i 0.974717 0.223442i \(-0.0717293\pi\)
−0.680865 + 0.732409i \(0.738396\pi\)
\(114\) 0 0
\(115\) −1.13046 + 1.95801i −0.105416 + 0.182586i
\(116\) 12.9938 1.20644
\(117\) 0 0
\(118\) 1.96136 0.180558
\(119\) −12.9416 + 22.4156i −1.18636 + 2.05483i
\(120\) 0 0
\(121\) −12.8500 22.2569i −1.16819 2.02336i
\(122\) 1.54082 0.139499
\(123\) 0 0
\(124\) 5.18964 + 8.98873i 0.466044 + 0.807211i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −5.60171 + 9.70245i −0.497071 + 0.860953i −0.999994 0.00337830i \(-0.998925\pi\)
0.502923 + 0.864331i \(0.332258\pi\)
\(128\) −5.66519 + 9.81240i −0.500737 + 0.867302i
\(129\) 0 0
\(130\) −2.23189 + 0.354887i −0.195750 + 0.0311257i
\(131\) 0.494893 0.0432390 0.0216195 0.999766i \(-0.493118\pi\)
0.0216195 + 0.999766i \(0.493118\pi\)
\(132\) 0 0
\(133\) 7.99209 13.8427i 0.693002 1.20031i
\(134\) −1.35971 2.35509i −0.117461 0.203449i
\(135\) 0 0
\(136\) −6.60308 11.4369i −0.566209 0.980704i
\(137\) 11.5749 + 20.0483i 0.988909 + 1.71284i 0.623078 + 0.782160i \(0.285882\pi\)
0.365832 + 0.930681i \(0.380785\pi\)
\(138\) 0 0
\(139\) 5.97871 + 10.3554i 0.507107 + 0.878336i 0.999966 + 0.00822631i \(0.00261855\pi\)
−0.492859 + 0.870109i \(0.664048\pi\)
\(140\) −3.56082 + 6.16752i −0.300944 + 0.521250i
\(141\) 0 0
\(142\) 5.32450 0.446822
\(143\) 21.5716 3.43005i 1.80391 0.286835i
\(144\) 0 0
\(145\) −4.04253 + 7.00186i −0.335714 + 0.581473i
\(146\) −0.256793 + 0.444778i −0.0212523 + 0.0368101i
\(147\) 0 0
\(148\) 2.88824 0.237412
\(149\) −10.6089 18.3752i −0.869117 1.50536i −0.862900 0.505375i \(-0.831354\pi\)
−0.00621731 0.999981i \(-0.501979\pi\)
\(150\) 0 0
\(151\) 19.4623 1.58382 0.791909 0.610639i \(-0.209087\pi\)
0.791909 + 0.610639i \(0.209087\pi\)
\(152\) 4.07772 + 7.06282i 0.330747 + 0.572870i
\(153\) 0 0
\(154\) −8.41307 + 14.5719i −0.677945 + 1.17423i
\(155\) −6.45826 −0.518740
\(156\) 0 0
\(157\) 20.6547 1.64842 0.824212 0.566282i \(-0.191618\pi\)
0.824212 + 0.566282i \(0.191618\pi\)
\(158\) −2.63938 + 4.57154i −0.209978 + 0.363692i
\(159\) 0 0
\(160\) −2.82414 4.89155i −0.223268 0.386711i
\(161\) −10.0187 −0.789587
\(162\) 0 0
\(163\) 2.42990 + 4.20871i 0.190324 + 0.329652i 0.945358 0.326035i \(-0.105713\pi\)
−0.755033 + 0.655686i \(0.772379\pi\)
\(164\) −12.8438 −1.00293
\(165\) 0 0
\(166\) −0.737805 + 1.27792i −0.0572648 + 0.0991855i
\(167\) 1.28997 2.23430i 0.0998212 0.172895i −0.811789 0.583950i \(-0.801506\pi\)
0.911611 + 0.411055i \(0.134840\pi\)
\(168\) 0 0
\(169\) −2.68740 + 12.7192i −0.206723 + 0.978400i
\(170\) 3.66112 0.280795
\(171\) 0 0
\(172\) 5.21314 9.02943i 0.397498 0.688487i
\(173\) −5.12339 8.87397i −0.389524 0.674675i 0.602862 0.797846i \(-0.294027\pi\)
−0.992386 + 0.123170i \(0.960694\pi\)
\(174\) 0 0
\(175\) −2.21563 3.83759i −0.167486 0.290095i
\(176\) 5.44359 + 9.42857i 0.410326 + 0.710706i
\(177\) 0 0
\(178\) −0.242384 0.419822i −0.0181675 0.0314670i
\(179\) −5.30141 + 9.18232i −0.396246 + 0.686319i −0.993259 0.115913i \(-0.963021\pi\)
0.597013 + 0.802231i \(0.296354\pi\)
\(180\) 0 0
\(181\) 16.8618 1.25333 0.626664 0.779289i \(-0.284420\pi\)
0.626664 + 0.779289i \(0.284420\pi\)
\(182\) −6.30696 7.77878i −0.467503 0.576602i
\(183\) 0 0
\(184\) 2.55588 4.42691i 0.188422 0.326356i
\(185\) −0.898570 + 1.55637i −0.0660642 + 0.114427i
\(186\) 0 0
\(187\) −35.3855 −2.58764
\(188\) 2.59424 + 4.49336i 0.189204 + 0.327712i
\(189\) 0 0
\(190\) −2.26092 −0.164024
\(191\) −5.49549 9.51847i −0.397640 0.688732i 0.595795 0.803137i \(-0.296837\pi\)
−0.993434 + 0.114405i \(0.963504\pi\)
\(192\) 0 0
\(193\) 3.32586 5.76057i 0.239401 0.414655i −0.721142 0.692788i \(-0.756382\pi\)
0.960543 + 0.278133i \(0.0897156\pi\)
\(194\) 3.96197 0.284453
\(195\) 0 0
\(196\) −20.3079 −1.45057
\(197\) 11.9930 20.7725i 0.854466 1.47998i −0.0226743 0.999743i \(-0.507218\pi\)
0.877140 0.480235i \(-0.159449\pi\)
\(198\) 0 0
\(199\) 10.4552 + 18.1089i 0.741147 + 1.28370i 0.951973 + 0.306181i \(0.0990512\pi\)
−0.210826 + 0.977524i \(0.567615\pi\)
\(200\) 2.26092 0.159871
\(201\) 0 0
\(202\) 2.79454 + 4.84028i 0.196623 + 0.340561i
\(203\) −35.8270 −2.51457
\(204\) 0 0
\(205\) 3.99587 6.92106i 0.279084 0.483387i
\(206\) 0.0354038 0.0613212i 0.00246670 0.00427245i
\(207\) 0 0
\(208\) −6.39929 + 1.01753i −0.443711 + 0.0705533i
\(209\) 21.8522 1.51155
\(210\) 0 0
\(211\) −6.56540 + 11.3716i −0.451981 + 0.782853i −0.998509 0.0545873i \(-0.982616\pi\)
0.546528 + 0.837441i \(0.315949\pi\)
\(212\) −8.09738 14.0251i −0.556130 0.963246i
\(213\) 0 0
\(214\) 2.42889 + 4.20697i 0.166036 + 0.287582i
\(215\) 3.24375 + 5.61835i 0.221222 + 0.383168i
\(216\) 0 0
\(217\) −14.3091 24.7842i −0.971368 1.68246i
\(218\) −3.59603 + 6.22851i −0.243554 + 0.421848i
\(219\) 0 0
\(220\) −9.73610 −0.656408
\(221\) 7.53536 19.6660i 0.506883 1.32288i
\(222\) 0 0
\(223\) 10.6003 18.3603i 0.709851 1.22950i −0.255061 0.966925i \(-0.582095\pi\)
0.964912 0.262574i \(-0.0845712\pi\)
\(224\) 12.5145 21.6758i 0.836160 1.44827i
\(225\) 0 0
\(226\) 3.91581 0.260476
\(227\) 4.61972 + 8.00159i 0.306622 + 0.531084i 0.977621 0.210374i \(-0.0674681\pi\)
−0.670999 + 0.741458i \(0.734135\pi\)
\(228\) 0 0
\(229\) 3.16502 0.209150 0.104575 0.994517i \(-0.466652\pi\)
0.104575 + 0.994517i \(0.466652\pi\)
\(230\) 0.708563 + 1.22727i 0.0467212 + 0.0809235i
\(231\) 0 0
\(232\) 9.13983 15.8307i 0.600059 1.03933i
\(233\) −2.83723 −0.185873 −0.0929364 0.995672i \(-0.529625\pi\)
−0.0929364 + 0.995672i \(0.529625\pi\)
\(234\) 0 0
\(235\) −3.22841 −0.210598
\(236\) −2.51453 + 4.35529i −0.163682 + 0.283505i
\(237\) 0 0
\(238\) 8.11171 + 14.0499i 0.525804 + 0.910720i
\(239\) −0.634366 −0.0410337 −0.0205169 0.999790i \(-0.506531\pi\)
−0.0205169 + 0.999790i \(0.506531\pi\)
\(240\) 0 0
\(241\) 0.449233 + 0.778094i 0.0289376 + 0.0501215i 0.880132 0.474730i \(-0.157454\pi\)
−0.851194 + 0.524851i \(0.824121\pi\)
\(242\) −16.1086 −1.03550
\(243\) 0 0
\(244\) −1.97538 + 3.42146i −0.126461 + 0.219036i
\(245\) 6.31807 10.9432i 0.403647 0.699136i
\(246\) 0 0
\(247\) −4.65345 + 12.1447i −0.296092 + 0.772749i
\(248\) 14.6016 0.927204
\(249\) 0 0
\(250\) −0.313396 + 0.542817i −0.0198209 + 0.0343308i
\(251\) 7.22838 + 12.5199i 0.456252 + 0.790251i 0.998759 0.0498000i \(-0.0158584\pi\)
−0.542508 + 0.840051i \(0.682525\pi\)
\(252\) 0 0
\(253\) −6.84839 11.8618i −0.430555 0.745743i
\(254\) 3.51110 + 6.08141i 0.220306 + 0.381582i
\(255\) 0 0
\(256\) 3.49690 + 6.05681i 0.218556 + 0.378551i
\(257\) −0.209252 + 0.362435i −0.0130528 + 0.0226081i −0.872478 0.488653i \(-0.837488\pi\)
0.859425 + 0.511261i \(0.170822\pi\)
\(258\) 0 0
\(259\) −7.96361 −0.494835
\(260\) 2.07331 5.41098i 0.128581 0.335575i
\(261\) 0 0
\(262\) 0.155097 0.268636i 0.00958194 0.0165964i
\(263\) 1.24526 2.15686i 0.0767861 0.132997i −0.825075 0.565022i \(-0.808867\pi\)
0.901862 + 0.432025i \(0.142201\pi\)
\(264\) 0 0
\(265\) 10.0768 0.619013
\(266\) −5.00937 8.67648i −0.307144 0.531989i
\(267\) 0 0
\(268\) 6.97277 0.425930
\(269\) 0.884288 + 1.53163i 0.0539160 + 0.0933853i 0.891724 0.452580i \(-0.149496\pi\)
−0.837808 + 0.545965i \(0.816163\pi\)
\(270\) 0 0
\(271\) 10.2018 17.6700i 0.619714 1.07338i −0.369824 0.929102i \(-0.620582\pi\)
0.989538 0.144274i \(-0.0460845\pi\)
\(272\) 10.4972 0.636486
\(273\) 0 0
\(274\) 14.5101 0.876586
\(275\) 3.02903 5.24643i 0.182657 0.316372i
\(276\) 0 0
\(277\) 2.42247 + 4.19584i 0.145552 + 0.252103i 0.929579 0.368624i \(-0.120171\pi\)
−0.784027 + 0.620727i \(0.786838\pi\)
\(278\) 7.49480 0.449508
\(279\) 0 0
\(280\) 5.00937 + 8.67648i 0.299367 + 0.518519i
\(281\) −5.20237 −0.310347 −0.155174 0.987887i \(-0.549594\pi\)
−0.155174 + 0.987887i \(0.549594\pi\)
\(282\) 0 0
\(283\) −5.01017 + 8.67787i −0.297824 + 0.515846i −0.975638 0.219388i \(-0.929594\pi\)
0.677814 + 0.735233i \(0.262927\pi\)
\(284\) −6.82617 + 11.8233i −0.405059 + 0.701582i
\(285\) 0 0
\(286\) 4.89857 12.7844i 0.289659 0.755959i
\(287\) 35.4136 2.09040
\(288\) 0 0
\(289\) −8.55897 + 14.8246i −0.503469 + 0.872034i
\(290\) 2.53382 + 4.38871i 0.148791 + 0.257714i
\(291\) 0 0
\(292\) −0.658433 1.14044i −0.0385319 0.0667391i
\(293\) 3.75349 + 6.50123i 0.219281 + 0.379806i 0.954588 0.297928i \(-0.0962955\pi\)
−0.735307 + 0.677734i \(0.762962\pi\)
\(294\) 0 0
\(295\) −1.56460 2.70997i −0.0910948 0.157781i
\(296\) 2.03159 3.51882i 0.118084 0.204528i
\(297\) 0 0
\(298\) −13.2992 −0.770400
\(299\) 8.05072 1.28012i 0.465585 0.0740315i
\(300\) 0 0
\(301\) −14.3739 + 24.8964i −0.828500 + 1.43500i
\(302\) 6.09940 10.5645i 0.350981 0.607917i
\(303\) 0 0
\(304\) −6.48252 −0.371798
\(305\) −1.22913 2.12892i −0.0703799 0.121902i
\(306\) 0 0
\(307\) −11.4404 −0.652940 −0.326470 0.945208i \(-0.605859\pi\)
−0.326470 + 0.945208i \(0.605859\pi\)
\(308\) −21.5716 37.3632i −1.22916 2.12897i
\(309\) 0 0
\(310\) −2.02399 + 3.50566i −0.114955 + 0.199108i
\(311\) −24.2351 −1.37424 −0.687122 0.726542i \(-0.741126\pi\)
−0.687122 + 0.726542i \(0.741126\pi\)
\(312\) 0 0
\(313\) −18.8796 −1.06714 −0.533570 0.845756i \(-0.679150\pi\)
−0.533570 + 0.845756i \(0.679150\pi\)
\(314\) 6.47309 11.2117i 0.365298 0.632714i
\(315\) 0 0
\(316\) −6.76753 11.7217i −0.380703 0.659398i
\(317\) −22.3459 −1.25507 −0.627534 0.778589i \(-0.715936\pi\)
−0.627534 + 0.778589i \(0.715936\pi\)
\(318\) 0 0
\(319\) −24.4899 42.4177i −1.37117 2.37494i
\(320\) 0.0539916 0.00301822
\(321\) 0 0
\(322\) −3.13983 + 5.43835i −0.174976 + 0.303067i
\(323\) 10.5347 18.2467i 0.586168 1.01527i
\(324\) 0 0
\(325\) 2.27075 + 2.80066i 0.125959 + 0.155353i
\(326\) 3.04608 0.168707
\(327\) 0 0
\(328\) −9.03435 + 15.6479i −0.498838 + 0.864013i
\(329\) −7.15297 12.3893i −0.394356 0.683045i
\(330\) 0 0
\(331\) 11.3443 + 19.6490i 0.623541 + 1.08001i 0.988821 + 0.149107i \(0.0476400\pi\)
−0.365280 + 0.930898i \(0.619027\pi\)
\(332\) −1.89178 3.27666i −0.103825 0.179830i
\(333\) 0 0
\(334\) −0.808545 1.40044i −0.0442416 0.0766287i
\(335\) −2.16932 + 3.75737i −0.118523 + 0.205287i
\(336\) 0 0
\(337\) −0.166960 −0.00909489 −0.00454745 0.999990i \(-0.501448\pi\)
−0.00454745 + 0.999990i \(0.501448\pi\)
\(338\) 6.06198 + 5.44491i 0.329728 + 0.296164i
\(339\) 0 0
\(340\) −4.69368 + 8.12968i −0.254550 + 0.440894i
\(341\) 19.5623 33.8829i 1.05936 1.83486i
\(342\) 0 0
\(343\) 24.9752 1.34854
\(344\) −7.33387 12.7026i −0.395416 0.684880i
\(345\) 0 0
\(346\) −6.42259 −0.345281
\(347\) 7.31716 + 12.6737i 0.392806 + 0.680359i 0.992818 0.119631i \(-0.0381712\pi\)
−0.600013 + 0.799990i \(0.704838\pi\)
\(348\) 0 0
\(349\) −1.11356 + 1.92874i −0.0596074 + 0.103243i −0.894289 0.447489i \(-0.852318\pi\)
0.834682 + 0.550733i \(0.185652\pi\)
\(350\) −2.77748 −0.148463
\(351\) 0 0
\(352\) 34.2176 1.82380
\(353\) 2.96970 5.14366i 0.158061 0.273770i −0.776108 0.630599i \(-0.782809\pi\)
0.934169 + 0.356830i \(0.116142\pi\)
\(354\) 0 0
\(355\) −4.24742 7.35675i −0.225430 0.390456i
\(356\) 1.24298 0.0658777
\(357\) 0 0
\(358\) 3.32288 + 5.75540i 0.175620 + 0.304182i
\(359\) −10.9234 −0.576516 −0.288258 0.957553i \(-0.593076\pi\)
−0.288258 + 0.957553i \(0.593076\pi\)
\(360\) 0 0
\(361\) 2.99430 5.18628i 0.157595 0.272962i
\(362\) 5.28442 9.15288i 0.277743 0.481065i
\(363\) 0 0
\(364\) 25.3588 4.03224i 1.32916 0.211347i
\(365\) 0.819388 0.0428887
\(366\) 0 0
\(367\) −4.32224 + 7.48634i −0.225619 + 0.390784i −0.956505 0.291716i \(-0.905774\pi\)
0.730886 + 0.682500i \(0.239107\pi\)
\(368\) 2.03159 + 3.51882i 0.105904 + 0.183431i
\(369\) 0 0
\(370\) 0.563216 + 0.975519i 0.0292802 + 0.0507148i
\(371\) 22.3265 + 38.6706i 1.15913 + 2.00768i
\(372\) 0 0
\(373\) −9.15260 15.8528i −0.473904 0.820826i 0.525650 0.850701i \(-0.323822\pi\)
−0.999554 + 0.0298755i \(0.990489\pi\)
\(374\) −11.0897 + 19.2078i −0.573432 + 0.993214i
\(375\) 0 0
\(376\) 7.29917 0.376426
\(377\) 28.7894 4.57773i 1.48273 0.235765i
\(378\) 0 0
\(379\) 15.0031 25.9861i 0.770657 1.33482i −0.166546 0.986034i \(-0.553262\pi\)
0.937203 0.348783i \(-0.113405\pi\)
\(380\) 2.89857 5.02047i 0.148694 0.257545i
\(381\) 0 0
\(382\) −6.88905 −0.352474
\(383\) 7.26799 + 12.5885i 0.371377 + 0.643244i 0.989778 0.142619i \(-0.0455524\pi\)
−0.618401 + 0.785863i \(0.712219\pi\)
\(384\) 0 0
\(385\) 26.8449 1.36814
\(386\) −2.08462 3.61067i −0.106105 0.183778i
\(387\) 0 0
\(388\) −5.07937 + 8.79773i −0.257866 + 0.446637i
\(389\) −24.5259 −1.24351 −0.621756 0.783211i \(-0.713581\pi\)
−0.621756 + 0.783211i \(0.713581\pi\)
\(390\) 0 0
\(391\) −13.2062 −0.667864
\(392\) −14.2846 + 24.7417i −0.721484 + 1.24965i
\(393\) 0 0
\(394\) −7.51711 13.0200i −0.378706 0.655939i
\(395\) 8.42187 0.423750
\(396\) 0 0
\(397\) 4.72045 + 8.17606i 0.236913 + 0.410345i 0.959827 0.280593i \(-0.0905312\pi\)
−0.722914 + 0.690938i \(0.757198\pi\)
\(398\) 13.1064 0.656965
\(399\) 0 0
\(400\) −0.898570 + 1.55637i −0.0449285 + 0.0778184i
\(401\) 0.244187 0.422945i 0.0121941 0.0211209i −0.859864 0.510523i \(-0.829452\pi\)
0.872058 + 0.489402i \(0.162785\pi\)
\(402\) 0 0
\(403\) 14.6651 + 18.0874i 0.730521 + 0.900998i
\(404\) −14.3307 −0.712980
\(405\) 0 0
\(406\) −11.2280 + 19.4475i −0.557238 + 0.965165i
\(407\) −5.44359 9.42857i −0.269829 0.467357i
\(408\) 0 0
\(409\) −10.3602 17.9443i −0.512277 0.887290i −0.999899 0.0142348i \(-0.995469\pi\)
0.487622 0.873055i \(-0.337865\pi\)
\(410\) −2.50458 4.33806i −0.123692 0.214241i
\(411\) 0 0
\(412\) 0.0907776 + 0.157231i 0.00447229 + 0.00774624i
\(413\) 6.93318 12.0086i 0.341160 0.590906i
\(414\) 0 0
\(415\) 2.35423 0.115565
\(416\) −7.28666 + 19.0169i −0.357258 + 0.932381i
\(417\) 0 0
\(418\) 6.84839 11.8618i 0.334966 0.580178i
\(419\) 2.27374 3.93823i 0.111079 0.192395i −0.805126 0.593103i \(-0.797903\pi\)
0.916206 + 0.400708i \(0.131236\pi\)
\(420\) 0 0
\(421\) 31.0991 1.51568 0.757840 0.652441i \(-0.226255\pi\)
0.757840 + 0.652441i \(0.226255\pi\)
\(422\) 4.11513 + 7.12762i 0.200322 + 0.346967i
\(423\) 0 0
\(424\) −22.7828 −1.10643
\(425\) −2.92053 5.05850i −0.141666 0.245373i
\(426\) 0 0
\(427\) 5.44661 9.43381i 0.263580 0.456534i
\(428\) −12.4557 −0.602068
\(429\) 0 0
\(430\) 4.06631 0.196095
\(431\) 17.1081 29.6321i 0.824067 1.42733i −0.0785630 0.996909i \(-0.525033\pi\)
0.902630 0.430417i \(-0.141633\pi\)
\(432\) 0 0
\(433\) 2.78163 + 4.81792i 0.133676 + 0.231534i 0.925091 0.379745i \(-0.123988\pi\)
−0.791415 + 0.611280i \(0.790655\pi\)
\(434\) −17.9377 −0.861037
\(435\) 0 0
\(436\) −9.22045 15.9703i −0.441580 0.764838i
\(437\) 8.15544 0.390127
\(438\) 0 0
\(439\) 1.40974 2.44175i 0.0672834 0.116538i −0.830421 0.557136i \(-0.811900\pi\)
0.897705 + 0.440598i \(0.145234\pi\)
\(440\) −6.84839 + 11.8618i −0.326484 + 0.565487i
\(441\) 0 0
\(442\) −8.31349 10.2536i −0.395433 0.487712i
\(443\) 15.0635 0.715686 0.357843 0.933782i \(-0.383512\pi\)
0.357843 + 0.933782i \(0.383512\pi\)
\(444\) 0 0
\(445\) −0.386706 + 0.669795i −0.0183316 + 0.0317513i
\(446\) −6.64420 11.5081i −0.314612 0.544924i
\(447\) 0 0
\(448\) 0.119626 + 0.207198i 0.00565178 + 0.00978918i
\(449\) 1.92228 + 3.32949i 0.0907181 + 0.157128i 0.907813 0.419374i \(-0.137750\pi\)
−0.817095 + 0.576502i \(0.804417\pi\)
\(450\) 0 0
\(451\) 24.2072 + 41.9282i 1.13987 + 1.97432i
\(452\) −5.02019 + 8.69522i −0.236130 + 0.408989i
\(453\) 0 0
\(454\) 5.79120 0.271795
\(455\) −5.71664 + 14.9194i −0.268000 + 0.699434i
\(456\) 0 0
\(457\) −15.2140 + 26.3515i −0.711682 + 1.23267i 0.252544 + 0.967586i \(0.418733\pi\)
−0.964225 + 0.265084i \(0.914600\pi\)
\(458\) 0.991904 1.71803i 0.0463486 0.0802782i
\(459\) 0 0
\(460\) −3.63360 −0.169417
\(461\) 15.3961 + 26.6667i 0.717066 + 1.24199i 0.962157 + 0.272494i \(0.0878486\pi\)
−0.245092 + 0.969500i \(0.578818\pi\)
\(462\) 0 0
\(463\) −12.9034 −0.599674 −0.299837 0.953991i \(-0.596932\pi\)
−0.299837 + 0.953991i \(0.596932\pi\)
\(464\) 7.26499 + 12.5833i 0.337269 + 0.584166i
\(465\) 0 0
\(466\) −0.889174 + 1.54010i −0.0411902 + 0.0713435i
\(467\) −10.2346 −0.473601 −0.236800 0.971558i \(-0.576099\pi\)
−0.236800 + 0.971558i \(0.576099\pi\)
\(468\) 0 0
\(469\) −19.2257 −0.887759
\(470\) −1.01177 + 1.75244i −0.0466694 + 0.0808338i
\(471\) 0 0
\(472\) 3.53745 + 6.12704i 0.162824 + 0.282020i
\(473\) −39.3017 −1.80709
\(474\) 0 0
\(475\) 1.80357 + 3.12387i 0.0827533 + 0.143333i
\(476\) −41.5979 −1.90664
\(477\) 0 0
\(478\) −0.198808 + 0.344345i −0.00909325 + 0.0157500i
\(479\) 17.5021 30.3146i 0.799693 1.38511i −0.120122 0.992759i \(-0.538329\pi\)
0.919816 0.392351i \(-0.128338\pi\)
\(480\) 0 0
\(481\) 6.39929 1.01753i 0.291782 0.0463956i
\(482\) 0.563151 0.0256508
\(483\) 0 0
\(484\) 20.6517 35.7698i 0.938715 1.62590i
\(485\) −3.16052 5.47418i −0.143512 0.248570i
\(486\) 0 0
\(487\) 0.765925 + 1.32662i 0.0347074 + 0.0601149i 0.882857 0.469641i \(-0.155617\pi\)
−0.848150 + 0.529756i \(0.822283\pi\)
\(488\) 2.77897 + 4.81332i 0.125798 + 0.217889i
\(489\) 0 0
\(490\) −3.96011 6.85911i −0.178900 0.309863i
\(491\) −12.5124 + 21.6721i −0.564676 + 0.978048i 0.432404 + 0.901680i \(0.357666\pi\)
−0.997080 + 0.0763675i \(0.975668\pi\)
\(492\) 0 0
\(493\) −47.2253 −2.12692
\(494\) 5.13398 + 6.33207i 0.230989 + 0.284893i
\(495\) 0 0
\(496\) −5.80320 + 10.0514i −0.260571 + 0.451323i
\(497\) 18.8215 32.5997i 0.844258 1.46230i
\(498\) 0 0
\(499\) 27.7838 1.24377 0.621887 0.783107i \(-0.286366\pi\)
0.621887 + 0.783107i \(0.286366\pi\)
\(500\) −0.803566 1.39182i −0.0359366 0.0622440i
\(501\) 0 0
\(502\) 9.06138 0.404429
\(503\) 21.5069 + 37.2511i 0.958947 + 1.66094i 0.725067 + 0.688679i \(0.241809\pi\)
0.233880 + 0.972266i \(0.424858\pi\)
\(504\) 0 0
\(505\) 4.45848 7.72231i 0.198400 0.343638i
\(506\) −8.58503 −0.381651
\(507\) 0 0
\(508\) −18.0054 −0.798860
\(509\) 0.568519 0.984703i 0.0251992 0.0436462i −0.853151 0.521664i \(-0.825311\pi\)
0.878350 + 0.478018i \(0.158645\pi\)
\(510\) 0 0
\(511\) 1.81546 + 3.14448i 0.0803114 + 0.139103i
\(512\) −18.2771 −0.807742
\(513\) 0 0
\(514\) 0.131157 + 0.227171i 0.00578510 + 0.0100201i
\(515\) −0.112968 −0.00497798
\(516\) 0 0
\(517\) 9.77894 16.9376i 0.430077 0.744916i
\(518\) −2.49576 + 4.32278i −0.109657 + 0.189932i
\(519\) 0 0
\(520\) −5.13398 6.33207i −0.225140 0.277680i
\(521\) −30.7311 −1.34635 −0.673177 0.739481i \(-0.735071\pi\)
−0.673177 + 0.739481i \(0.735071\pi\)
\(522\) 0 0
\(523\) 8.63268 14.9522i 0.377481 0.653816i −0.613214 0.789917i \(-0.710124\pi\)
0.990695 + 0.136101i \(0.0434571\pi\)
\(524\) 0.397679 + 0.688801i 0.0173727 + 0.0300904i
\(525\) 0 0
\(526\) −0.780519 1.35190i −0.0340322 0.0589456i
\(527\) −18.8615 32.6691i −0.821622 1.42309i
\(528\) 0 0
\(529\) 8.94412 + 15.4917i 0.388875 + 0.673551i
\(530\) 3.15803 5.46986i 0.137176 0.237596i
\(531\) 0 0
\(532\) 25.6887 1.11375
\(533\) −28.4571 + 4.52490i −1.23262 + 0.195995i
\(534\) 0 0
\(535\) 3.87512 6.71191i 0.167536 0.290181i
\(536\) 4.90466 8.49511i 0.211849 0.366933i
\(537\) 0 0
\(538\) 1.10853 0.0477921
\(539\) 38.2752 + 66.2947i 1.64863 + 2.85551i
\(540\) 0 0
\(541\) −17.8625 −0.767970 −0.383985 0.923339i \(-0.625449\pi\)
−0.383985 + 0.923339i \(0.625449\pi\)
\(542\) −6.39438 11.0754i −0.274662 0.475729i
\(543\) 0 0
\(544\) 16.4959 28.5718i 0.707257 1.22501i
\(545\) 11.4744 0.491510
\(546\) 0 0
\(547\) −4.97952 −0.212909 −0.106455 0.994318i \(-0.533950\pi\)
−0.106455 + 0.994318i \(0.533950\pi\)
\(548\) −18.6024 + 32.2203i −0.794654 + 1.37638i
\(549\) 0 0
\(550\) −1.89857 3.28842i −0.0809553 0.140219i
\(551\) 29.1639 1.24242
\(552\) 0 0
\(553\) 18.6598 + 32.3197i 0.793495 + 1.37437i
\(554\) 3.03676 0.129020
\(555\) 0 0
\(556\) −9.60857 + 16.6425i −0.407494 + 0.705801i
\(557\) −18.4656 + 31.9833i −0.782412 + 1.35518i 0.148121 + 0.988969i \(0.452678\pi\)
−0.930533 + 0.366208i \(0.880656\pi\)
\(558\) 0 0
\(559\) 8.36933 21.8425i 0.353985 0.923840i
\(560\) −7.96361 −0.336524
\(561\) 0 0
\(562\) −1.63040 + 2.82394i −0.0687743 + 0.119121i
\(563\) −4.68284 8.11092i −0.197358 0.341835i 0.750313 0.661083i \(-0.229903\pi\)
−0.947671 + 0.319248i \(0.896570\pi\)
\(564\) 0 0
\(565\) −3.12369 5.41040i −0.131415 0.227617i
\(566\) 3.14033 + 5.43921i 0.131998 + 0.228627i
\(567\) 0 0
\(568\) 9.60308 + 16.6330i 0.402936 + 0.697906i
\(569\) −0.218417 + 0.378309i −0.00915650 + 0.0158595i −0.870567 0.492049i \(-0.836248\pi\)
0.861411 + 0.507909i \(0.169581\pi\)
\(570\) 0 0
\(571\) −4.69561 −0.196505 −0.0982525 0.995162i \(-0.531325\pi\)
−0.0982525 + 0.995162i \(0.531325\pi\)
\(572\) 22.1083 + 27.2675i 0.924392 + 1.14011i
\(573\) 0 0
\(574\) 11.0985 19.2231i 0.463241 0.802357i
\(575\) 1.13046 1.95801i 0.0471434 0.0816548i
\(576\) 0 0
\(577\) −30.2121 −1.25775 −0.628873 0.777508i \(-0.716483\pi\)
−0.628873 + 0.777508i \(0.716483\pi\)
\(578\) 5.36469 + 9.29191i 0.223142 + 0.386493i
\(579\) 0 0
\(580\) −12.9938 −0.539536
\(581\) 5.21611 + 9.03457i 0.216401 + 0.374817i
\(582\) 0 0
\(583\) −30.5229 + 52.8673i −1.26413 + 2.18954i
\(584\) −1.85257 −0.0766599
\(585\) 0 0
\(586\) 4.70531 0.194375
\(587\) −21.8769 + 37.8919i −0.902956 + 1.56397i −0.0793186 + 0.996849i \(0.525274\pi\)
−0.823638 + 0.567117i \(0.808059\pi\)
\(588\) 0 0
\(589\) 11.6479 + 20.1748i 0.479944 + 0.831287i
\(590\) −1.96136 −0.0807480
\(591\) 0 0
\(592\) 1.61486 + 2.79701i 0.0663702 + 0.114957i
\(593\) 5.94151 0.243989 0.121994 0.992531i \(-0.461071\pi\)
0.121994 + 0.992531i \(0.461071\pi\)
\(594\) 0 0
\(595\) 12.9416 22.4156i 0.530556 0.918949i
\(596\) 17.0500 29.5314i 0.698393 1.20965i
\(597\) 0 0
\(598\) 1.82819 4.77126i 0.0747602 0.195111i
\(599\) 37.0505 1.51384 0.756922 0.653506i \(-0.226702\pi\)
0.756922 + 0.653506i \(0.226702\pi\)
\(600\) 0 0
\(601\) 18.6411 32.2874i 0.760387 1.31703i −0.182264 0.983250i \(-0.558343\pi\)
0.942651 0.333779i \(-0.108324\pi\)
\(602\) 9.00946 + 15.6048i 0.367198 + 0.636006i
\(603\) 0 0
\(604\) 15.6392 + 27.0879i 0.636351 + 1.10219i
\(605\) 12.8500 + 22.2569i 0.522429 + 0.904873i
\(606\) 0 0
\(607\) −12.2464 21.2115i −0.497068 0.860946i 0.502927 0.864329i \(-0.332257\pi\)
−0.999994 + 0.00338281i \(0.998923\pi\)
\(608\) −10.1870 + 17.6445i −0.413139 + 0.715577i
\(609\) 0 0
\(610\) −1.54082 −0.0623859
\(611\) 7.33091 + 9.04167i 0.296577 + 0.365787i
\(612\) 0 0
\(613\) −4.73601 + 8.20301i −0.191286 + 0.331316i −0.945677 0.325109i \(-0.894599\pi\)
0.754391 + 0.656425i \(0.227932\pi\)
\(614\) −3.58538 + 6.21006i −0.144694 + 0.250618i
\(615\) 0 0
\(616\) −60.6941 −2.44544
\(617\) 0.599037 + 1.03756i 0.0241163 + 0.0417707i 0.877832 0.478969i \(-0.158989\pi\)
−0.853715 + 0.520740i \(0.825656\pi\)
\(618\) 0 0
\(619\) −19.2559 −0.773959 −0.386979 0.922088i \(-0.626482\pi\)
−0.386979 + 0.922088i \(0.626482\pi\)
\(620\) −5.18964 8.98873i −0.208421 0.360996i
\(621\) 0 0
\(622\) −7.59517 + 13.1552i −0.304538 + 0.527476i
\(623\) −3.42720 −0.137308
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −5.91680 + 10.2482i −0.236483 + 0.409600i
\(627\) 0 0
\(628\) 16.5974 + 28.7476i 0.662309 + 1.14715i
\(629\) −10.4972 −0.418551
\(630\) 0 0
\(631\) −3.12995 5.42123i −0.124601 0.215816i 0.796976 0.604011i \(-0.206432\pi\)
−0.921577 + 0.388196i \(0.873099\pi\)
\(632\) −19.0412 −0.757417
\(633\) 0 0
\(634\) −7.00310 + 12.1297i −0.278128 + 0.481733i
\(635\) 5.60171 9.70245i 0.222297 0.385030i
\(636\) 0 0
\(637\) −44.9950 + 7.15454i −1.78277 + 0.283473i
\(638\) −30.7001 −1.21543
\(639\) 0 0
\(640\) 5.66519 9.81240i 0.223936 0.387869i
\(641\) 4.42209 + 7.65928i 0.174662 + 0.302523i 0.940044 0.341053i \(-0.110783\pi\)
−0.765382 + 0.643576i \(0.777450\pi\)
\(642\) 0 0
\(643\) 16.0506 + 27.8004i 0.632973 + 1.09634i 0.986941 + 0.161084i \(0.0514990\pi\)
−0.353968 + 0.935258i \(0.615168\pi\)
\(644\) −8.05072 13.9443i −0.317243 0.549481i
\(645\) 0 0
\(646\) −6.60308 11.4369i −0.259795 0.449978i
\(647\) −7.37834 + 12.7797i −0.290072 + 0.502420i −0.973827 0.227292i \(-0.927013\pi\)
0.683754 + 0.729712i \(0.260346\pi\)
\(648\) 0 0
\(649\) 18.9569 0.744125
\(650\) 2.23189 0.354887i 0.0875419 0.0139198i
\(651\) 0 0
\(652\) −3.90517 + 6.76395i −0.152938 + 0.264897i
\(653\) 13.3246 23.0788i 0.521430 0.903144i −0.478259 0.878219i \(-0.658732\pi\)
0.999689 0.0249251i \(-0.00793473\pi\)
\(654\) 0 0
\(655\) −0.494893 −0.0193371
\(656\) −7.18114 12.4381i −0.280377 0.485626i
\(657\) 0 0
\(658\) −8.96684 −0.349564
\(659\) 1.22477 + 2.12136i 0.0477101 + 0.0826363i 0.888894 0.458112i \(-0.151474\pi\)
−0.841184 + 0.540749i \(0.818141\pi\)
\(660\) 0 0
\(661\) −8.23556 + 14.2644i −0.320326 + 0.554821i −0.980555 0.196243i \(-0.937126\pi\)
0.660229 + 0.751064i \(0.270459\pi\)
\(662\) 14.2211 0.552718
\(663\) 0 0
\(664\) −5.32272 −0.206562
\(665\) −7.99209 + 13.8427i −0.309920 + 0.536797i
\(666\) 0 0
\(667\) −9.13983 15.8307i −0.353896 0.612965i
\(668\) 4.14632 0.160426
\(669\) 0 0
\(670\) 1.35971 + 2.35509i 0.0525302 + 0.0909850i
\(671\) 14.8923 0.574911
\(672\) 0 0
\(673\) 0.693745 1.20160i 0.0267419 0.0463184i −0.852345 0.522980i \(-0.824820\pi\)
0.879087 + 0.476662i \(0.158153\pi\)
\(674\) −0.0523246 + 0.0906288i −0.00201547 + 0.00349089i
\(675\) 0 0
\(676\) −19.8623 + 6.48035i −0.763935 + 0.249244i
\(677\) −23.0636 −0.886407 −0.443203 0.896421i \(-0.646158\pi\)
−0.443203 + 0.896421i \(0.646158\pi\)
\(678\) 0 0
\(679\) 14.0051 24.2576i 0.537467 0.930920i
\(680\) 6.60308 + 11.4369i 0.253217 + 0.438584i
\(681\) 0 0
\(682\) −12.2615 21.2375i −0.469516 0.813225i
\(683\) 10.5080 + 18.2004i 0.402078 + 0.696419i 0.993976 0.109593i \(-0.0349549\pi\)
−0.591899 + 0.806012i \(0.701622\pi\)
\(684\) 0 0
\(685\) −11.5749 20.0483i −0.442254 0.766006i
\(686\) 7.82713 13.5570i 0.298841 0.517608i
\(687\) 0 0
\(688\) 11.6590 0.444494
\(689\) −22.8819 28.2217i −0.871731 1.07516i
\(690\) 0 0
\(691\) 12.0289 20.8346i 0.457600 0.792587i −0.541234 0.840872i \(-0.682043\pi\)
0.998834 + 0.0482858i \(0.0153758\pi\)
\(692\) 8.23396 14.2616i 0.313008 0.542146i
\(693\) 0 0
\(694\) 9.17266 0.348190
\(695\) −5.97871 10.3554i −0.226785 0.392804i
\(696\) 0 0
\(697\) 46.6802 1.76814
\(698\) 0.697969 + 1.20892i 0.0264185 + 0.0457582i
\(699\) 0 0
\(700\) 3.56082 6.16752i 0.134586 0.233110i
\(701\) −20.0188 −0.756099 −0.378050 0.925785i \(-0.623405\pi\)
−0.378050 + 0.925785i \(0.623405\pi\)
\(702\) 0 0
\(703\) 6.48252 0.244493
\(704\) −0.163542 + 0.283264i −0.00616373 + 0.0106759i
\(705\) 0 0
\(706\) −1.86138 3.22400i −0.0700539 0.121337i
\(707\) 39.5134 1.48605
\(708\) 0 0
\(709\) −8.52960 14.7737i −0.320336 0.554838i 0.660221 0.751071i \(-0.270462\pi\)
−0.980557 + 0.196233i \(0.937129\pi\)
\(710\) −5.32450 −0.199825
\(711\) 0 0
\(712\) 0.874312 1.51435i 0.0327662 0.0567528i
\(713\) 7.30081 12.6454i 0.273417 0.473573i
\(714\) 0 0
\(715\) −21.5716 + 3.43005i −0.806734 + 0.128277i
\(716\) −17.0401 −0.636820
\(717\) 0 0
\(718\) −3.42335 + 5.92942i −0.127758 + 0.221284i
\(719\) −21.0559 36.4700i −0.785254 1.36010i −0.928847 0.370463i \(-0.879199\pi\)
0.143593 0.989637i \(-0.454134\pi\)
\(720\) 0 0
\(721\) −0.250297 0.433527i −0.00932154 0.0161454i
\(722\) −1.87680 3.25071i −0.0698473 0.120979i
\(723\) 0 0
\(724\) 13.5496 + 23.4686i 0.503566 + 0.872202i
\(725\) 4.04253 7.00186i 0.150136 0.260043i
\(726\) 0 0
\(727\) 3.62167 0.134320 0.0671601 0.997742i \(-0.478606\pi\)
0.0671601 + 0.997742i \(0.478606\pi\)
\(728\) 12.9249 33.7317i 0.479027 1.25018i
\(729\) 0 0
\(730\) 0.256793 0.444778i 0.00950432 0.0164620i
\(731\) −18.9469 + 32.8171i −0.700778 + 1.21378i
\(732\) 0 0
\(733\) −10.2438 −0.378362 −0.189181 0.981942i \(-0.560583\pi\)
−0.189181 + 0.981942i \(0.560583\pi\)
\(734\) 2.70914 + 4.69237i 0.0999963 + 0.173199i
\(735\) 0 0
\(736\) 12.7703 0.470719
\(737\) −13.1419 22.7624i −0.484087 0.838463i
\(738\) 0 0
\(739\) −4.63472 + 8.02758i −0.170491 + 0.295299i −0.938592 0.345030i \(-0.887869\pi\)
0.768101 + 0.640329i \(0.221202\pi\)
\(740\) −2.88824 −0.106174
\(741\) 0 0
\(742\) 27.9881 1.02748
\(743\) 22.3835 38.7694i 0.821172 1.42231i −0.0836373 0.996496i \(-0.526654\pi\)
0.904810 0.425816i \(-0.140013\pi\)
\(744\) 0 0
\(745\) 10.6089 + 18.3752i 0.388681 + 0.673215i
\(746\) −11.4735 −0.420076
\(747\) 0 0
\(748\) −28.4346 49.2501i −1.03967 1.80076i
\(749\) 34.3434 1.25488
\(750\) 0 0
\(751\) −7.67016 + 13.2851i −0.279888 + 0.484780i −0.971357 0.237626i \(-0.923631\pi\)
0.691469 + 0.722406i \(0.256964\pi\)
\(752\) −2.90095 + 5.02459i −0.105787 + 0.183228i
\(753\) 0 0
\(754\) 6.53761 17.0620i 0.238086 0.621362i
\(755\) −19.4623 −0.708305
\(756\) 0 0
\(757\) −3.00148 + 5.19872i −0.109091 + 0.188951i −0.915402 0.402541i \(-0.868127\pi\)
0.806311 + 0.591491i \(0.201461\pi\)
\(758\) −9.40381 16.2879i −0.341562 0.591602i
\(759\) 0 0
\(760\) −4.07772 7.06282i −0.147914 0.256195i
\(761\) −10.4825 18.1563i −0.379992 0.658165i 0.611069 0.791578i \(-0.290740\pi\)
−0.991061 + 0.133412i \(0.957407\pi\)
\(762\) 0 0
\(763\) 25.4231 + 44.0341i 0.920378 + 1.59414i
\(764\) 8.83198 15.2974i 0.319530 0.553442i
\(765\) 0 0
\(766\) 9.11103 0.329195
\(767\) −4.03689 + 10.5356i −0.145764 + 0.380418i
\(768\) 0 0
\(769\) 21.9076 37.9451i 0.790008 1.36833i −0.135953 0.990715i \(-0.543410\pi\)
0.925961 0.377619i \(-0.123257\pi\)
\(770\) 8.41307 14.5719i 0.303186 0.525134i
\(771\) 0 0
\(772\) 10.6902 0.384749
\(773\) −1.68610 2.92041i −0.0606449 0.105040i 0.834109 0.551600i \(-0.185982\pi\)
−0.894754 + 0.446560i \(0.852649\pi\)
\(774\) 0 0
\(775\) 6.45826 0.231988
\(776\) 7.14568 + 12.3767i 0.256515 + 0.444297i
\(777\) 0 0
\(778\) −7.68631 + 13.3131i −0.275568 + 0.477297i
\(779\) −28.8273 −1.03284
\(780\) 0 0
\(781\) 51.4623 1.84146
\(782\) −4.13875 + 7.16853i −0.148002 + 0.256346i
\(783\) 0 0
\(784\) −11.3545 19.6665i −0.405516 0.702375i
\(785\) −20.6547 −0.737198
\(786\) 0 0
\(787\) 17.8922 + 30.9902i 0.637789 + 1.10468i 0.985917 + 0.167235i \(0.0534840\pi\)
−0.348128 + 0.937447i \(0.613183\pi\)
\(788\) 38.5487 1.37324
\(789\) 0 0
\(790\) 2.63938 4.57154i 0.0939049 0.162648i
\(791\) 13.8419 23.9749i 0.492162 0.852450i
\(792\) 0 0
\(793\) −3.17133 + 8.27662i −0.112617 + 0.293911i
\(794\) 5.91748 0.210003
\(795\) 0 0
\(796\) −16.8028 + 29.1034i −0.595561 + 1.03154i
\(797\) −14.1625 24.5303i −0.501663 0.868906i −0.999998 0.00192156i \(-0.999388\pi\)
0.498335 0.866985i \(-0.333945\pi\)
\(798\) 0 0
\(799\) −9.42866 16.3309i −0.333562 0.577746i
\(800\) 2.82414 + 4.89155i 0.0998483 + 0.172942i
\(801\) 0 0
\(802\) −0.153055 0.265098i −0.00540455 0.00936095i
\(803\) −2.48195 + 4.29887i −0.0875861 + 0.151704i
\(804\) 0 0
\(805\) 10.0187 0.353114
\(806\) 14.4141 2.29195i 0.507716 0.0807306i
\(807\) 0 0
\(808\) −10.0803 + 17.4595i −0.354622 + 0.614224i
\(809\) −14.5698 + 25.2357i −0.512248 + 0.887239i 0.487651 + 0.873038i \(0.337854\pi\)
−0.999899 + 0.0142007i \(0.995480\pi\)
\(810\) 0 0
\(811\) −16.3733 −0.574946 −0.287473 0.957789i \(-0.592815\pi\)
−0.287473 + 0.957789i \(0.592815\pi\)
\(812\) −28.7894 49.8647i −1.01031 1.74991i
\(813\) 0 0
\(814\) −6.82399 −0.239181
\(815\) −2.42990 4.20871i −0.0851157 0.147425i
\(816\) 0 0
\(817\) 11.7006 20.2661i 0.409354 0.709022i
\(818\) −12.9873 −0.454091
\(819\) 0 0
\(820\) 12.8438 0.448525
\(821\) 17.5806 30.4505i 0.613566 1.06273i −0.377068 0.926186i \(-0.623068\pi\)
0.990634 0.136543i \(-0.0435990\pi\)
\(822\) 0 0
\(823\) −9.84233 17.0474i −0.343082 0.594236i 0.641921 0.766771i \(-0.278138\pi\)
−0.985003 + 0.172535i \(0.944804\pi\)
\(824\) 0.255413 0.00889772
\(825\) 0 0
\(826\) −4.34566 7.52690i −0.151205 0.261894i
\(827\) −11.6881 −0.406436 −0.203218 0.979134i \(-0.565140\pi\)
−0.203218 + 0.979134i \(0.565140\pi\)
\(828\) 0 0
\(829\) 22.7601 39.4217i 0.790493 1.36917i −0.135170 0.990822i \(-0.543158\pi\)
0.925662 0.378351i \(-0.123509\pi\)
\(830\) 0.737805 1.27792i 0.0256096 0.0443571i
\(831\) 0 0
\(832\) −0.122601 0.151212i −0.00425044 0.00524234i
\(833\) 73.8084 2.55731
\(834\) 0 0
\(835\) −1.28997 + 2.23430i −0.0446414 + 0.0773212i
\(836\) 17.5597 + 30.4143i 0.607315 + 1.05190i
\(837\) 0 0
\(838\) −1.42516 2.46845i −0.0492313 0.0852711i
\(839\) 14.5239 + 25.1561i 0.501420 + 0.868485i 0.999999 + 0.00164022i \(0.000522098\pi\)
−0.498579 + 0.866844i \(0.666145\pi\)
\(840\) 0 0
\(841\) −18.1841 31.4957i −0.627037 1.08606i
\(842\) 9.74634 16.8812i 0.335881 0.581763i
\(843\) 0 0
\(844\) −21.1029 −0.726393
\(845\) 2.68740 12.7192i 0.0924492 0.437554i
\(846\) 0 0
\(847\) −56.9420 + 98.6264i −1.95655 + 3.38884i
\(848\) 9.05471 15.6832i 0.310940 0.538564i
\(849\) 0 0
\(850\) −3.66112 −0.125576
\(851\) −2.03159 3.51882i −0.0696422 0.120624i
\(852\) 0 0
\(853\) −48.3320 −1.65486 −0.827429 0.561571i \(-0.810197\pi\)
−0.827429 + 0.561571i \(0.810197\pi\)
\(854\) −3.41389 5.91303i −0.116821 0.202340i
\(855\) 0 0
\(856\) −8.76134 + 15.1751i −0.299457 + 0.518674i
\(857\) 41.2151 1.40788 0.703940 0.710260i \(-0.251422\pi\)
0.703940 + 0.710260i \(0.251422\pi\)
\(858\) 0 0
\(859\) −52.5448 −1.79280 −0.896402 0.443242i \(-0.853828\pi\)
−0.896402 + 0.443242i \(0.853828\pi\)
\(860\) −5.21314 + 9.02943i −0.177767 + 0.307901i
\(861\) 0 0
\(862\) −10.7232 18.5731i −0.365234 0.632603i
\(863\) 22.9888 0.782549 0.391275 0.920274i \(-0.372034\pi\)
0.391275 + 0.920274i \(0.372034\pi\)
\(864\) 0 0
\(865\) 5.12339 + 8.87397i 0.174200 + 0.301724i
\(866\) 3.48700 0.118493
\(867\) 0 0
\(868\) 22.9967 39.8315i 0.780559 1.35197i
\(869\) −25.5101 + 44.1848i −0.865371 + 1.49887i
\(870\) 0 0
\(871\) 15.4491 2.45652i 0.523473 0.0832360i
\(872\) −25.9427 −0.878532
\(873\) 0 0
\(874\) 2.55588 4.42691i 0.0864539 0.149743i
\(875\) 2.21563 + 3.83759i 0.0749021 + 0.129734i
\(876\) 0 0
\(877\) 26.1492 + 45.2917i 0.882995 + 1.52939i 0.847994 + 0.530006i \(0.177810\pi\)
0.0350015 + 0.999387i \(0.488856\pi\)
\(878\) −0.883615 1.53047i −0.0298206 0.0516508i
\(879\) 0 0
\(880\) −5.44359 9.42857i −0.183503 0.317837i
\(881\) −16.8483 + 29.1821i −0.567634 + 0.983171i 0.429165 + 0.903226i \(0.358808\pi\)
−0.996799 + 0.0799447i \(0.974526\pi\)
\(882\) 0 0
\(883\) −20.4392 −0.687835 −0.343917 0.939000i \(-0.611754\pi\)
−0.343917 + 0.939000i \(0.611754\pi\)
\(884\) 33.4266 5.31508i 1.12426 0.178766i
\(885\) 0 0
\(886\) 4.72082 8.17671i 0.158599 0.274702i
\(887\) −10.1003 + 17.4942i −0.339134 + 0.587397i −0.984270 0.176670i \(-0.943467\pi\)
0.645136 + 0.764068i \(0.276801\pi\)
\(888\) 0 0
\(889\) 49.6454 1.66505
\(890\) 0.242384 + 0.419822i 0.00812474 + 0.0140725i
\(891\) 0 0
\(892\) 34.0723 1.14083
\(893\) 5.82265 + 10.0851i 0.194847 + 0.337486i
\(894\) 0 0
\(895\) 5.30141 9.18232i 0.177207 0.306931i
\(896\) 50.2080 1.67733
\(897\) 0 0
\(898\) 2.40974 0.0804140
\(899\) 26.1077 45.2199i 0.870741 1.50817i
\(900\) 0 0
\(901\) 29.4296 + 50.9735i 0.980442 + 1.69817i
\(902\) 30.3458 1.01040
\(903\) 0 0
\(904\) 7.06242 + 12.2325i 0.234893 + 0.406846i
\(905\) −16.8618 −0.560505
\(906\) 0 0
\(907\) 20.9015 36.2024i 0.694022 1.20208i −0.276488 0.961017i \(-0.589170\pi\)
0.970509 0.241063i \(-0.0774962\pi\)
\(908\) −7.42450 + 12.8596i −0.246391 + 0.426761i
\(909\) 0 0
\(910\) 6.30696 + 7.77878i 0.209074 + 0.257864i
\(911\) 3.42332 0.113420 0.0567098 0.998391i \(-0.481939\pi\)
0.0567098 + 0.998391i \(0.481939\pi\)
\(912\) 0 0
\(913\) −7.13103 + 12.3513i −0.236003 + 0.408769i
\(914\) 9.53602 + 16.5169i 0.315423 + 0.546329i
\(915\) 0 0
\(916\) 2.54330 + 4.40513i 0.0840331 + 0.145550i
\(917\) −1.09650 1.89920i −0.0362097 0.0627170i
\(918\) 0 0
\(919\) −3.52603 6.10727i −0.116313 0.201460i 0.801991 0.597336i \(-0.203774\pi\)
−0.918304 + 0.395876i \(0.870441\pi\)
\(920\) −2.55588 + 4.42691i −0.0842648 + 0.145951i
\(921\) 0 0
\(922\) 19.3002 0.635619
\(923\) −10.9589 + 28.6009i −0.360718 + 0.941411i
\(924\) 0 0
\(925\) 0.898570 1.55637i 0.0295448 0.0511731i
\(926\) −4.04388 + 7.00421i −0.132890 + 0.230173i
\(927\) 0 0
\(928\) 45.6666 1.49908
\(929\) −5.02099 8.69661i −0.164733 0.285326i 0.771827 0.635832i \(-0.219343\pi\)
−0.936561 + 0.350506i \(0.886010\pi\)
\(930\) 0 0
\(931\) −45.5802 −1.49383
\(932\) −2.27990 3.94890i −0.0746806 0.129351i
\(933\) 0 0
\(934\) −3.20748 + 5.55552i −0.104952 + 0.181782i
\(935\) 35.3855 1.15723
\(936\) 0 0
\(937\) 5.84613 0.190985 0.0954924 0.995430i \(-0.469557\pi\)
0.0954924 + 0.995430i \(0.469557\pi\)
\(938\) −6.02524 + 10.4360i −0.196731 + 0.340748i
\(939\) 0 0
\(940\) −2.59424 4.49336i −0.0846148 0.146557i
\(941\) 46.1640 1.50490 0.752452 0.658647i \(-0.228871\pi\)
0.752452 + 0.658647i \(0.228871\pi\)
\(942\) 0 0
\(943\) 9.03435 + 15.6479i 0.294199 + 0.509567i
\(944\) −5.62363 −0.183033
\(945\) 0 0
\(946\) −12.3170 + 21.3336i −0.400460 + 0.693617i
\(947\) −7.24152 + 12.5427i −0.235318 + 0.407582i −0.959365 0.282168i \(-0.908946\pi\)
0.724047 + 0.689750i \(0.242280\pi\)
\(948\) 0 0
\(949\) −1.86062 2.29483i −0.0603984 0.0744933i
\(950\) 2.26092 0.0733539
\(951\) 0 0
\(952\) −29.2600 + 50.6798i −0.948323 + 1.64254i
\(953\) −19.2212 33.2920i −0.622635 1.07843i −0.988993 0.147961i \(-0.952729\pi\)
0.366359 0.930474i \(-0.380604\pi\)
\(954\) 0 0
\(955\) 5.49549 + 9.51847i 0.177830 + 0.308010i
\(956\) −0.509755 0.882922i −0.0164867 0.0285557i
\(957\) 0 0
\(958\) −10.9702 19.0009i −0.354431 0.613892i
\(959\) 51.2914 88.8394i 1.65629 2.86877i
\(960\) 0 0
\(961\) 10.7092 0.345457
\(962\) 1.45317 3.79253i 0.0468522 0.122276i
\(963\) 0 0
\(964\) −0.721977 + 1.25050i −0.0232533 + 0.0402759i
\(965\) −3.32586 + 5.76057i −0.107063 + 0.185439i
\(966\) 0 0
\(967\) 44.2627 1.42339 0.711696 0.702487i \(-0.247927\pi\)
0.711696 + 0.702487i \(0.247927\pi\)
\(968\) −29.0529 50.3211i −0.933796 1.61738i
\(969\) 0 0
\(970\) −3.96197 −0.127211
\(971\) −22.2030 38.4567i −0.712527 1.23413i −0.963906 0.266244i \(-0.914217\pi\)
0.251378 0.967889i \(-0.419116\pi\)
\(972\) 0 0
\(973\) 26.4933 45.8877i 0.849335 1.47109i
\(974\) 0.960150 0.0307652
\(975\) 0 0
\(976\) −4.41784 −0.141412
\(977\) −1.69219 + 2.93096i −0.0541379 + 0.0937696i −0.891824 0.452382i \(-0.850574\pi\)
0.837686 + 0.546152i \(0.183908\pi\)
\(978\) 0 0
\(979\) −2.34269 4.05766i −0.0748727 0.129683i
\(980\) 20.3079 0.648714
\(981\) 0 0
\(982\) 7.84266 + 13.5839i 0.250269 + 0.433479i
\(983\) −39.6424 −1.26440 −0.632198 0.774807i \(-0.717847\pi\)
−0.632198 + 0.774807i \(0.717847\pi\)
\(984\) 0 0
\(985\) −11.9930 + 20.7725i −0.382129 + 0.661866i
\(986\) −14.8002 + 25.6347i −0.471334 + 0.816375i
\(987\) 0 0
\(988\) −20.6426 + 3.28232i −0.656727 + 0.104424i
\(989\) −14.6677 −0.466407
\(990\) 0 0
\(991\) 22.6722 39.2693i 0.720205 1.24743i −0.240712 0.970596i \(-0.577381\pi\)
0.960917 0.276835i \(-0.0892856\pi\)
\(992\) 18.2390 + 31.5909i 0.579089 + 1.00301i
\(993\) 0 0
\(994\) −11.7971 20.4332i −0.374182 0.648103i
\(995\) −10.4552 18.1089i −0.331451 0.574090i
\(996\) 0 0
\(997\) −26.9984 46.7626i −0.855048 1.48099i −0.876601 0.481218i \(-0.840194\pi\)
0.0215531 0.999768i \(-0.493139\pi\)
\(998\) 8.70733 15.0815i 0.275626 0.477398i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.j.i.451.3 yes 10
3.2 odd 2 585.2.j.h.451.3 yes 10
13.3 even 3 inner 585.2.j.i.406.3 yes 10
13.4 even 6 7605.2.a.cn.1.3 5
13.9 even 3 7605.2.a.cm.1.3 5
39.17 odd 6 7605.2.a.cl.1.3 5
39.29 odd 6 585.2.j.h.406.3 10
39.35 odd 6 7605.2.a.co.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
585.2.j.h.406.3 10 39.29 odd 6
585.2.j.h.451.3 yes 10 3.2 odd 2
585.2.j.i.406.3 yes 10 13.3 even 3 inner
585.2.j.i.451.3 yes 10 1.1 even 1 trivial
7605.2.a.cl.1.3 5 39.17 odd 6
7605.2.a.cm.1.3 5 13.9 even 3
7605.2.a.cn.1.3 5 13.4 even 6
7605.2.a.co.1.3 5 39.35 odd 6