Properties

Label 585.6.a.m.1.4
Level $585$
Weight $6$
Character 585.1
Self dual yes
Analytic conductor $93.825$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,6,Mod(1,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 585.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(93.8245345906\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 163x^{4} - 8x^{3} + 6120x^{2} + 6624x - 19440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.75663\) of defining polynomial
Character \(\chi\) \(=\) 585.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.75663 q^{2} -24.4010 q^{4} +25.0000 q^{5} +85.7300 q^{7} -155.477 q^{8} +68.9158 q^{10} -431.046 q^{11} +169.000 q^{13} +236.326 q^{14} +352.239 q^{16} +438.894 q^{17} +1617.28 q^{19} -610.025 q^{20} -1188.23 q^{22} -2173.44 q^{23} +625.000 q^{25} +465.871 q^{26} -2091.90 q^{28} -8289.72 q^{29} -2745.88 q^{31} +5946.25 q^{32} +1209.87 q^{34} +2143.25 q^{35} -2137.03 q^{37} +4458.24 q^{38} -3886.92 q^{40} +19520.9 q^{41} +8153.29 q^{43} +10517.9 q^{44} -5991.39 q^{46} +13235.5 q^{47} -9457.36 q^{49} +1722.89 q^{50} -4123.77 q^{52} -1753.17 q^{53} -10776.1 q^{55} -13329.0 q^{56} -22851.7 q^{58} +1976.46 q^{59} +45578.3 q^{61} -7569.39 q^{62} +5119.96 q^{64} +4225.00 q^{65} -19457.7 q^{67} -10709.5 q^{68} +5908.15 q^{70} +64224.9 q^{71} +1029.22 q^{73} -5891.00 q^{74} -39463.2 q^{76} -36953.6 q^{77} -107661. q^{79} +8805.99 q^{80} +53812.1 q^{82} +46473.4 q^{83} +10972.4 q^{85} +22475.6 q^{86} +67017.6 q^{88} +3410.51 q^{89} +14488.4 q^{91} +53034.2 q^{92} +36485.3 q^{94} +40431.9 q^{95} +133264. q^{97} -26070.5 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 134 q^{4} + 150 q^{5} + 220 q^{7} - 24 q^{8} + 170 q^{11} + 1014 q^{13} + 1440 q^{14} + 3506 q^{16} - 728 q^{17} + 1218 q^{19} + 3350 q^{20} + 5154 q^{22} - 8954 q^{23} + 3750 q^{25} + 13212 q^{28}+ \cdots + 4736 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.75663 0.487308 0.243654 0.969862i \(-0.421654\pi\)
0.243654 + 0.969862i \(0.421654\pi\)
\(3\) 0 0
\(4\) −24.4010 −0.762531
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) 85.7300 0.661284 0.330642 0.943756i \(-0.392735\pi\)
0.330642 + 0.943756i \(0.392735\pi\)
\(8\) −155.477 −0.858896
\(9\) 0 0
\(10\) 68.9158 0.217931
\(11\) −431.046 −1.07409 −0.537046 0.843553i \(-0.680460\pi\)
−0.537046 + 0.843553i \(0.680460\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 236.326 0.322249
\(15\) 0 0
\(16\) 352.239 0.343984
\(17\) 438.894 0.368331 0.184165 0.982895i \(-0.441042\pi\)
0.184165 + 0.982895i \(0.441042\pi\)
\(18\) 0 0
\(19\) 1617.28 1.02778 0.513891 0.857856i \(-0.328204\pi\)
0.513891 + 0.857856i \(0.328204\pi\)
\(20\) −610.025 −0.341014
\(21\) 0 0
\(22\) −1188.23 −0.523414
\(23\) −2173.44 −0.856700 −0.428350 0.903613i \(-0.640905\pi\)
−0.428350 + 0.903613i \(0.640905\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 465.871 0.135155
\(27\) 0 0
\(28\) −2091.90 −0.504249
\(29\) −8289.72 −1.83040 −0.915198 0.403005i \(-0.867966\pi\)
−0.915198 + 0.403005i \(0.867966\pi\)
\(30\) 0 0
\(31\) −2745.88 −0.513190 −0.256595 0.966519i \(-0.582601\pi\)
−0.256595 + 0.966519i \(0.582601\pi\)
\(32\) 5946.25 1.02652
\(33\) 0 0
\(34\) 1209.87 0.179491
\(35\) 2143.25 0.295735
\(36\) 0 0
\(37\) −2137.03 −0.256629 −0.128315 0.991734i \(-0.540957\pi\)
−0.128315 + 0.991734i \(0.540957\pi\)
\(38\) 4458.24 0.500846
\(39\) 0 0
\(40\) −3886.92 −0.384110
\(41\) 19520.9 1.81360 0.906799 0.421562i \(-0.138518\pi\)
0.906799 + 0.421562i \(0.138518\pi\)
\(42\) 0 0
\(43\) 8153.29 0.672452 0.336226 0.941781i \(-0.390849\pi\)
0.336226 + 0.941781i \(0.390849\pi\)
\(44\) 10517.9 0.819029
\(45\) 0 0
\(46\) −5991.39 −0.417477
\(47\) 13235.5 0.873966 0.436983 0.899470i \(-0.356047\pi\)
0.436983 + 0.899470i \(0.356047\pi\)
\(48\) 0 0
\(49\) −9457.36 −0.562704
\(50\) 1722.89 0.0974616
\(51\) 0 0
\(52\) −4123.77 −0.211488
\(53\) −1753.17 −0.0857303 −0.0428651 0.999081i \(-0.513649\pi\)
−0.0428651 + 0.999081i \(0.513649\pi\)
\(54\) 0 0
\(55\) −10776.1 −0.480349
\(56\) −13329.0 −0.567974
\(57\) 0 0
\(58\) −22851.7 −0.891967
\(59\) 1976.46 0.0739192 0.0369596 0.999317i \(-0.488233\pi\)
0.0369596 + 0.999317i \(0.488233\pi\)
\(60\) 0 0
\(61\) 45578.3 1.56832 0.784158 0.620561i \(-0.213095\pi\)
0.784158 + 0.620561i \(0.213095\pi\)
\(62\) −7569.39 −0.250082
\(63\) 0 0
\(64\) 5119.96 0.156249
\(65\) 4225.00 0.124035
\(66\) 0 0
\(67\) −19457.7 −0.529546 −0.264773 0.964311i \(-0.585297\pi\)
−0.264773 + 0.964311i \(0.585297\pi\)
\(68\) −10709.5 −0.280863
\(69\) 0 0
\(70\) 5908.15 0.144114
\(71\) 64224.9 1.51202 0.756010 0.654561i \(-0.227146\pi\)
0.756010 + 0.654561i \(0.227146\pi\)
\(72\) 0 0
\(73\) 1029.22 0.0226048 0.0113024 0.999936i \(-0.496402\pi\)
0.0113024 + 0.999936i \(0.496402\pi\)
\(74\) −5891.00 −0.125058
\(75\) 0 0
\(76\) −39463.2 −0.783715
\(77\) −36953.6 −0.710280
\(78\) 0 0
\(79\) −107661. −1.94085 −0.970424 0.241407i \(-0.922391\pi\)
−0.970424 + 0.241407i \(0.922391\pi\)
\(80\) 8805.99 0.153834
\(81\) 0 0
\(82\) 53812.1 0.883782
\(83\) 46473.4 0.740473 0.370237 0.928938i \(-0.379277\pi\)
0.370237 + 0.928938i \(0.379277\pi\)
\(84\) 0 0
\(85\) 10972.4 0.164722
\(86\) 22475.6 0.327692
\(87\) 0 0
\(88\) 67017.6 0.922534
\(89\) 3410.51 0.0456398 0.0228199 0.999740i \(-0.492736\pi\)
0.0228199 + 0.999740i \(0.492736\pi\)
\(90\) 0 0
\(91\) 14488.4 0.183407
\(92\) 53034.2 0.653260
\(93\) 0 0
\(94\) 36485.3 0.425891
\(95\) 40431.9 0.459638
\(96\) 0 0
\(97\) 133264. 1.43808 0.719041 0.694967i \(-0.244581\pi\)
0.719041 + 0.694967i \(0.244581\pi\)
\(98\) −26070.5 −0.274210
\(99\) 0 0
\(100\) −15250.6 −0.152506
\(101\) −112628. −1.09860 −0.549302 0.835624i \(-0.685106\pi\)
−0.549302 + 0.835624i \(0.685106\pi\)
\(102\) 0 0
\(103\) 102456. 0.951581 0.475791 0.879559i \(-0.342162\pi\)
0.475791 + 0.879559i \(0.342162\pi\)
\(104\) −26275.6 −0.238215
\(105\) 0 0
\(106\) −4832.84 −0.0417771
\(107\) 90417.9 0.763475 0.381738 0.924271i \(-0.375326\pi\)
0.381738 + 0.924271i \(0.375326\pi\)
\(108\) 0 0
\(109\) 164916. 1.32953 0.664764 0.747053i \(-0.268532\pi\)
0.664764 + 0.747053i \(0.268532\pi\)
\(110\) −29705.9 −0.234078
\(111\) 0 0
\(112\) 30197.5 0.227471
\(113\) 36453.6 0.268562 0.134281 0.990943i \(-0.457128\pi\)
0.134281 + 0.990943i \(0.457128\pi\)
\(114\) 0 0
\(115\) −54336.1 −0.383128
\(116\) 202277. 1.39573
\(117\) 0 0
\(118\) 5448.36 0.0360214
\(119\) 37626.4 0.243571
\(120\) 0 0
\(121\) 24749.6 0.153676
\(122\) 125643. 0.764253
\(123\) 0 0
\(124\) 67002.3 0.391323
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) 178579. 0.982476 0.491238 0.871025i \(-0.336544\pi\)
0.491238 + 0.871025i \(0.336544\pi\)
\(128\) −176166. −0.950381
\(129\) 0 0
\(130\) 11646.8 0.0604431
\(131\) −43555.7 −0.221752 −0.110876 0.993834i \(-0.535366\pi\)
−0.110876 + 0.993834i \(0.535366\pi\)
\(132\) 0 0
\(133\) 138649. 0.679655
\(134\) −53637.6 −0.258052
\(135\) 0 0
\(136\) −68237.9 −0.316358
\(137\) 347518. 1.58189 0.790944 0.611888i \(-0.209590\pi\)
0.790944 + 0.611888i \(0.209590\pi\)
\(138\) 0 0
\(139\) 54594.1 0.239667 0.119834 0.992794i \(-0.461764\pi\)
0.119834 + 0.992794i \(0.461764\pi\)
\(140\) −52297.4 −0.225507
\(141\) 0 0
\(142\) 177044. 0.736819
\(143\) −72846.8 −0.297900
\(144\) 0 0
\(145\) −207243. −0.818578
\(146\) 2837.18 0.0110155
\(147\) 0 0
\(148\) 52145.6 0.195688
\(149\) 249528. 0.920777 0.460388 0.887718i \(-0.347710\pi\)
0.460388 + 0.887718i \(0.347710\pi\)
\(150\) 0 0
\(151\) 398788. 1.42331 0.711655 0.702529i \(-0.247946\pi\)
0.711655 + 0.702529i \(0.247946\pi\)
\(152\) −251449. −0.882757
\(153\) 0 0
\(154\) −101867. −0.346125
\(155\) −68647.1 −0.229505
\(156\) 0 0
\(157\) 432099. 1.39905 0.699527 0.714606i \(-0.253394\pi\)
0.699527 + 0.714606i \(0.253394\pi\)
\(158\) −296782. −0.945791
\(159\) 0 0
\(160\) 148656. 0.459075
\(161\) −186329. −0.566522
\(162\) 0 0
\(163\) 56309.9 0.166003 0.0830014 0.996549i \(-0.473549\pi\)
0.0830014 + 0.996549i \(0.473549\pi\)
\(164\) −476330. −1.38292
\(165\) 0 0
\(166\) 128110. 0.360839
\(167\) 512611. 1.42232 0.711160 0.703031i \(-0.248170\pi\)
0.711160 + 0.703031i \(0.248170\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 30246.8 0.0802706
\(171\) 0 0
\(172\) −198948. −0.512766
\(173\) 363030. 0.922204 0.461102 0.887347i \(-0.347454\pi\)
0.461102 + 0.887347i \(0.347454\pi\)
\(174\) 0 0
\(175\) 53581.3 0.132257
\(176\) −151831. −0.369471
\(177\) 0 0
\(178\) 9401.51 0.0222406
\(179\) 812489. 1.89533 0.947665 0.319265i \(-0.103436\pi\)
0.947665 + 0.319265i \(0.103436\pi\)
\(180\) 0 0
\(181\) −464974. −1.05495 −0.527475 0.849570i \(-0.676861\pi\)
−0.527475 + 0.849570i \(0.676861\pi\)
\(182\) 39939.1 0.0893758
\(183\) 0 0
\(184\) 337920. 0.735816
\(185\) −53425.7 −0.114768
\(186\) 0 0
\(187\) −189184. −0.395621
\(188\) −322959. −0.666426
\(189\) 0 0
\(190\) 111456. 0.223985
\(191\) 15537.6 0.0308177 0.0154088 0.999881i \(-0.495095\pi\)
0.0154088 + 0.999881i \(0.495095\pi\)
\(192\) 0 0
\(193\) −319408. −0.617238 −0.308619 0.951186i \(-0.599867\pi\)
−0.308619 + 0.951186i \(0.599867\pi\)
\(194\) 367360. 0.700789
\(195\) 0 0
\(196\) 230769. 0.429079
\(197\) −635878. −1.16737 −0.583685 0.811980i \(-0.698390\pi\)
−0.583685 + 0.811980i \(0.698390\pi\)
\(198\) 0 0
\(199\) 57426.3 0.102797 0.0513983 0.998678i \(-0.483632\pi\)
0.0513983 + 0.998678i \(0.483632\pi\)
\(200\) −97173.0 −0.171779
\(201\) 0 0
\(202\) −310473. −0.535359
\(203\) −710678. −1.21041
\(204\) 0 0
\(205\) 488024. 0.811066
\(206\) 282434. 0.463713
\(207\) 0 0
\(208\) 59528.5 0.0954039
\(209\) −697121. −1.10393
\(210\) 0 0
\(211\) −407094. −0.629489 −0.314745 0.949176i \(-0.601919\pi\)
−0.314745 + 0.949176i \(0.601919\pi\)
\(212\) 42779.1 0.0653720
\(213\) 0 0
\(214\) 249249. 0.372048
\(215\) 203832. 0.300730
\(216\) 0 0
\(217\) −235405. −0.339364
\(218\) 454614. 0.647890
\(219\) 0 0
\(220\) 262949. 0.366281
\(221\) 74173.2 0.102157
\(222\) 0 0
\(223\) 94338.9 0.127037 0.0635183 0.997981i \(-0.479768\pi\)
0.0635183 + 0.997981i \(0.479768\pi\)
\(224\) 509772. 0.678822
\(225\) 0 0
\(226\) 100489. 0.130872
\(227\) −251896. −0.324456 −0.162228 0.986753i \(-0.551868\pi\)
−0.162228 + 0.986753i \(0.551868\pi\)
\(228\) 0 0
\(229\) −428033. −0.539372 −0.269686 0.962948i \(-0.586920\pi\)
−0.269686 + 0.962948i \(0.586920\pi\)
\(230\) −149785. −0.186701
\(231\) 0 0
\(232\) 1.28886e6 1.57212
\(233\) −47973.8 −0.0578914 −0.0289457 0.999581i \(-0.509215\pi\)
−0.0289457 + 0.999581i \(0.509215\pi\)
\(234\) 0 0
\(235\) 330887. 0.390850
\(236\) −48227.5 −0.0563657
\(237\) 0 0
\(238\) 103722. 0.118694
\(239\) 1.39917e6 1.58444 0.792220 0.610236i \(-0.208925\pi\)
0.792220 + 0.610236i \(0.208925\pi\)
\(240\) 0 0
\(241\) −576792. −0.639700 −0.319850 0.947468i \(-0.603633\pi\)
−0.319850 + 0.947468i \(0.603633\pi\)
\(242\) 68225.6 0.0748875
\(243\) 0 0
\(244\) −1.11216e6 −1.19589
\(245\) −236434. −0.251649
\(246\) 0 0
\(247\) 273320. 0.285055
\(248\) 426921. 0.440776
\(249\) 0 0
\(250\) 43072.4 0.0435862
\(251\) −676974. −0.678247 −0.339124 0.940742i \(-0.610130\pi\)
−0.339124 + 0.940742i \(0.610130\pi\)
\(252\) 0 0
\(253\) 936855. 0.920176
\(254\) 492278. 0.478769
\(255\) 0 0
\(256\) −649464. −0.619377
\(257\) 2.05124e6 1.93724 0.968620 0.248545i \(-0.0799525\pi\)
0.968620 + 0.248545i \(0.0799525\pi\)
\(258\) 0 0
\(259\) −183208. −0.169705
\(260\) −103094. −0.0945803
\(261\) 0 0
\(262\) −120067. −0.108061
\(263\) −1.51723e6 −1.35258 −0.676289 0.736636i \(-0.736413\pi\)
−0.676289 + 0.736636i \(0.736413\pi\)
\(264\) 0 0
\(265\) −43829.2 −0.0383397
\(266\) 382205. 0.331201
\(267\) 0 0
\(268\) 474786. 0.403795
\(269\) −180817. −0.152355 −0.0761777 0.997094i \(-0.524272\pi\)
−0.0761777 + 0.997094i \(0.524272\pi\)
\(270\) 0 0
\(271\) −1.58203e6 −1.30856 −0.654278 0.756254i \(-0.727028\pi\)
−0.654278 + 0.756254i \(0.727028\pi\)
\(272\) 154596. 0.126700
\(273\) 0 0
\(274\) 957979. 0.770867
\(275\) −269404. −0.214819
\(276\) 0 0
\(277\) −1.53514e6 −1.20212 −0.601062 0.799202i \(-0.705256\pi\)
−0.601062 + 0.799202i \(0.705256\pi\)
\(278\) 150496. 0.116792
\(279\) 0 0
\(280\) −333226. −0.254006
\(281\) −959201. −0.724676 −0.362338 0.932047i \(-0.618021\pi\)
−0.362338 + 0.932047i \(0.618021\pi\)
\(282\) 0 0
\(283\) 2.63997e6 1.95945 0.979724 0.200353i \(-0.0642089\pi\)
0.979724 + 0.200353i \(0.0642089\pi\)
\(284\) −1.56715e6 −1.15296
\(285\) 0 0
\(286\) −200812. −0.145169
\(287\) 1.67353e6 1.19930
\(288\) 0 0
\(289\) −1.22723e6 −0.864333
\(290\) −571293. −0.398900
\(291\) 0 0
\(292\) −25114.0 −0.0172369
\(293\) −286709. −0.195106 −0.0975532 0.995230i \(-0.531102\pi\)
−0.0975532 + 0.995230i \(0.531102\pi\)
\(294\) 0 0
\(295\) 49411.4 0.0330577
\(296\) 332258. 0.220418
\(297\) 0 0
\(298\) 687858. 0.448702
\(299\) −367312. −0.237606
\(300\) 0 0
\(301\) 698981. 0.444682
\(302\) 1.09931e6 0.693591
\(303\) 0 0
\(304\) 569669. 0.353540
\(305\) 1.13946e6 0.701372
\(306\) 0 0
\(307\) 1.89896e6 1.14993 0.574963 0.818179i \(-0.305016\pi\)
0.574963 + 0.818179i \(0.305016\pi\)
\(308\) 901704. 0.541610
\(309\) 0 0
\(310\) −189235. −0.111840
\(311\) −1.74416e6 −1.02255 −0.511277 0.859416i \(-0.670827\pi\)
−0.511277 + 0.859416i \(0.670827\pi\)
\(312\) 0 0
\(313\) 605507. 0.349348 0.174674 0.984626i \(-0.444113\pi\)
0.174674 + 0.984626i \(0.444113\pi\)
\(314\) 1.19114e6 0.681770
\(315\) 0 0
\(316\) 2.62704e6 1.47996
\(317\) 2.19697e6 1.22793 0.613967 0.789332i \(-0.289573\pi\)
0.613967 + 0.789332i \(0.289573\pi\)
\(318\) 0 0
\(319\) 3.57325e6 1.96601
\(320\) 127999. 0.0698765
\(321\) 0 0
\(322\) −513642. −0.276071
\(323\) 709814. 0.378563
\(324\) 0 0
\(325\) 105625. 0.0554700
\(326\) 155226. 0.0808945
\(327\) 0 0
\(328\) −3.03505e6 −1.55769
\(329\) 1.13468e6 0.577940
\(330\) 0 0
\(331\) −3.68205e6 −1.84722 −0.923612 0.383329i \(-0.874777\pi\)
−0.923612 + 0.383329i \(0.874777\pi\)
\(332\) −1.13400e6 −0.564633
\(333\) 0 0
\(334\) 1.41308e6 0.693108
\(335\) −486442. −0.236820
\(336\) 0 0
\(337\) −3.46729e6 −1.66309 −0.831543 0.555460i \(-0.812542\pi\)
−0.831543 + 0.555460i \(0.812542\pi\)
\(338\) 78732.2 0.0374852
\(339\) 0 0
\(340\) −267736. −0.125606
\(341\) 1.18360e6 0.551214
\(342\) 0 0
\(343\) −2.25164e6 −1.03339
\(344\) −1.26765e6 −0.577566
\(345\) 0 0
\(346\) 1.00074e6 0.449398
\(347\) −3.91532e6 −1.74559 −0.872797 0.488083i \(-0.837696\pi\)
−0.872797 + 0.488083i \(0.837696\pi\)
\(348\) 0 0
\(349\) −3.32051e6 −1.45929 −0.729644 0.683827i \(-0.760314\pi\)
−0.729644 + 0.683827i \(0.760314\pi\)
\(350\) 147704. 0.0644498
\(351\) 0 0
\(352\) −2.56311e6 −1.10258
\(353\) −3.09575e6 −1.32230 −0.661148 0.750255i \(-0.729931\pi\)
−0.661148 + 0.750255i \(0.729931\pi\)
\(354\) 0 0
\(355\) 1.60562e6 0.676196
\(356\) −83219.7 −0.0348017
\(357\) 0 0
\(358\) 2.23973e6 0.923610
\(359\) 2.71429e6 1.11153 0.555764 0.831340i \(-0.312426\pi\)
0.555764 + 0.831340i \(0.312426\pi\)
\(360\) 0 0
\(361\) 139488. 0.0563340
\(362\) −1.28176e6 −0.514086
\(363\) 0 0
\(364\) −353531. −0.139854
\(365\) 25730.5 0.0101092
\(366\) 0 0
\(367\) 2.54964e6 0.988130 0.494065 0.869425i \(-0.335511\pi\)
0.494065 + 0.869425i \(0.335511\pi\)
\(368\) −765573. −0.294691
\(369\) 0 0
\(370\) −147275. −0.0559274
\(371\) −150299. −0.0566920
\(372\) 0 0
\(373\) 3.67946e6 1.36934 0.684671 0.728852i \(-0.259946\pi\)
0.684671 + 0.728852i \(0.259946\pi\)
\(374\) −521510. −0.192790
\(375\) 0 0
\(376\) −2.05781e6 −0.750646
\(377\) −1.40096e6 −0.507660
\(378\) 0 0
\(379\) −1.06822e6 −0.382000 −0.191000 0.981590i \(-0.561173\pi\)
−0.191000 + 0.981590i \(0.561173\pi\)
\(380\) −986579. −0.350488
\(381\) 0 0
\(382\) 42831.4 0.0150177
\(383\) 601784. 0.209625 0.104813 0.994492i \(-0.466576\pi\)
0.104813 + 0.994492i \(0.466576\pi\)
\(384\) 0 0
\(385\) −923839. −0.317647
\(386\) −880490. −0.300785
\(387\) 0 0
\(388\) −3.25178e6 −1.09658
\(389\) −5.00396e6 −1.67664 −0.838319 0.545180i \(-0.816461\pi\)
−0.838319 + 0.545180i \(0.816461\pi\)
\(390\) 0 0
\(391\) −953913. −0.315549
\(392\) 1.47040e6 0.483304
\(393\) 0 0
\(394\) −1.75288e6 −0.568869
\(395\) −2.69153e6 −0.867973
\(396\) 0 0
\(397\) 3.47583e6 1.10683 0.553417 0.832904i \(-0.313323\pi\)
0.553417 + 0.832904i \(0.313323\pi\)
\(398\) 158303. 0.0500936
\(399\) 0 0
\(400\) 220150. 0.0687968
\(401\) 5.15091e6 1.59964 0.799822 0.600238i \(-0.204927\pi\)
0.799822 + 0.600238i \(0.204927\pi\)
\(402\) 0 0
\(403\) −464054. −0.142333
\(404\) 2.74822e6 0.837719
\(405\) 0 0
\(406\) −1.95908e6 −0.589843
\(407\) 921158. 0.275644
\(408\) 0 0
\(409\) −1.11646e6 −0.330015 −0.165008 0.986292i \(-0.552765\pi\)
−0.165008 + 0.986292i \(0.552765\pi\)
\(410\) 1.34530e6 0.395239
\(411\) 0 0
\(412\) −2.50004e6 −0.725610
\(413\) 169442. 0.0488816
\(414\) 0 0
\(415\) 1.16184e6 0.331150
\(416\) 1.00492e6 0.284706
\(417\) 0 0
\(418\) −1.92171e6 −0.537955
\(419\) −1.79740e6 −0.500160 −0.250080 0.968225i \(-0.580457\pi\)
−0.250080 + 0.968225i \(0.580457\pi\)
\(420\) 0 0
\(421\) 5.31302e6 1.46095 0.730477 0.682937i \(-0.239298\pi\)
0.730477 + 0.682937i \(0.239298\pi\)
\(422\) −1.12221e6 −0.306755
\(423\) 0 0
\(424\) 272577. 0.0736334
\(425\) 274309. 0.0736661
\(426\) 0 0
\(427\) 3.90743e6 1.03710
\(428\) −2.20629e6 −0.582173
\(429\) 0 0
\(430\) 561890. 0.146548
\(431\) 4.63630e6 1.20221 0.601103 0.799172i \(-0.294728\pi\)
0.601103 + 0.799172i \(0.294728\pi\)
\(432\) 0 0
\(433\) −3.68664e6 −0.944955 −0.472478 0.881343i \(-0.656640\pi\)
−0.472478 + 0.881343i \(0.656640\pi\)
\(434\) −648924. −0.165375
\(435\) 0 0
\(436\) −4.02412e6 −1.01381
\(437\) −3.51506e6 −0.880501
\(438\) 0 0
\(439\) −1.67032e6 −0.413656 −0.206828 0.978377i \(-0.566314\pi\)
−0.206828 + 0.978377i \(0.566314\pi\)
\(440\) 1.67544e6 0.412570
\(441\) 0 0
\(442\) 204468. 0.0497817
\(443\) −3.59209e6 −0.869637 −0.434819 0.900518i \(-0.643187\pi\)
−0.434819 + 0.900518i \(0.643187\pi\)
\(444\) 0 0
\(445\) 85262.6 0.0204107
\(446\) 260058. 0.0619060
\(447\) 0 0
\(448\) 438934. 0.103325
\(449\) −80455.2 −0.0188338 −0.00941690 0.999956i \(-0.502998\pi\)
−0.00941690 + 0.999956i \(0.502998\pi\)
\(450\) 0 0
\(451\) −8.41443e6 −1.94797
\(452\) −889503. −0.204786
\(453\) 0 0
\(454\) −694384. −0.158110
\(455\) 362209. 0.0820221
\(456\) 0 0
\(457\) 2.87687e6 0.644362 0.322181 0.946678i \(-0.395584\pi\)
0.322181 + 0.946678i \(0.395584\pi\)
\(458\) −1.17993e6 −0.262840
\(459\) 0 0
\(460\) 1.32585e6 0.292147
\(461\) −81644.7 −0.0178927 −0.00894635 0.999960i \(-0.502848\pi\)
−0.00894635 + 0.999960i \(0.502848\pi\)
\(462\) 0 0
\(463\) −2.50214e6 −0.542450 −0.271225 0.962516i \(-0.587429\pi\)
−0.271225 + 0.962516i \(0.587429\pi\)
\(464\) −2.91997e6 −0.629626
\(465\) 0 0
\(466\) −132246. −0.0282109
\(467\) −1.38773e6 −0.294452 −0.147226 0.989103i \(-0.547034\pi\)
−0.147226 + 0.989103i \(0.547034\pi\)
\(468\) 0 0
\(469\) −1.66811e6 −0.350180
\(470\) 912133. 0.190464
\(471\) 0 0
\(472\) −307293. −0.0634889
\(473\) −3.51444e6 −0.722276
\(474\) 0 0
\(475\) 1.01080e6 0.205556
\(476\) −918122. −0.185730
\(477\) 0 0
\(478\) 3.85700e6 0.772111
\(479\) 4.96374e6 0.988485 0.494243 0.869324i \(-0.335445\pi\)
0.494243 + 0.869324i \(0.335445\pi\)
\(480\) 0 0
\(481\) −361158. −0.0711761
\(482\) −1.59000e6 −0.311731
\(483\) 0 0
\(484\) −603915. −0.117182
\(485\) 3.33160e6 0.643130
\(486\) 0 0
\(487\) 8.57371e6 1.63812 0.819061 0.573706i \(-0.194495\pi\)
0.819061 + 0.573706i \(0.194495\pi\)
\(488\) −7.08637e6 −1.34702
\(489\) 0 0
\(490\) −651762. −0.122631
\(491\) −2.55302e6 −0.477915 −0.238958 0.971030i \(-0.576806\pi\)
−0.238958 + 0.971030i \(0.576806\pi\)
\(492\) 0 0
\(493\) −3.63831e6 −0.674191
\(494\) 753442. 0.138910
\(495\) 0 0
\(496\) −967209. −0.176529
\(497\) 5.50600e6 0.999874
\(498\) 0 0
\(499\) 161861. 0.0290999 0.0145500 0.999894i \(-0.495368\pi\)
0.0145500 + 0.999894i \(0.495368\pi\)
\(500\) −381265. −0.0682028
\(501\) 0 0
\(502\) −1.86617e6 −0.330515
\(503\) −5.40474e6 −0.952477 −0.476239 0.879316i \(-0.658000\pi\)
−0.476239 + 0.879316i \(0.658000\pi\)
\(504\) 0 0
\(505\) −2.81569e6 −0.491311
\(506\) 2.58256e6 0.448409
\(507\) 0 0
\(508\) −4.35751e6 −0.749169
\(509\) −1.72999e6 −0.295971 −0.147985 0.988990i \(-0.547279\pi\)
−0.147985 + 0.988990i \(0.547279\pi\)
\(510\) 0 0
\(511\) 88235.1 0.0149482
\(512\) 3.84698e6 0.648553
\(513\) 0 0
\(514\) 5.65451e6 0.944033
\(515\) 2.56141e6 0.425560
\(516\) 0 0
\(517\) −5.70510e6 −0.938721
\(518\) −505036. −0.0826985
\(519\) 0 0
\(520\) −656889. −0.106533
\(521\) −8.15642e6 −1.31645 −0.658226 0.752820i \(-0.728693\pi\)
−0.658226 + 0.752820i \(0.728693\pi\)
\(522\) 0 0
\(523\) −7.57602e6 −1.21112 −0.605559 0.795800i \(-0.707051\pi\)
−0.605559 + 0.795800i \(0.707051\pi\)
\(524\) 1.06280e6 0.169093
\(525\) 0 0
\(526\) −4.18245e6 −0.659123
\(527\) −1.20515e6 −0.189023
\(528\) 0 0
\(529\) −1.71248e6 −0.266064
\(530\) −120821. −0.0186833
\(531\) 0 0
\(532\) −3.38318e6 −0.518258
\(533\) 3.29904e6 0.503002
\(534\) 0 0
\(535\) 2.26045e6 0.341436
\(536\) 3.02521e6 0.454825
\(537\) 0 0
\(538\) −498445. −0.0742440
\(539\) 4.07656e6 0.604396
\(540\) 0 0
\(541\) 1.29055e7 1.89575 0.947876 0.318640i \(-0.103226\pi\)
0.947876 + 0.318640i \(0.103226\pi\)
\(542\) −4.36108e6 −0.637670
\(543\) 0 0
\(544\) 2.60978e6 0.378099
\(545\) 4.12291e6 0.594583
\(546\) 0 0
\(547\) −7.61965e6 −1.08885 −0.544423 0.838811i \(-0.683252\pi\)
−0.544423 + 0.838811i \(0.683252\pi\)
\(548\) −8.47978e6 −1.20624
\(549\) 0 0
\(550\) −742647. −0.104683
\(551\) −1.34068e7 −1.88125
\(552\) 0 0
\(553\) −9.22980e6 −1.28345
\(554\) −4.23182e6 −0.585805
\(555\) 0 0
\(556\) −1.33215e6 −0.182754
\(557\) 7.35984e6 1.00515 0.502574 0.864534i \(-0.332386\pi\)
0.502574 + 0.864534i \(0.332386\pi\)
\(558\) 0 0
\(559\) 1.37791e6 0.186505
\(560\) 754937. 0.101728
\(561\) 0 0
\(562\) −2.64416e6 −0.353140
\(563\) 5.68526e6 0.755927 0.377963 0.925821i \(-0.376625\pi\)
0.377963 + 0.925821i \(0.376625\pi\)
\(564\) 0 0
\(565\) 911339. 0.120104
\(566\) 7.27744e6 0.954855
\(567\) 0 0
\(568\) −9.98547e6 −1.29867
\(569\) 1.43108e7 1.85304 0.926519 0.376249i \(-0.122786\pi\)
0.926519 + 0.376249i \(0.122786\pi\)
\(570\) 0 0
\(571\) −1.95049e6 −0.250354 −0.125177 0.992134i \(-0.539950\pi\)
−0.125177 + 0.992134i \(0.539950\pi\)
\(572\) 1.77753e6 0.227158
\(573\) 0 0
\(574\) 4.61331e6 0.584430
\(575\) −1.35840e6 −0.171340
\(576\) 0 0
\(577\) −987263. −0.123451 −0.0617253 0.998093i \(-0.519660\pi\)
−0.0617253 + 0.998093i \(0.519660\pi\)
\(578\) −3.38302e6 −0.421196
\(579\) 0 0
\(580\) 5.05693e6 0.624191
\(581\) 3.98417e6 0.489663
\(582\) 0 0
\(583\) 755697. 0.0920823
\(584\) −160020. −0.0194152
\(585\) 0 0
\(586\) −790350. −0.0950770
\(587\) −1.11813e6 −0.133936 −0.0669679 0.997755i \(-0.521332\pi\)
−0.0669679 + 0.997755i \(0.521332\pi\)
\(588\) 0 0
\(589\) −4.44086e6 −0.527447
\(590\) 136209. 0.0161093
\(591\) 0 0
\(592\) −752746. −0.0882763
\(593\) 905001. 0.105685 0.0528424 0.998603i \(-0.483172\pi\)
0.0528424 + 0.998603i \(0.483172\pi\)
\(594\) 0 0
\(595\) 940661. 0.108928
\(596\) −6.08874e6 −0.702121
\(597\) 0 0
\(598\) −1.01254e6 −0.115787
\(599\) 5.11859e6 0.582885 0.291443 0.956588i \(-0.405865\pi\)
0.291443 + 0.956588i \(0.405865\pi\)
\(600\) 0 0
\(601\) 8.84991e6 0.999431 0.499716 0.866190i \(-0.333438\pi\)
0.499716 + 0.866190i \(0.333438\pi\)
\(602\) 1.92683e6 0.216697
\(603\) 0 0
\(604\) −9.73082e6 −1.08532
\(605\) 618741. 0.0687259
\(606\) 0 0
\(607\) 1.37995e7 1.52017 0.760085 0.649824i \(-0.225157\pi\)
0.760085 + 0.649824i \(0.225157\pi\)
\(608\) 9.61674e6 1.05504
\(609\) 0 0
\(610\) 3.14107e6 0.341785
\(611\) 2.23679e6 0.242395
\(612\) 0 0
\(613\) 1.55631e7 1.67280 0.836401 0.548118i \(-0.184655\pi\)
0.836401 + 0.548118i \(0.184655\pi\)
\(614\) 5.23473e6 0.560368
\(615\) 0 0
\(616\) 5.74542e6 0.610057
\(617\) −1.57277e7 −1.66323 −0.831615 0.555353i \(-0.812583\pi\)
−0.831615 + 0.555353i \(0.812583\pi\)
\(618\) 0 0
\(619\) −5.68261e6 −0.596103 −0.298051 0.954550i \(-0.596337\pi\)
−0.298051 + 0.954550i \(0.596337\pi\)
\(620\) 1.67506e6 0.175005
\(621\) 0 0
\(622\) −4.80802e6 −0.498299
\(623\) 292383. 0.0301809
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 1.66916e6 0.170240
\(627\) 0 0
\(628\) −1.05436e7 −1.06682
\(629\) −937930. −0.0945244
\(630\) 0 0
\(631\) 7.92146e6 0.792012 0.396006 0.918248i \(-0.370396\pi\)
0.396006 + 0.918248i \(0.370396\pi\)
\(632\) 1.67388e7 1.66699
\(633\) 0 0
\(634\) 6.05622e6 0.598382
\(635\) 4.46449e6 0.439377
\(636\) 0 0
\(637\) −1.59829e6 −0.156066
\(638\) 9.85014e6 0.958055
\(639\) 0 0
\(640\) −4.40415e6 −0.425023
\(641\) −8.63330e6 −0.829911 −0.414956 0.909842i \(-0.636203\pi\)
−0.414956 + 0.909842i \(0.636203\pi\)
\(642\) 0 0
\(643\) 5.41901e6 0.516884 0.258442 0.966027i \(-0.416791\pi\)
0.258442 + 0.966027i \(0.416791\pi\)
\(644\) 4.54662e6 0.431990
\(645\) 0 0
\(646\) 1.95670e6 0.184477
\(647\) −2.85189e6 −0.267838 −0.133919 0.990992i \(-0.542756\pi\)
−0.133919 + 0.990992i \(0.542756\pi\)
\(648\) 0 0
\(649\) −851944. −0.0793961
\(650\) 291169. 0.0270310
\(651\) 0 0
\(652\) −1.37402e6 −0.126582
\(653\) −1.31018e7 −1.20239 −0.601197 0.799101i \(-0.705309\pi\)
−0.601197 + 0.799101i \(0.705309\pi\)
\(654\) 0 0
\(655\) −1.08889e6 −0.0991704
\(656\) 6.87605e6 0.623849
\(657\) 0 0
\(658\) 3.12789e6 0.281635
\(659\) 987681. 0.0885937 0.0442969 0.999018i \(-0.485895\pi\)
0.0442969 + 0.999018i \(0.485895\pi\)
\(660\) 0 0
\(661\) 2.30367e6 0.205077 0.102538 0.994729i \(-0.467304\pi\)
0.102538 + 0.994729i \(0.467304\pi\)
\(662\) −1.01500e7 −0.900167
\(663\) 0 0
\(664\) −7.22553e6 −0.635989
\(665\) 3.46623e6 0.303951
\(666\) 0 0
\(667\) 1.80172e7 1.56810
\(668\) −1.25082e7 −1.08456
\(669\) 0 0
\(670\) −1.34094e6 −0.115404
\(671\) −1.96464e7 −1.68452
\(672\) 0 0
\(673\) −3.89370e6 −0.331379 −0.165689 0.986178i \(-0.552985\pi\)
−0.165689 + 0.986178i \(0.552985\pi\)
\(674\) −9.55803e6 −0.810436
\(675\) 0 0
\(676\) −696916. −0.0586562
\(677\) −2.83801e6 −0.237981 −0.118991 0.992895i \(-0.537966\pi\)
−0.118991 + 0.992895i \(0.537966\pi\)
\(678\) 0 0
\(679\) 1.14247e7 0.950981
\(680\) −1.70595e6 −0.141479
\(681\) 0 0
\(682\) 3.26276e6 0.268611
\(683\) 6.98711e6 0.573121 0.286560 0.958062i \(-0.407488\pi\)
0.286560 + 0.958062i \(0.407488\pi\)
\(684\) 0 0
\(685\) 8.68795e6 0.707442
\(686\) −6.20695e6 −0.503580
\(687\) 0 0
\(688\) 2.87191e6 0.231313
\(689\) −296286. −0.0237773
\(690\) 0 0
\(691\) 3.58854e6 0.285905 0.142953 0.989730i \(-0.454340\pi\)
0.142953 + 0.989730i \(0.454340\pi\)
\(692\) −8.85829e6 −0.703209
\(693\) 0 0
\(694\) −1.07931e7 −0.850643
\(695\) 1.36485e6 0.107182
\(696\) 0 0
\(697\) 8.56764e6 0.668004
\(698\) −9.15342e6 −0.711123
\(699\) 0 0
\(700\) −1.30744e6 −0.100850
\(701\) 1.07723e7 0.827971 0.413986 0.910283i \(-0.364136\pi\)
0.413986 + 0.910283i \(0.364136\pi\)
\(702\) 0 0
\(703\) −3.45617e6 −0.263759
\(704\) −2.20694e6 −0.167826
\(705\) 0 0
\(706\) −8.53384e6 −0.644366
\(707\) −9.65556e6 −0.726489
\(708\) 0 0
\(709\) 1.68465e7 1.25862 0.629309 0.777155i \(-0.283338\pi\)
0.629309 + 0.777155i \(0.283338\pi\)
\(710\) 4.42611e6 0.329516
\(711\) 0 0
\(712\) −530254. −0.0391998
\(713\) 5.96803e6 0.439650
\(714\) 0 0
\(715\) −1.82117e6 −0.133225
\(716\) −1.98255e7 −1.44525
\(717\) 0 0
\(718\) 7.48230e6 0.541656
\(719\) −7.10379e6 −0.512470 −0.256235 0.966615i \(-0.582482\pi\)
−0.256235 + 0.966615i \(0.582482\pi\)
\(720\) 0 0
\(721\) 8.78359e6 0.629265
\(722\) 384518. 0.0274520
\(723\) 0 0
\(724\) 1.13458e7 0.804432
\(725\) −5.18108e6 −0.366079
\(726\) 0 0
\(727\) −2.50048e7 −1.75464 −0.877319 0.479908i \(-0.840670\pi\)
−0.877319 + 0.479908i \(0.840670\pi\)
\(728\) −2.25260e6 −0.157528
\(729\) 0 0
\(730\) 70929.5 0.00492629
\(731\) 3.57843e6 0.247685
\(732\) 0 0
\(733\) −7.77802e6 −0.534699 −0.267349 0.963600i \(-0.586148\pi\)
−0.267349 + 0.963600i \(0.586148\pi\)
\(734\) 7.02842e6 0.481524
\(735\) 0 0
\(736\) −1.29238e7 −0.879422
\(737\) 8.38715e6 0.568782
\(738\) 0 0
\(739\) 1.00573e7 0.677439 0.338720 0.940887i \(-0.390006\pi\)
0.338720 + 0.940887i \(0.390006\pi\)
\(740\) 1.30364e6 0.0875142
\(741\) 0 0
\(742\) −414320. −0.0276265
\(743\) 3.40838e6 0.226504 0.113252 0.993566i \(-0.463873\pi\)
0.113252 + 0.993566i \(0.463873\pi\)
\(744\) 0 0
\(745\) 6.23821e6 0.411784
\(746\) 1.01429e7 0.667292
\(747\) 0 0
\(748\) 4.61627e6 0.301673
\(749\) 7.75153e6 0.504874
\(750\) 0 0
\(751\) 1.57084e7 1.01633 0.508163 0.861261i \(-0.330325\pi\)
0.508163 + 0.861261i \(0.330325\pi\)
\(752\) 4.66205e6 0.300630
\(753\) 0 0
\(754\) −3.86194e6 −0.247387
\(755\) 9.96970e6 0.636524
\(756\) 0 0
\(757\) −2.52846e7 −1.60367 −0.801836 0.597544i \(-0.796143\pi\)
−0.801836 + 0.597544i \(0.796143\pi\)
\(758\) −2.94469e6 −0.186152
\(759\) 0 0
\(760\) −6.28623e6 −0.394781
\(761\) −1.34808e7 −0.843825 −0.421913 0.906636i \(-0.638641\pi\)
−0.421913 + 0.906636i \(0.638641\pi\)
\(762\) 0 0
\(763\) 1.41383e7 0.879195
\(764\) −379132. −0.0234994
\(765\) 0 0
\(766\) 1.65890e6 0.102152
\(767\) 334021. 0.0205015
\(768\) 0 0
\(769\) 8.09020e6 0.493337 0.246668 0.969100i \(-0.420664\pi\)
0.246668 + 0.969100i \(0.420664\pi\)
\(770\) −2.54668e6 −0.154792
\(771\) 0 0
\(772\) 7.79387e6 0.470663
\(773\) −2.75295e6 −0.165710 −0.0828551 0.996562i \(-0.526404\pi\)
−0.0828551 + 0.996562i \(0.526404\pi\)
\(774\) 0 0
\(775\) −1.71618e6 −0.102638
\(776\) −2.07195e7 −1.23516
\(777\) 0 0
\(778\) −1.37941e7 −0.817040
\(779\) 3.15708e7 1.86398
\(780\) 0 0
\(781\) −2.76839e7 −1.62405
\(782\) −2.62959e6 −0.153770
\(783\) 0 0
\(784\) −3.33126e6 −0.193561
\(785\) 1.08025e7 0.625676
\(786\) 0 0
\(787\) 2.06536e7 1.18867 0.594333 0.804219i \(-0.297416\pi\)
0.594333 + 0.804219i \(0.297416\pi\)
\(788\) 1.55161e7 0.890156
\(789\) 0 0
\(790\) −7.41956e6 −0.422971
\(791\) 3.12516e6 0.177595
\(792\) 0 0
\(793\) 7.70274e6 0.434973
\(794\) 9.58160e6 0.539370
\(795\) 0 0
\(796\) −1.40126e6 −0.0783855
\(797\) −5.27093e6 −0.293928 −0.146964 0.989142i \(-0.546950\pi\)
−0.146964 + 0.989142i \(0.546950\pi\)
\(798\) 0 0
\(799\) 5.80897e6 0.321909
\(800\) 3.71641e6 0.205304
\(801\) 0 0
\(802\) 1.41992e7 0.779519
\(803\) −443641. −0.0242797
\(804\) 0 0
\(805\) −4.65824e6 −0.253356
\(806\) −1.27923e6 −0.0693602
\(807\) 0 0
\(808\) 1.75110e7 0.943586
\(809\) 2.62432e7 1.40976 0.704882 0.709325i \(-0.251000\pi\)
0.704882 + 0.709325i \(0.251000\pi\)
\(810\) 0 0
\(811\) 1.50454e7 0.803251 0.401626 0.915804i \(-0.368445\pi\)
0.401626 + 0.915804i \(0.368445\pi\)
\(812\) 1.73412e7 0.922975
\(813\) 0 0
\(814\) 2.53929e6 0.134323
\(815\) 1.40775e6 0.0742387
\(816\) 0 0
\(817\) 1.31861e7 0.691134
\(818\) −3.07766e6 −0.160819
\(819\) 0 0
\(820\) −1.19083e7 −0.618463
\(821\) −1.82770e6 −0.0946338 −0.0473169 0.998880i \(-0.515067\pi\)
−0.0473169 + 0.998880i \(0.515067\pi\)
\(822\) 0 0
\(823\) 2.45074e7 1.26124 0.630619 0.776093i \(-0.282801\pi\)
0.630619 + 0.776093i \(0.282801\pi\)
\(824\) −1.59296e7 −0.817309
\(825\) 0 0
\(826\) 467088. 0.0238204
\(827\) 7.03772e6 0.357823 0.178911 0.983865i \(-0.442742\pi\)
0.178911 + 0.983865i \(0.442742\pi\)
\(828\) 0 0
\(829\) 3.44967e7 1.74338 0.871689 0.490059i \(-0.163025\pi\)
0.871689 + 0.490059i \(0.163025\pi\)
\(830\) 3.20275e6 0.161372
\(831\) 0 0
\(832\) 865273. 0.0433356
\(833\) −4.15078e6 −0.207261
\(834\) 0 0
\(835\) 1.28153e7 0.636080
\(836\) 1.70104e7 0.841782
\(837\) 0 0
\(838\) −4.95476e6 −0.243732
\(839\) −2.79128e6 −0.136899 −0.0684493 0.997655i \(-0.521805\pi\)
−0.0684493 + 0.997655i \(0.521805\pi\)
\(840\) 0 0
\(841\) 4.82083e7 2.35035
\(842\) 1.46460e7 0.711935
\(843\) 0 0
\(844\) 9.93349e6 0.480005
\(845\) 714025. 0.0344010
\(846\) 0 0
\(847\) 2.12179e6 0.101623
\(848\) −617535. −0.0294898
\(849\) 0 0
\(850\) 756169. 0.0358981
\(851\) 4.64471e6 0.219854
\(852\) 0 0
\(853\) −2.48047e7 −1.16724 −0.583621 0.812026i \(-0.698365\pi\)
−0.583621 + 0.812026i \(0.698365\pi\)
\(854\) 1.07713e7 0.505388
\(855\) 0 0
\(856\) −1.40579e7 −0.655746
\(857\) 1.83304e7 0.852550 0.426275 0.904594i \(-0.359826\pi\)
0.426275 + 0.904594i \(0.359826\pi\)
\(858\) 0 0
\(859\) 1.67092e7 0.772632 0.386316 0.922366i \(-0.373747\pi\)
0.386316 + 0.922366i \(0.373747\pi\)
\(860\) −4.97370e6 −0.229316
\(861\) 0 0
\(862\) 1.27806e7 0.585844
\(863\) −8.29285e6 −0.379033 −0.189516 0.981878i \(-0.560692\pi\)
−0.189516 + 0.981878i \(0.560692\pi\)
\(864\) 0 0
\(865\) 9.07575e6 0.412422
\(866\) −1.01627e7 −0.460484
\(867\) 0 0
\(868\) 5.74411e6 0.258775
\(869\) 4.64069e7 2.08465
\(870\) 0 0
\(871\) −3.28834e6 −0.146870
\(872\) −2.56407e7 −1.14193
\(873\) 0 0
\(874\) −9.68974e6 −0.429075
\(875\) 1.33953e6 0.0591470
\(876\) 0 0
\(877\) −1.44569e7 −0.634711 −0.317356 0.948307i \(-0.602795\pi\)
−0.317356 + 0.948307i \(0.602795\pi\)
\(878\) −4.60447e6 −0.201578
\(879\) 0 0
\(880\) −3.79578e6 −0.165232
\(881\) 3.42081e7 1.48487 0.742437 0.669916i \(-0.233670\pi\)
0.742437 + 0.669916i \(0.233670\pi\)
\(882\) 0 0
\(883\) −1.41341e7 −0.610051 −0.305026 0.952344i \(-0.598665\pi\)
−0.305026 + 0.952344i \(0.598665\pi\)
\(884\) −1.80990e6 −0.0778975
\(885\) 0 0
\(886\) −9.90207e6 −0.423781
\(887\) −2.15650e7 −0.920325 −0.460163 0.887835i \(-0.652209\pi\)
−0.460163 + 0.887835i \(0.652209\pi\)
\(888\) 0 0
\(889\) 1.53096e7 0.649696
\(890\) 235038. 0.00994632
\(891\) 0 0
\(892\) −2.30196e6 −0.0968693
\(893\) 2.14054e7 0.898246
\(894\) 0 0
\(895\) 2.03122e7 0.847618
\(896\) −1.51027e7 −0.628471
\(897\) 0 0
\(898\) −221785. −0.00917787
\(899\) 2.27626e7 0.939340
\(900\) 0 0
\(901\) −769456. −0.0315771
\(902\) −2.31955e7 −0.949264
\(903\) 0 0
\(904\) −5.66768e6 −0.230666
\(905\) −1.16243e7 −0.471788
\(906\) 0 0
\(907\) 1.53494e7 0.619547 0.309773 0.950810i \(-0.399747\pi\)
0.309773 + 0.950810i \(0.399747\pi\)
\(908\) 6.14650e6 0.247408
\(909\) 0 0
\(910\) 998478. 0.0399701
\(911\) 8.00925e6 0.319739 0.159870 0.987138i \(-0.448893\pi\)
0.159870 + 0.987138i \(0.448893\pi\)
\(912\) 0 0
\(913\) −2.00322e7 −0.795337
\(914\) 7.93047e6 0.314003
\(915\) 0 0
\(916\) 1.04444e7 0.411287
\(917\) −3.73403e6 −0.146641
\(918\) 0 0
\(919\) −1.00787e7 −0.393655 −0.196828 0.980438i \(-0.563064\pi\)
−0.196828 + 0.980438i \(0.563064\pi\)
\(920\) 8.44800e6 0.329067
\(921\) 0 0
\(922\) −225064. −0.00871926
\(923\) 1.08540e7 0.419359
\(924\) 0 0
\(925\) −1.33564e6 −0.0513258
\(926\) −6.89748e6 −0.264340
\(927\) 0 0
\(928\) −4.92927e7 −1.87894
\(929\) 1.20808e7 0.459257 0.229629 0.973278i \(-0.426249\pi\)
0.229629 + 0.973278i \(0.426249\pi\)
\(930\) 0 0
\(931\) −1.52952e7 −0.578336
\(932\) 1.17061e6 0.0441440
\(933\) 0 0
\(934\) −3.82547e6 −0.143489
\(935\) −4.72959e6 −0.176927
\(936\) 0 0
\(937\) 1.85069e7 0.688628 0.344314 0.938854i \(-0.388111\pi\)
0.344314 + 0.938854i \(0.388111\pi\)
\(938\) −4.59835e6 −0.170646
\(939\) 0 0
\(940\) −8.07396e6 −0.298035
\(941\) 1.31161e7 0.482871 0.241436 0.970417i \(-0.422382\pi\)
0.241436 + 0.970417i \(0.422382\pi\)
\(942\) 0 0
\(943\) −4.24277e7 −1.55371
\(944\) 696186. 0.0254270
\(945\) 0 0
\(946\) −9.68802e6 −0.351971
\(947\) 2.46835e7 0.894399 0.447199 0.894434i \(-0.352421\pi\)
0.447199 + 0.894434i \(0.352421\pi\)
\(948\) 0 0
\(949\) 173938. 0.00626945
\(950\) 2.78640e6 0.100169
\(951\) 0 0
\(952\) −5.85003e6 −0.209202
\(953\) −3.21978e7 −1.14840 −0.574201 0.818715i \(-0.694687\pi\)
−0.574201 + 0.818715i \(0.694687\pi\)
\(954\) 0 0
\(955\) 388439. 0.0137821
\(956\) −3.41411e7 −1.20818
\(957\) 0 0
\(958\) 1.36832e7 0.481697
\(959\) 2.97927e7 1.04608
\(960\) 0 0
\(961\) −2.10893e7 −0.736636
\(962\) −995579. −0.0346847
\(963\) 0 0
\(964\) 1.40743e7 0.487791
\(965\) −7.98520e6 −0.276037
\(966\) 0 0
\(967\) 2.28108e7 0.784465 0.392232 0.919866i \(-0.371703\pi\)
0.392232 + 0.919866i \(0.371703\pi\)
\(968\) −3.84799e6 −0.131991
\(969\) 0 0
\(970\) 9.18400e6 0.313403
\(971\) −4.02182e7 −1.36891 −0.684455 0.729055i \(-0.739960\pi\)
−0.684455 + 0.729055i \(0.739960\pi\)
\(972\) 0 0
\(973\) 4.68035e6 0.158488
\(974\) 2.36346e7 0.798271
\(975\) 0 0
\(976\) 1.60545e7 0.539475
\(977\) −3.17409e7 −1.06386 −0.531928 0.846790i \(-0.678532\pi\)
−0.531928 + 0.846790i \(0.678532\pi\)
\(978\) 0 0
\(979\) −1.47008e6 −0.0490214
\(980\) 5.76922e6 0.191890
\(981\) 0 0
\(982\) −7.03774e6 −0.232892
\(983\) −4.52276e6 −0.149286 −0.0746431 0.997210i \(-0.523782\pi\)
−0.0746431 + 0.997210i \(0.523782\pi\)
\(984\) 0 0
\(985\) −1.58970e7 −0.522064
\(986\) −1.00295e7 −0.328539
\(987\) 0 0
\(988\) −6.66928e6 −0.217363
\(989\) −1.77207e7 −0.576090
\(990\) 0 0
\(991\) −2.04730e7 −0.662213 −0.331107 0.943593i \(-0.607422\pi\)
−0.331107 + 0.943593i \(0.607422\pi\)
\(992\) −1.63277e7 −0.526801
\(993\) 0 0
\(994\) 1.51780e7 0.487247
\(995\) 1.43566e6 0.0459720
\(996\) 0 0
\(997\) −3.49736e7 −1.11430 −0.557150 0.830412i \(-0.688105\pi\)
−0.557150 + 0.830412i \(0.688105\pi\)
\(998\) 446192. 0.0141806
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.6.a.m.1.4 6
3.2 odd 2 65.6.a.d.1.3 6
12.11 even 2 1040.6.a.q.1.2 6
15.2 even 4 325.6.b.g.274.5 12
15.8 even 4 325.6.b.g.274.8 12
15.14 odd 2 325.6.a.g.1.4 6
39.38 odd 2 845.6.a.h.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.3 6 3.2 odd 2
325.6.a.g.1.4 6 15.14 odd 2
325.6.b.g.274.5 12 15.2 even 4
325.6.b.g.274.8 12 15.8 even 4
585.6.a.m.1.4 6 1.1 even 1 trivial
845.6.a.h.1.4 6 39.38 odd 2
1040.6.a.q.1.2 6 12.11 even 2