Properties

Label 585.6.a.m.1.5
Level $585$
Weight $6$
Character 585.1
Self dual yes
Analytic conductor $93.825$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,6,Mod(1,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 585.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(93.8245345906\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 163x^{4} - 8x^{3} + 6120x^{2} + 6624x - 19440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-5.93318\) of defining polynomial
Character \(\chi\) \(=\) 585.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.93318 q^{2} +3.20258 q^{4} +25.0000 q^{5} -185.746 q^{7} -170.860 q^{8} +148.329 q^{10} +353.912 q^{11} +169.000 q^{13} -1102.06 q^{14} -1116.23 q^{16} -634.652 q^{17} +1118.29 q^{19} +80.0646 q^{20} +2099.83 q^{22} -3509.85 q^{23} +625.000 q^{25} +1002.71 q^{26} -594.867 q^{28} +3765.67 q^{29} +2906.63 q^{31} -1155.24 q^{32} -3765.50 q^{34} -4643.65 q^{35} +283.305 q^{37} +6635.04 q^{38} -4271.50 q^{40} +13563.6 q^{41} -5184.47 q^{43} +1133.43 q^{44} -20824.6 q^{46} +6781.50 q^{47} +17694.6 q^{49} +3708.24 q^{50} +541.237 q^{52} -7664.43 q^{53} +8847.81 q^{55} +31736.6 q^{56} +22342.4 q^{58} -2806.29 q^{59} -13764.7 q^{61} +17245.5 q^{62} +28865.0 q^{64} +4225.00 q^{65} +67744.1 q^{67} -2032.53 q^{68} -27551.6 q^{70} +66519.0 q^{71} +75902.7 q^{73} +1680.90 q^{74} +3581.43 q^{76} -65737.9 q^{77} +101641. q^{79} -27905.7 q^{80} +80475.1 q^{82} +50882.7 q^{83} -15866.3 q^{85} -30760.4 q^{86} -60469.5 q^{88} +52439.2 q^{89} -31391.1 q^{91} -11240.6 q^{92} +40235.8 q^{94} +27957.4 q^{95} -142557. q^{97} +104985. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 134 q^{4} + 150 q^{5} + 220 q^{7} - 24 q^{8} + 170 q^{11} + 1014 q^{13} + 1440 q^{14} + 3506 q^{16} - 728 q^{17} + 1218 q^{19} + 3350 q^{20} + 5154 q^{22} - 8954 q^{23} + 3750 q^{25} + 13212 q^{28}+ \cdots + 4736 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.93318 1.04885 0.524424 0.851457i \(-0.324281\pi\)
0.524424 + 0.851457i \(0.324281\pi\)
\(3\) 0 0
\(4\) 3.20258 0.100081
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) −185.746 −1.43276 −0.716382 0.697708i \(-0.754203\pi\)
−0.716382 + 0.697708i \(0.754203\pi\)
\(8\) −170.860 −0.943878
\(9\) 0 0
\(10\) 148.329 0.469059
\(11\) 353.912 0.881889 0.440945 0.897534i \(-0.354643\pi\)
0.440945 + 0.897534i \(0.354643\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) −1102.06 −1.50275
\(15\) 0 0
\(16\) −1116.23 −1.09006
\(17\) −634.652 −0.532615 −0.266308 0.963888i \(-0.585804\pi\)
−0.266308 + 0.963888i \(0.585804\pi\)
\(18\) 0 0
\(19\) 1118.29 0.710677 0.355338 0.934738i \(-0.384366\pi\)
0.355338 + 0.934738i \(0.384366\pi\)
\(20\) 80.0646 0.0447575
\(21\) 0 0
\(22\) 2099.83 0.924967
\(23\) −3509.85 −1.38347 −0.691734 0.722153i \(-0.743153\pi\)
−0.691734 + 0.722153i \(0.743153\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 1002.71 0.290898
\(27\) 0 0
\(28\) −594.867 −0.143392
\(29\) 3765.67 0.831471 0.415735 0.909486i \(-0.363524\pi\)
0.415735 + 0.909486i \(0.363524\pi\)
\(30\) 0 0
\(31\) 2906.63 0.543232 0.271616 0.962406i \(-0.412442\pi\)
0.271616 + 0.962406i \(0.412442\pi\)
\(32\) −1155.24 −0.199433
\(33\) 0 0
\(34\) −3765.50 −0.558632
\(35\) −4643.65 −0.640751
\(36\) 0 0
\(37\) 283.305 0.0340213 0.0170106 0.999855i \(-0.494585\pi\)
0.0170106 + 0.999855i \(0.494585\pi\)
\(38\) 6635.04 0.745391
\(39\) 0 0
\(40\) −4271.50 −0.422115
\(41\) 13563.6 1.26013 0.630064 0.776544i \(-0.283029\pi\)
0.630064 + 0.776544i \(0.283029\pi\)
\(42\) 0 0
\(43\) −5184.47 −0.427596 −0.213798 0.976878i \(-0.568583\pi\)
−0.213798 + 0.976878i \(0.568583\pi\)
\(44\) 1133.43 0.0882601
\(45\) 0 0
\(46\) −20824.6 −1.45105
\(47\) 6781.50 0.447797 0.223898 0.974612i \(-0.428122\pi\)
0.223898 + 0.974612i \(0.428122\pi\)
\(48\) 0 0
\(49\) 17694.6 1.05281
\(50\) 3708.24 0.209769
\(51\) 0 0
\(52\) 541.237 0.0277574
\(53\) −7664.43 −0.374792 −0.187396 0.982284i \(-0.560005\pi\)
−0.187396 + 0.982284i \(0.560005\pi\)
\(54\) 0 0
\(55\) 8847.81 0.394393
\(56\) 31736.6 1.35235
\(57\) 0 0
\(58\) 22342.4 0.872086
\(59\) −2806.29 −0.104955 −0.0524773 0.998622i \(-0.516712\pi\)
−0.0524773 + 0.998622i \(0.516712\pi\)
\(60\) 0 0
\(61\) −13764.7 −0.473634 −0.236817 0.971554i \(-0.576104\pi\)
−0.236817 + 0.971554i \(0.576104\pi\)
\(62\) 17245.5 0.569768
\(63\) 0 0
\(64\) 28865.0 0.880889
\(65\) 4225.00 0.124035
\(66\) 0 0
\(67\) 67744.1 1.84368 0.921838 0.387576i \(-0.126687\pi\)
0.921838 + 0.387576i \(0.126687\pi\)
\(68\) −2032.53 −0.0533045
\(69\) 0 0
\(70\) −27551.6 −0.672050
\(71\) 66519.0 1.56603 0.783014 0.622004i \(-0.213681\pi\)
0.783014 + 0.622004i \(0.213681\pi\)
\(72\) 0 0
\(73\) 75902.7 1.66706 0.833528 0.552478i \(-0.186318\pi\)
0.833528 + 0.552478i \(0.186318\pi\)
\(74\) 1680.90 0.0356831
\(75\) 0 0
\(76\) 3581.43 0.0711250
\(77\) −65737.9 −1.26354
\(78\) 0 0
\(79\) 101641. 1.83233 0.916163 0.400806i \(-0.131270\pi\)
0.916163 + 0.400806i \(0.131270\pi\)
\(80\) −27905.7 −0.487492
\(81\) 0 0
\(82\) 80475.1 1.32168
\(83\) 50882.7 0.810727 0.405363 0.914156i \(-0.367145\pi\)
0.405363 + 0.914156i \(0.367145\pi\)
\(84\) 0 0
\(85\) −15866.3 −0.238193
\(86\) −30760.4 −0.448483
\(87\) 0 0
\(88\) −60469.5 −0.832396
\(89\) 52439.2 0.701748 0.350874 0.936423i \(-0.385885\pi\)
0.350874 + 0.936423i \(0.385885\pi\)
\(90\) 0 0
\(91\) −31391.1 −0.397377
\(92\) −11240.6 −0.138458
\(93\) 0 0
\(94\) 40235.8 0.469671
\(95\) 27957.4 0.317824
\(96\) 0 0
\(97\) −142557. −1.53837 −0.769183 0.639028i \(-0.779337\pi\)
−0.769183 + 0.639028i \(0.779337\pi\)
\(98\) 104985. 1.10424
\(99\) 0 0
\(100\) 2001.61 0.0200161
\(101\) −4751.74 −0.0463499 −0.0231750 0.999731i \(-0.507377\pi\)
−0.0231750 + 0.999731i \(0.507377\pi\)
\(102\) 0 0
\(103\) −59290.6 −0.550672 −0.275336 0.961348i \(-0.588789\pi\)
−0.275336 + 0.961348i \(0.588789\pi\)
\(104\) −28875.4 −0.261785
\(105\) 0 0
\(106\) −45474.4 −0.393100
\(107\) −157927. −1.33351 −0.666756 0.745276i \(-0.732318\pi\)
−0.666756 + 0.745276i \(0.732318\pi\)
\(108\) 0 0
\(109\) 58878.4 0.474668 0.237334 0.971428i \(-0.423726\pi\)
0.237334 + 0.971428i \(0.423726\pi\)
\(110\) 52495.6 0.413658
\(111\) 0 0
\(112\) 207335. 1.56180
\(113\) −179734. −1.32414 −0.662069 0.749443i \(-0.730322\pi\)
−0.662069 + 0.749443i \(0.730322\pi\)
\(114\) 0 0
\(115\) −87746.2 −0.618705
\(116\) 12059.9 0.0832142
\(117\) 0 0
\(118\) −16650.2 −0.110081
\(119\) 117884. 0.763112
\(120\) 0 0
\(121\) −35797.0 −0.222271
\(122\) −81668.5 −0.496770
\(123\) 0 0
\(124\) 9308.72 0.0543671
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) −123741. −0.680774 −0.340387 0.940286i \(-0.610558\pi\)
−0.340387 + 0.940286i \(0.610558\pi\)
\(128\) 208229. 1.12335
\(129\) 0 0
\(130\) 25067.7 0.130094
\(131\) 43205.0 0.219966 0.109983 0.993933i \(-0.464920\pi\)
0.109983 + 0.993933i \(0.464920\pi\)
\(132\) 0 0
\(133\) −207719. −1.01823
\(134\) 401938. 1.93373
\(135\) 0 0
\(136\) 108437. 0.502724
\(137\) 188517. 0.858120 0.429060 0.903276i \(-0.358845\pi\)
0.429060 + 0.903276i \(0.358845\pi\)
\(138\) 0 0
\(139\) 344148. 1.51081 0.755403 0.655260i \(-0.227441\pi\)
0.755403 + 0.655260i \(0.227441\pi\)
\(140\) −14871.7 −0.0641269
\(141\) 0 0
\(142\) 394669. 1.64253
\(143\) 59811.2 0.244592
\(144\) 0 0
\(145\) 94141.7 0.371845
\(146\) 450344. 1.74849
\(147\) 0 0
\(148\) 907.309 0.00340487
\(149\) 177809. 0.656126 0.328063 0.944656i \(-0.393604\pi\)
0.328063 + 0.944656i \(0.393604\pi\)
\(150\) 0 0
\(151\) 554784. 1.98008 0.990038 0.140803i \(-0.0449685\pi\)
0.990038 + 0.140803i \(0.0449685\pi\)
\(152\) −191072. −0.670792
\(153\) 0 0
\(154\) −390034. −1.32526
\(155\) 72665.7 0.242941
\(156\) 0 0
\(157\) 255896. 0.828542 0.414271 0.910154i \(-0.364037\pi\)
0.414271 + 0.910154i \(0.364037\pi\)
\(158\) 603056. 1.92183
\(159\) 0 0
\(160\) −28881.0 −0.0891893
\(161\) 651941. 1.98218
\(162\) 0 0
\(163\) −262686. −0.774404 −0.387202 0.921995i \(-0.626558\pi\)
−0.387202 + 0.921995i \(0.626558\pi\)
\(164\) 43438.5 0.126114
\(165\) 0 0
\(166\) 301896. 0.850329
\(167\) −287069. −0.796517 −0.398259 0.917273i \(-0.630385\pi\)
−0.398259 + 0.917273i \(0.630385\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) −94137.6 −0.249828
\(171\) 0 0
\(172\) −16603.7 −0.0427941
\(173\) −719663. −1.82816 −0.914080 0.405534i \(-0.867085\pi\)
−0.914080 + 0.405534i \(0.867085\pi\)
\(174\) 0 0
\(175\) −116091. −0.286553
\(176\) −395046. −0.961316
\(177\) 0 0
\(178\) 311131. 0.736026
\(179\) −779772. −1.81901 −0.909505 0.415693i \(-0.863539\pi\)
−0.909505 + 0.415693i \(0.863539\pi\)
\(180\) 0 0
\(181\) 336065. 0.762478 0.381239 0.924477i \(-0.375498\pi\)
0.381239 + 0.924477i \(0.375498\pi\)
\(182\) −186249. −0.416788
\(183\) 0 0
\(184\) 599693. 1.30582
\(185\) 7082.63 0.0152148
\(186\) 0 0
\(187\) −224611. −0.469708
\(188\) 21718.3 0.0448158
\(189\) 0 0
\(190\) 165876. 0.333349
\(191\) −409479. −0.812173 −0.406086 0.913835i \(-0.633107\pi\)
−0.406086 + 0.913835i \(0.633107\pi\)
\(192\) 0 0
\(193\) 339565. 0.656189 0.328095 0.944645i \(-0.393593\pi\)
0.328095 + 0.944645i \(0.393593\pi\)
\(194\) −845817. −1.61351
\(195\) 0 0
\(196\) 56668.4 0.105366
\(197\) 871469. 1.59988 0.799938 0.600082i \(-0.204865\pi\)
0.799938 + 0.600082i \(0.204865\pi\)
\(198\) 0 0
\(199\) 270952. 0.485019 0.242510 0.970149i \(-0.422029\pi\)
0.242510 + 0.970149i \(0.422029\pi\)
\(200\) −106788. −0.188776
\(201\) 0 0
\(202\) −28192.9 −0.0486140
\(203\) −699458. −1.19130
\(204\) 0 0
\(205\) 339089. 0.563546
\(206\) −351781. −0.577570
\(207\) 0 0
\(208\) −188642. −0.302330
\(209\) 395778. 0.626738
\(210\) 0 0
\(211\) 181455. 0.280583 0.140292 0.990110i \(-0.455196\pi\)
0.140292 + 0.990110i \(0.455196\pi\)
\(212\) −24546.0 −0.0375095
\(213\) 0 0
\(214\) −937009. −1.39865
\(215\) −129612. −0.191227
\(216\) 0 0
\(217\) −539895. −0.778323
\(218\) 349336. 0.497854
\(219\) 0 0
\(220\) 28335.9 0.0394711
\(221\) −107256. −0.147721
\(222\) 0 0
\(223\) 1.38761e6 1.86855 0.934276 0.356552i \(-0.116048\pi\)
0.934276 + 0.356552i \(0.116048\pi\)
\(224\) 214582. 0.285741
\(225\) 0 0
\(226\) −1.06639e6 −1.38882
\(227\) 690397. 0.889271 0.444636 0.895711i \(-0.353333\pi\)
0.444636 + 0.895711i \(0.353333\pi\)
\(228\) 0 0
\(229\) −1.38257e6 −1.74221 −0.871104 0.491099i \(-0.836595\pi\)
−0.871104 + 0.491099i \(0.836595\pi\)
\(230\) −520614. −0.648927
\(231\) 0 0
\(232\) −643403. −0.784807
\(233\) 71911.6 0.0867780 0.0433890 0.999058i \(-0.486185\pi\)
0.0433890 + 0.999058i \(0.486185\pi\)
\(234\) 0 0
\(235\) 169537. 0.200261
\(236\) −8987.36 −0.0105039
\(237\) 0 0
\(238\) 699427. 0.800387
\(239\) 825442. 0.934743 0.467371 0.884061i \(-0.345201\pi\)
0.467371 + 0.884061i \(0.345201\pi\)
\(240\) 0 0
\(241\) −615086. −0.682171 −0.341086 0.940032i \(-0.610795\pi\)
−0.341086 + 0.940032i \(0.610795\pi\)
\(242\) −212390. −0.233128
\(243\) 0 0
\(244\) −44082.7 −0.0474016
\(245\) 442365. 0.470832
\(246\) 0 0
\(247\) 188992. 0.197106
\(248\) −496627. −0.512745
\(249\) 0 0
\(250\) 92705.9 0.0938118
\(251\) −622589. −0.623759 −0.311879 0.950122i \(-0.600959\pi\)
−0.311879 + 0.950122i \(0.600959\pi\)
\(252\) 0 0
\(253\) −1.24218e6 −1.22007
\(254\) −734174. −0.714028
\(255\) 0 0
\(256\) 311779. 0.297335
\(257\) 1.04334e6 0.985359 0.492680 0.870211i \(-0.336017\pi\)
0.492680 + 0.870211i \(0.336017\pi\)
\(258\) 0 0
\(259\) −52622.9 −0.0487444
\(260\) 13530.9 0.0124135
\(261\) 0 0
\(262\) 256343. 0.230711
\(263\) 1.31940e6 1.17621 0.588106 0.808784i \(-0.299874\pi\)
0.588106 + 0.808784i \(0.299874\pi\)
\(264\) 0 0
\(265\) −191611. −0.167612
\(266\) −1.23243e6 −1.06797
\(267\) 0 0
\(268\) 216956. 0.184516
\(269\) −369633. −0.311452 −0.155726 0.987800i \(-0.549772\pi\)
−0.155726 + 0.987800i \(0.549772\pi\)
\(270\) 0 0
\(271\) 749291. 0.619765 0.309883 0.950775i \(-0.399710\pi\)
0.309883 + 0.950775i \(0.399710\pi\)
\(272\) 708415. 0.580585
\(273\) 0 0
\(274\) 1.11850e6 0.900037
\(275\) 221195. 0.176378
\(276\) 0 0
\(277\) 1.64757e6 1.29016 0.645081 0.764114i \(-0.276824\pi\)
0.645081 + 0.764114i \(0.276824\pi\)
\(278\) 2.04189e6 1.58461
\(279\) 0 0
\(280\) 793415. 0.604791
\(281\) −1.21917e6 −0.921080 −0.460540 0.887639i \(-0.652344\pi\)
−0.460540 + 0.887639i \(0.652344\pi\)
\(282\) 0 0
\(283\) −997517. −0.740379 −0.370190 0.928956i \(-0.620707\pi\)
−0.370190 + 0.928956i \(0.620707\pi\)
\(284\) 213033. 0.156729
\(285\) 0 0
\(286\) 354870. 0.256540
\(287\) −2.51938e6 −1.80546
\(288\) 0 0
\(289\) −1.01707e6 −0.716321
\(290\) 558559. 0.390009
\(291\) 0 0
\(292\) 243085. 0.166840
\(293\) −1.80793e6 −1.23031 −0.615153 0.788408i \(-0.710906\pi\)
−0.615153 + 0.788408i \(0.710906\pi\)
\(294\) 0 0
\(295\) −70157.1 −0.0469372
\(296\) −48405.6 −0.0321119
\(297\) 0 0
\(298\) 1.05497e6 0.688176
\(299\) −593165. −0.383705
\(300\) 0 0
\(301\) 962995. 0.612644
\(302\) 3.29163e6 2.07680
\(303\) 0 0
\(304\) −1.24827e6 −0.774683
\(305\) −344118. −0.211816
\(306\) 0 0
\(307\) −24494.5 −0.0148328 −0.00741638 0.999972i \(-0.502361\pi\)
−0.00741638 + 0.999972i \(0.502361\pi\)
\(308\) −210531. −0.126456
\(309\) 0 0
\(310\) 431139. 0.254808
\(311\) −1.48212e6 −0.868924 −0.434462 0.900690i \(-0.643061\pi\)
−0.434462 + 0.900690i \(0.643061\pi\)
\(312\) 0 0
\(313\) −348766. −0.201221 −0.100611 0.994926i \(-0.532080\pi\)
−0.100611 + 0.994926i \(0.532080\pi\)
\(314\) 1.51828e6 0.869014
\(315\) 0 0
\(316\) 325515. 0.183380
\(317\) 406486. 0.227194 0.113597 0.993527i \(-0.463763\pi\)
0.113597 + 0.993527i \(0.463763\pi\)
\(318\) 0 0
\(319\) 1.33272e6 0.733265
\(320\) 721625. 0.393946
\(321\) 0 0
\(322\) 3.86808e6 2.07901
\(323\) −709728. −0.378517
\(324\) 0 0
\(325\) 105625. 0.0554700
\(326\) −1.55856e6 −0.812231
\(327\) 0 0
\(328\) −2.31747e6 −1.18941
\(329\) −1.25964e6 −0.641587
\(330\) 0 0
\(331\) 1.58614e6 0.795743 0.397871 0.917441i \(-0.369749\pi\)
0.397871 + 0.917441i \(0.369749\pi\)
\(332\) 162956. 0.0811381
\(333\) 0 0
\(334\) −1.70323e6 −0.835425
\(335\) 1.69360e6 0.824517
\(336\) 0 0
\(337\) 2.43587e6 1.16837 0.584185 0.811621i \(-0.301414\pi\)
0.584185 + 0.811621i \(0.301414\pi\)
\(338\) 169457. 0.0806806
\(339\) 0 0
\(340\) −50813.2 −0.0238385
\(341\) 1.02869e6 0.479071
\(342\) 0 0
\(343\) −164869. −0.0756664
\(344\) 885820. 0.403598
\(345\) 0 0
\(346\) −4.26989e6 −1.91746
\(347\) 1.17786e6 0.525132 0.262566 0.964914i \(-0.415431\pi\)
0.262566 + 0.964914i \(0.415431\pi\)
\(348\) 0 0
\(349\) −338854. −0.148919 −0.0744594 0.997224i \(-0.523723\pi\)
−0.0744594 + 0.997224i \(0.523723\pi\)
\(350\) −688790. −0.300550
\(351\) 0 0
\(352\) −408854. −0.175878
\(353\) −3.25607e6 −1.39077 −0.695387 0.718635i \(-0.744767\pi\)
−0.695387 + 0.718635i \(0.744767\pi\)
\(354\) 0 0
\(355\) 1.66297e6 0.700349
\(356\) 167941. 0.0702314
\(357\) 0 0
\(358\) −4.62652e6 −1.90786
\(359\) −2.81818e6 −1.15407 −0.577036 0.816719i \(-0.695791\pi\)
−0.577036 + 0.816719i \(0.695791\pi\)
\(360\) 0 0
\(361\) −1.22552e6 −0.494939
\(362\) 1.99393e6 0.799723
\(363\) 0 0
\(364\) −100533. −0.0397698
\(365\) 1.89757e6 0.745530
\(366\) 0 0
\(367\) 3.09661e6 1.20011 0.600056 0.799958i \(-0.295145\pi\)
0.600056 + 0.799958i \(0.295145\pi\)
\(368\) 3.91779e6 1.50807
\(369\) 0 0
\(370\) 42022.5 0.0159580
\(371\) 1.42364e6 0.536988
\(372\) 0 0
\(373\) −4.21455e6 −1.56848 −0.784240 0.620457i \(-0.786947\pi\)
−0.784240 + 0.620457i \(0.786947\pi\)
\(374\) −1.33266e6 −0.492652
\(375\) 0 0
\(376\) −1.15869e6 −0.422666
\(377\) 636398. 0.230609
\(378\) 0 0
\(379\) −1.26649e6 −0.452903 −0.226452 0.974022i \(-0.572712\pi\)
−0.226452 + 0.974022i \(0.572712\pi\)
\(380\) 89535.8 0.0318081
\(381\) 0 0
\(382\) −2.42951e6 −0.851845
\(383\) −5.66939e6 −1.97487 −0.987436 0.158017i \(-0.949490\pi\)
−0.987436 + 0.158017i \(0.949490\pi\)
\(384\) 0 0
\(385\) −1.64345e6 −0.565072
\(386\) 2.01470e6 0.688242
\(387\) 0 0
\(388\) −456551. −0.153961
\(389\) 5.49114e6 1.83988 0.919938 0.392063i \(-0.128238\pi\)
0.919938 + 0.392063i \(0.128238\pi\)
\(390\) 0 0
\(391\) 2.22753e6 0.736856
\(392\) −3.02330e6 −0.993726
\(393\) 0 0
\(394\) 5.17058e6 1.67803
\(395\) 2.54103e6 0.819441
\(396\) 0 0
\(397\) −1.53688e6 −0.489398 −0.244699 0.969599i \(-0.578689\pi\)
−0.244699 + 0.969599i \(0.578689\pi\)
\(398\) 1.60760e6 0.508711
\(399\) 0 0
\(400\) −697641. −0.218013
\(401\) −30028.4 −0.00932547 −0.00466273 0.999989i \(-0.501484\pi\)
−0.00466273 + 0.999989i \(0.501484\pi\)
\(402\) 0 0
\(403\) 491220. 0.150666
\(404\) −15217.8 −0.00463873
\(405\) 0 0
\(406\) −4.15001e6 −1.24949
\(407\) 100265. 0.0300030
\(408\) 0 0
\(409\) −5.54413e6 −1.63880 −0.819398 0.573225i \(-0.805692\pi\)
−0.819398 + 0.573225i \(0.805692\pi\)
\(410\) 2.01188e6 0.591074
\(411\) 0 0
\(412\) −189883. −0.0551116
\(413\) 521257. 0.150375
\(414\) 0 0
\(415\) 1.27207e6 0.362568
\(416\) −195236. −0.0553129
\(417\) 0 0
\(418\) 2.34822e6 0.657353
\(419\) 1.29360e6 0.359968 0.179984 0.983670i \(-0.442395\pi\)
0.179984 + 0.983670i \(0.442395\pi\)
\(420\) 0 0
\(421\) −3.68620e6 −1.01362 −0.506809 0.862058i \(-0.669175\pi\)
−0.506809 + 0.862058i \(0.669175\pi\)
\(422\) 1.07660e6 0.294289
\(423\) 0 0
\(424\) 1.30955e6 0.353758
\(425\) −396658. −0.106523
\(426\) 0 0
\(427\) 2.55674e6 0.678606
\(428\) −505774. −0.133459
\(429\) 0 0
\(430\) −769010. −0.200568
\(431\) −1.22645e6 −0.318021 −0.159010 0.987277i \(-0.550830\pi\)
−0.159010 + 0.987277i \(0.550830\pi\)
\(432\) 0 0
\(433\) 1.02459e6 0.262621 0.131311 0.991341i \(-0.458081\pi\)
0.131311 + 0.991341i \(0.458081\pi\)
\(434\) −3.20329e6 −0.816342
\(435\) 0 0
\(436\) 188563. 0.0475051
\(437\) −3.92504e6 −0.983198
\(438\) 0 0
\(439\) −5.04951e6 −1.25051 −0.625256 0.780420i \(-0.715005\pi\)
−0.625256 + 0.780420i \(0.715005\pi\)
\(440\) −1.51174e6 −0.372259
\(441\) 0 0
\(442\) −636370. −0.154937
\(443\) −6.30848e6 −1.52727 −0.763634 0.645649i \(-0.776587\pi\)
−0.763634 + 0.645649i \(0.776587\pi\)
\(444\) 0 0
\(445\) 1.31098e6 0.313831
\(446\) 8.23293e6 1.95983
\(447\) 0 0
\(448\) −5.36156e6 −1.26211
\(449\) −1.16391e6 −0.272461 −0.136231 0.990677i \(-0.543499\pi\)
−0.136231 + 0.990677i \(0.543499\pi\)
\(450\) 0 0
\(451\) 4.80032e6 1.11129
\(452\) −575612. −0.132521
\(453\) 0 0
\(454\) 4.09625e6 0.932710
\(455\) −784777. −0.177712
\(456\) 0 0
\(457\) 1.48156e6 0.331840 0.165920 0.986139i \(-0.446941\pi\)
0.165920 + 0.986139i \(0.446941\pi\)
\(458\) −8.20306e6 −1.82731
\(459\) 0 0
\(460\) −281015. −0.0619205
\(461\) 5.65392e6 1.23908 0.619538 0.784967i \(-0.287320\pi\)
0.619538 + 0.784967i \(0.287320\pi\)
\(462\) 0 0
\(463\) 2.09215e6 0.453566 0.226783 0.973945i \(-0.427179\pi\)
0.226783 + 0.973945i \(0.427179\pi\)
\(464\) −4.20334e6 −0.906357
\(465\) 0 0
\(466\) 426664. 0.0910168
\(467\) 7.48481e6 1.58814 0.794069 0.607827i \(-0.207959\pi\)
0.794069 + 0.607827i \(0.207959\pi\)
\(468\) 0 0
\(469\) −1.25832e7 −2.64155
\(470\) 1.00590e6 0.210043
\(471\) 0 0
\(472\) 479482. 0.0990644
\(473\) −1.83485e6 −0.377092
\(474\) 0 0
\(475\) 698934. 0.142135
\(476\) 377534. 0.0763728
\(477\) 0 0
\(478\) 4.89750e6 0.980402
\(479\) −2.54779e6 −0.507371 −0.253685 0.967287i \(-0.581643\pi\)
−0.253685 + 0.967287i \(0.581643\pi\)
\(480\) 0 0
\(481\) 47878.6 0.00943580
\(482\) −3.64941e6 −0.715493
\(483\) 0 0
\(484\) −114643. −0.0222450
\(485\) −3.56393e6 −0.687978
\(486\) 0 0
\(487\) 3.67779e6 0.702692 0.351346 0.936246i \(-0.385724\pi\)
0.351346 + 0.936246i \(0.385724\pi\)
\(488\) 2.35184e6 0.447053
\(489\) 0 0
\(490\) 2.62463e6 0.493830
\(491\) 7.23294e6 1.35398 0.676988 0.735994i \(-0.263285\pi\)
0.676988 + 0.735994i \(0.263285\pi\)
\(492\) 0 0
\(493\) −2.38989e6 −0.442854
\(494\) 1.12132e6 0.206734
\(495\) 0 0
\(496\) −3.24446e6 −0.592158
\(497\) −1.23556e7 −2.24375
\(498\) 0 0
\(499\) 875124. 0.157332 0.0786662 0.996901i \(-0.474934\pi\)
0.0786662 + 0.996901i \(0.474934\pi\)
\(500\) 50040.4 0.00895149
\(501\) 0 0
\(502\) −3.69393e6 −0.654228
\(503\) 2.95982e6 0.521609 0.260805 0.965392i \(-0.416012\pi\)
0.260805 + 0.965392i \(0.416012\pi\)
\(504\) 0 0
\(505\) −118793. −0.0207283
\(506\) −7.37007e6 −1.27966
\(507\) 0 0
\(508\) −396289. −0.0681323
\(509\) 1.12208e7 1.91968 0.959842 0.280540i \(-0.0905134\pi\)
0.959842 + 0.280540i \(0.0905134\pi\)
\(510\) 0 0
\(511\) −1.40986e7 −2.38850
\(512\) −4.81348e6 −0.811493
\(513\) 0 0
\(514\) 6.19034e6 1.03349
\(515\) −1.48226e6 −0.246268
\(516\) 0 0
\(517\) 2.40006e6 0.394907
\(518\) −312221. −0.0511255
\(519\) 0 0
\(520\) −721884. −0.117074
\(521\) −8.92586e6 −1.44064 −0.720321 0.693641i \(-0.756005\pi\)
−0.720321 + 0.693641i \(0.756005\pi\)
\(522\) 0 0
\(523\) 6.44897e6 1.03095 0.515473 0.856906i \(-0.327616\pi\)
0.515473 + 0.856906i \(0.327616\pi\)
\(524\) 138368. 0.0220144
\(525\) 0 0
\(526\) 7.82821e6 1.23367
\(527\) −1.84470e6 −0.289334
\(528\) 0 0
\(529\) 5.88270e6 0.913982
\(530\) −1.13686e6 −0.175800
\(531\) 0 0
\(532\) −665237. −0.101905
\(533\) 2.29224e6 0.349496
\(534\) 0 0
\(535\) −3.94818e6 −0.596365
\(536\) −1.15748e7 −1.74020
\(537\) 0 0
\(538\) −2.19310e6 −0.326665
\(539\) 6.26234e6 0.928463
\(540\) 0 0
\(541\) 6.01652e6 0.883796 0.441898 0.897065i \(-0.354305\pi\)
0.441898 + 0.897065i \(0.354305\pi\)
\(542\) 4.44567e6 0.650039
\(543\) 0 0
\(544\) 733177. 0.106221
\(545\) 1.47196e6 0.212278
\(546\) 0 0
\(547\) 928354. 0.132662 0.0663308 0.997798i \(-0.478871\pi\)
0.0663308 + 0.997798i \(0.478871\pi\)
\(548\) 603740. 0.0858813
\(549\) 0 0
\(550\) 1.31239e6 0.184993
\(551\) 4.21113e6 0.590907
\(552\) 0 0
\(553\) −1.88795e7 −2.62529
\(554\) 9.77532e6 1.35318
\(555\) 0 0
\(556\) 1.10216e6 0.151203
\(557\) −652347. −0.0890924 −0.0445462 0.999007i \(-0.514184\pi\)
−0.0445462 + 0.999007i \(0.514184\pi\)
\(558\) 0 0
\(559\) −876176. −0.118594
\(560\) 5.18337e6 0.698460
\(561\) 0 0
\(562\) −7.23353e6 −0.966072
\(563\) 992674. 0.131988 0.0659942 0.997820i \(-0.478978\pi\)
0.0659942 + 0.997820i \(0.478978\pi\)
\(564\) 0 0
\(565\) −4.49334e6 −0.592173
\(566\) −5.91844e6 −0.776545
\(567\) 0 0
\(568\) −1.13654e7 −1.47814
\(569\) −8.79703e6 −1.13908 −0.569541 0.821963i \(-0.692879\pi\)
−0.569541 + 0.821963i \(0.692879\pi\)
\(570\) 0 0
\(571\) −6.18261e6 −0.793563 −0.396782 0.917913i \(-0.629873\pi\)
−0.396782 + 0.917913i \(0.629873\pi\)
\(572\) 191550. 0.0244790
\(573\) 0 0
\(574\) −1.49479e7 −1.89366
\(575\) −2.19366e6 −0.276693
\(576\) 0 0
\(577\) 1.42671e7 1.78401 0.892003 0.452030i \(-0.149300\pi\)
0.892003 + 0.452030i \(0.149300\pi\)
\(578\) −6.03448e6 −0.751312
\(579\) 0 0
\(580\) 301497. 0.0372145
\(581\) −9.45125e6 −1.16158
\(582\) 0 0
\(583\) −2.71254e6 −0.330525
\(584\) −1.29687e7 −1.57350
\(585\) 0 0
\(586\) −1.07268e7 −1.29040
\(587\) 7.84422e6 0.939625 0.469812 0.882766i \(-0.344322\pi\)
0.469812 + 0.882766i \(0.344322\pi\)
\(588\) 0 0
\(589\) 3.25047e6 0.386062
\(590\) −416255. −0.0492299
\(591\) 0 0
\(592\) −316233. −0.0370854
\(593\) 1.85555e6 0.216689 0.108344 0.994113i \(-0.465445\pi\)
0.108344 + 0.994113i \(0.465445\pi\)
\(594\) 0 0
\(595\) 2.94710e6 0.341274
\(596\) 569447. 0.0656656
\(597\) 0 0
\(598\) −3.51935e6 −0.402448
\(599\) 1.54479e7 1.75915 0.879573 0.475764i \(-0.157828\pi\)
0.879573 + 0.475764i \(0.157828\pi\)
\(600\) 0 0
\(601\) 431785. 0.0487619 0.0243810 0.999703i \(-0.492239\pi\)
0.0243810 + 0.999703i \(0.492239\pi\)
\(602\) 5.71362e6 0.642570
\(603\) 0 0
\(604\) 1.77674e6 0.198167
\(605\) −894924. −0.0994026
\(606\) 0 0
\(607\) 1.21071e7 1.33373 0.666863 0.745180i \(-0.267637\pi\)
0.666863 + 0.745180i \(0.267637\pi\)
\(608\) −1.29190e6 −0.141733
\(609\) 0 0
\(610\) −2.04171e6 −0.222162
\(611\) 1.14607e6 0.124197
\(612\) 0 0
\(613\) 9.44151e6 1.01482 0.507411 0.861704i \(-0.330602\pi\)
0.507411 + 0.861704i \(0.330602\pi\)
\(614\) −145330. −0.0155573
\(615\) 0 0
\(616\) 1.12320e7 1.19263
\(617\) 9.98389e6 1.05581 0.527906 0.849303i \(-0.322977\pi\)
0.527906 + 0.849303i \(0.322977\pi\)
\(618\) 0 0
\(619\) −6.44689e6 −0.676275 −0.338138 0.941097i \(-0.609797\pi\)
−0.338138 + 0.941097i \(0.609797\pi\)
\(620\) 232718. 0.0243137
\(621\) 0 0
\(622\) −8.79367e6 −0.911369
\(623\) −9.74037e6 −1.00544
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) −2.06929e6 −0.211050
\(627\) 0 0
\(628\) 819528. 0.0829211
\(629\) −179800. −0.0181202
\(630\) 0 0
\(631\) 4.35897e6 0.435823 0.217912 0.975969i \(-0.430076\pi\)
0.217912 + 0.975969i \(0.430076\pi\)
\(632\) −1.73665e7 −1.72949
\(633\) 0 0
\(634\) 2.41176e6 0.238292
\(635\) −3.09351e6 −0.304451
\(636\) 0 0
\(637\) 2.99039e6 0.291997
\(638\) 7.90725e6 0.769084
\(639\) 0 0
\(640\) 5.20572e6 0.502378
\(641\) −1.63272e7 −1.56952 −0.784758 0.619803i \(-0.787213\pi\)
−0.784758 + 0.619803i \(0.787213\pi\)
\(642\) 0 0
\(643\) 1.31929e7 1.25838 0.629192 0.777250i \(-0.283386\pi\)
0.629192 + 0.777250i \(0.283386\pi\)
\(644\) 2.08789e6 0.198378
\(645\) 0 0
\(646\) −4.21094e6 −0.397007
\(647\) 9.42830e6 0.885468 0.442734 0.896653i \(-0.354009\pi\)
0.442734 + 0.896653i \(0.354009\pi\)
\(648\) 0 0
\(649\) −993180. −0.0925584
\(650\) 626692. 0.0581796
\(651\) 0 0
\(652\) −841273. −0.0775029
\(653\) −1.60701e7 −1.47481 −0.737406 0.675450i \(-0.763950\pi\)
−0.737406 + 0.675450i \(0.763950\pi\)
\(654\) 0 0
\(655\) 1.08012e6 0.0983718
\(656\) −1.51400e7 −1.37362
\(657\) 0 0
\(658\) −7.47365e6 −0.672927
\(659\) −6.63639e6 −0.595276 −0.297638 0.954679i \(-0.596199\pi\)
−0.297638 + 0.954679i \(0.596199\pi\)
\(660\) 0 0
\(661\) 2.01198e7 1.79110 0.895552 0.444956i \(-0.146781\pi\)
0.895552 + 0.444956i \(0.146781\pi\)
\(662\) 9.41087e6 0.834613
\(663\) 0 0
\(664\) −8.69382e6 −0.765227
\(665\) −5.19297e6 −0.455367
\(666\) 0 0
\(667\) −1.32169e7 −1.15031
\(668\) −919363. −0.0797160
\(669\) 0 0
\(670\) 1.00484e7 0.864792
\(671\) −4.87151e6 −0.417693
\(672\) 0 0
\(673\) −9.52533e6 −0.810667 −0.405334 0.914169i \(-0.632845\pi\)
−0.405334 + 0.914169i \(0.632845\pi\)
\(674\) 1.44525e7 1.22544
\(675\) 0 0
\(676\) 91469.0 0.00769852
\(677\) 3.37825e6 0.283283 0.141641 0.989918i \(-0.454762\pi\)
0.141641 + 0.989918i \(0.454762\pi\)
\(678\) 0 0
\(679\) 2.64794e7 2.20412
\(680\) 2.71092e6 0.224825
\(681\) 0 0
\(682\) 6.10341e6 0.502472
\(683\) 8.86253e6 0.726953 0.363476 0.931603i \(-0.381590\pi\)
0.363476 + 0.931603i \(0.381590\pi\)
\(684\) 0 0
\(685\) 4.71291e6 0.383763
\(686\) −978195. −0.0793625
\(687\) 0 0
\(688\) 5.78704e6 0.466107
\(689\) −1.29529e6 −0.103949
\(690\) 0 0
\(691\) 25025.8 0.00199385 0.000996925 1.00000i \(-0.499683\pi\)
0.000996925 1.00000i \(0.499683\pi\)
\(692\) −2.30478e6 −0.182964
\(693\) 0 0
\(694\) 6.98842e6 0.550783
\(695\) 8.60371e6 0.675653
\(696\) 0 0
\(697\) −8.60815e6 −0.671163
\(698\) −2.01048e6 −0.156193
\(699\) 0 0
\(700\) −371792. −0.0286784
\(701\) 2.15506e7 1.65640 0.828198 0.560436i \(-0.189366\pi\)
0.828198 + 0.560436i \(0.189366\pi\)
\(702\) 0 0
\(703\) 316819. 0.0241781
\(704\) 1.02157e7 0.776847
\(705\) 0 0
\(706\) −1.93188e7 −1.45871
\(707\) 882617. 0.0664085
\(708\) 0 0
\(709\) 2.07938e7 1.55352 0.776761 0.629796i \(-0.216861\pi\)
0.776761 + 0.629796i \(0.216861\pi\)
\(710\) 9.86672e6 0.734560
\(711\) 0 0
\(712\) −8.95977e6 −0.662364
\(713\) −1.02018e7 −0.751544
\(714\) 0 0
\(715\) 1.49528e6 0.109385
\(716\) −2.49728e6 −0.182048
\(717\) 0 0
\(718\) −1.67208e7 −1.21045
\(719\) 3.65717e6 0.263829 0.131915 0.991261i \(-0.457887\pi\)
0.131915 + 0.991261i \(0.457887\pi\)
\(720\) 0 0
\(721\) 1.10130e7 0.788982
\(722\) −7.27121e6 −0.519115
\(723\) 0 0
\(724\) 1.07628e6 0.0763093
\(725\) 2.35354e6 0.166294
\(726\) 0 0
\(727\) −8.36880e6 −0.587256 −0.293628 0.955920i \(-0.594863\pi\)
−0.293628 + 0.955920i \(0.594863\pi\)
\(728\) 5.36349e6 0.375075
\(729\) 0 0
\(730\) 1.12586e7 0.781947
\(731\) 3.29034e6 0.227744
\(732\) 0 0
\(733\) 1.81111e7 1.24504 0.622522 0.782602i \(-0.286108\pi\)
0.622522 + 0.782602i \(0.286108\pi\)
\(734\) 1.83727e7 1.25873
\(735\) 0 0
\(736\) 4.05472e6 0.275910
\(737\) 2.39755e7 1.62592
\(738\) 0 0
\(739\) 7.31705e6 0.492861 0.246431 0.969160i \(-0.420742\pi\)
0.246431 + 0.969160i \(0.420742\pi\)
\(740\) 22682.7 0.00152271
\(741\) 0 0
\(742\) 8.44670e6 0.563219
\(743\) −1.04179e7 −0.692322 −0.346161 0.938175i \(-0.612515\pi\)
−0.346161 + 0.938175i \(0.612515\pi\)
\(744\) 0 0
\(745\) 4.44522e6 0.293428
\(746\) −2.50057e7 −1.64510
\(747\) 0 0
\(748\) −719336. −0.0470087
\(749\) 2.93343e7 1.91061
\(750\) 0 0
\(751\) −1.16729e6 −0.0755229 −0.0377615 0.999287i \(-0.512023\pi\)
−0.0377615 + 0.999287i \(0.512023\pi\)
\(752\) −7.56969e6 −0.488128
\(753\) 0 0
\(754\) 3.77586e6 0.241873
\(755\) 1.38696e7 0.885517
\(756\) 0 0
\(757\) 4.75104e6 0.301334 0.150667 0.988585i \(-0.451858\pi\)
0.150667 + 0.988585i \(0.451858\pi\)
\(758\) −7.51433e6 −0.475026
\(759\) 0 0
\(760\) −4.77680e6 −0.299987
\(761\) 5.92209e6 0.370692 0.185346 0.982673i \(-0.440659\pi\)
0.185346 + 0.982673i \(0.440659\pi\)
\(762\) 0 0
\(763\) −1.09364e7 −0.680087
\(764\) −1.31139e6 −0.0812828
\(765\) 0 0
\(766\) −3.36375e7 −2.07134
\(767\) −474262. −0.0291092
\(768\) 0 0
\(769\) −5.07027e6 −0.309183 −0.154591 0.987979i \(-0.549406\pi\)
−0.154591 + 0.987979i \(0.549406\pi\)
\(770\) −9.75086e6 −0.592674
\(771\) 0 0
\(772\) 1.08748e6 0.0656719
\(773\) −2.31839e7 −1.39552 −0.697761 0.716330i \(-0.745820\pi\)
−0.697761 + 0.716330i \(0.745820\pi\)
\(774\) 0 0
\(775\) 1.81664e6 0.108646
\(776\) 2.43573e7 1.45203
\(777\) 0 0
\(778\) 3.25799e7 1.92975
\(779\) 1.51681e7 0.895543
\(780\) 0 0
\(781\) 2.35419e7 1.38106
\(782\) 1.32163e7 0.772849
\(783\) 0 0
\(784\) −1.97512e7 −1.14763
\(785\) 6.39740e6 0.370535
\(786\) 0 0
\(787\) −6.07650e6 −0.349717 −0.174858 0.984594i \(-0.555947\pi\)
−0.174858 + 0.984594i \(0.555947\pi\)
\(788\) 2.79095e6 0.160117
\(789\) 0 0
\(790\) 1.50764e7 0.859469
\(791\) 3.33848e7 1.89718
\(792\) 0 0
\(793\) −2.32624e6 −0.131362
\(794\) −9.11855e6 −0.513304
\(795\) 0 0
\(796\) 867745. 0.0485411
\(797\) −2.78805e7 −1.55473 −0.777363 0.629052i \(-0.783443\pi\)
−0.777363 + 0.629052i \(0.783443\pi\)
\(798\) 0 0
\(799\) −4.30389e6 −0.238503
\(800\) −722026. −0.0398867
\(801\) 0 0
\(802\) −178164. −0.00978099
\(803\) 2.68629e7 1.47016
\(804\) 0 0
\(805\) 1.62985e7 0.886459
\(806\) 2.91450e6 0.158025
\(807\) 0 0
\(808\) 811883. 0.0437487
\(809\) −6.10438e6 −0.327922 −0.163961 0.986467i \(-0.552427\pi\)
−0.163961 + 0.986467i \(0.552427\pi\)
\(810\) 0 0
\(811\) −2.23956e7 −1.19567 −0.597835 0.801619i \(-0.703972\pi\)
−0.597835 + 0.801619i \(0.703972\pi\)
\(812\) −2.24007e6 −0.119226
\(813\) 0 0
\(814\) 594892. 0.0314686
\(815\) −6.56714e6 −0.346324
\(816\) 0 0
\(817\) −5.79777e6 −0.303882
\(818\) −3.28943e7 −1.71885
\(819\) 0 0
\(820\) 1.08596e6 0.0564001
\(821\) 2.42967e7 1.25803 0.629014 0.777394i \(-0.283459\pi\)
0.629014 + 0.777394i \(0.283459\pi\)
\(822\) 0 0
\(823\) 3.64578e7 1.87625 0.938127 0.346293i \(-0.112560\pi\)
0.938127 + 0.346293i \(0.112560\pi\)
\(824\) 1.01304e7 0.519767
\(825\) 0 0
\(826\) 3.09271e6 0.157721
\(827\) 2.81247e7 1.42996 0.714981 0.699143i \(-0.246435\pi\)
0.714981 + 0.699143i \(0.246435\pi\)
\(828\) 0 0
\(829\) 2.68734e7 1.35812 0.679058 0.734085i \(-0.262389\pi\)
0.679058 + 0.734085i \(0.262389\pi\)
\(830\) 7.54739e6 0.380279
\(831\) 0 0
\(832\) 4.87818e6 0.244315
\(833\) −1.12299e7 −0.560743
\(834\) 0 0
\(835\) −7.17673e6 −0.356213
\(836\) 1.26751e6 0.0627244
\(837\) 0 0
\(838\) 7.67514e6 0.377552
\(839\) −3.46774e7 −1.70076 −0.850378 0.526172i \(-0.823627\pi\)
−0.850378 + 0.526172i \(0.823627\pi\)
\(840\) 0 0
\(841\) −6.33089e6 −0.308656
\(842\) −2.18709e7 −1.06313
\(843\) 0 0
\(844\) 581123. 0.0280810
\(845\) 714025. 0.0344010
\(846\) 0 0
\(847\) 6.64914e6 0.318462
\(848\) 8.55524e6 0.408548
\(849\) 0 0
\(850\) −2.35344e6 −0.111726
\(851\) −994359. −0.0470673
\(852\) 0 0
\(853\) 1.54571e6 0.0727368 0.0363684 0.999338i \(-0.488421\pi\)
0.0363684 + 0.999338i \(0.488421\pi\)
\(854\) 1.51696e7 0.711754
\(855\) 0 0
\(856\) 2.69834e7 1.25867
\(857\) 1.27926e7 0.594987 0.297493 0.954724i \(-0.403849\pi\)
0.297493 + 0.954724i \(0.403849\pi\)
\(858\) 0 0
\(859\) 2.66940e6 0.123433 0.0617165 0.998094i \(-0.480343\pi\)
0.0617165 + 0.998094i \(0.480343\pi\)
\(860\) −415093. −0.0191381
\(861\) 0 0
\(862\) −7.27673e6 −0.333555
\(863\) 3.37798e7 1.54394 0.771970 0.635659i \(-0.219272\pi\)
0.771970 + 0.635659i \(0.219272\pi\)
\(864\) 0 0
\(865\) −1.79916e7 −0.817578
\(866\) 6.07906e6 0.275449
\(867\) 0 0
\(868\) −1.72906e6 −0.0778952
\(869\) 3.59721e7 1.61591
\(870\) 0 0
\(871\) 1.14488e7 0.511344
\(872\) −1.00600e7 −0.448029
\(873\) 0 0
\(874\) −2.32880e7 −1.03122
\(875\) −2.90228e6 −0.128150
\(876\) 0 0
\(877\) 3.97308e7 1.74433 0.872164 0.489214i \(-0.162716\pi\)
0.872164 + 0.489214i \(0.162716\pi\)
\(878\) −2.99596e7 −1.31160
\(879\) 0 0
\(880\) −9.87616e6 −0.429914
\(881\) 1.67058e7 0.725149 0.362574 0.931955i \(-0.381898\pi\)
0.362574 + 0.931955i \(0.381898\pi\)
\(882\) 0 0
\(883\) −1.67930e7 −0.724816 −0.362408 0.932020i \(-0.618045\pi\)
−0.362408 + 0.932020i \(0.618045\pi\)
\(884\) −343497. −0.0147840
\(885\) 0 0
\(886\) −3.74293e7 −1.60187
\(887\) −8.61531e6 −0.367673 −0.183837 0.982957i \(-0.558852\pi\)
−0.183837 + 0.982957i \(0.558852\pi\)
\(888\) 0 0
\(889\) 2.29843e7 0.975388
\(890\) 7.77828e6 0.329161
\(891\) 0 0
\(892\) 4.44393e6 0.187006
\(893\) 7.58371e6 0.318239
\(894\) 0 0
\(895\) −1.94943e7 −0.813486
\(896\) −3.86777e7 −1.60950
\(897\) 0 0
\(898\) −6.90571e6 −0.285770
\(899\) 1.09454e7 0.451682
\(900\) 0 0
\(901\) 4.86425e6 0.199620
\(902\) 2.84811e7 1.16558
\(903\) 0 0
\(904\) 3.07093e7 1.24983
\(905\) 8.40163e6 0.340990
\(906\) 0 0
\(907\) 7.34436e6 0.296439 0.148220 0.988954i \(-0.452646\pi\)
0.148220 + 0.988954i \(0.452646\pi\)
\(908\) 2.21105e6 0.0889989
\(909\) 0 0
\(910\) −4.65622e6 −0.186393
\(911\) −3.63225e7 −1.45004 −0.725019 0.688729i \(-0.758169\pi\)
−0.725019 + 0.688729i \(0.758169\pi\)
\(912\) 0 0
\(913\) 1.80080e7 0.714971
\(914\) 8.79036e6 0.348049
\(915\) 0 0
\(916\) −4.42781e6 −0.174361
\(917\) −8.02515e6 −0.315159
\(918\) 0 0
\(919\) 2.25278e7 0.879892 0.439946 0.898024i \(-0.354998\pi\)
0.439946 + 0.898024i \(0.354998\pi\)
\(920\) 1.49923e7 0.583982
\(921\) 0 0
\(922\) 3.35457e7 1.29960
\(923\) 1.12417e7 0.434338
\(924\) 0 0
\(925\) 177066. 0.00680425
\(926\) 1.24131e7 0.475721
\(927\) 0 0
\(928\) −4.35026e6 −0.165823
\(929\) −3.93312e7 −1.49520 −0.747598 0.664152i \(-0.768793\pi\)
−0.747598 + 0.664152i \(0.768793\pi\)
\(930\) 0 0
\(931\) 1.97878e7 0.748209
\(932\) 230303. 0.00868480
\(933\) 0 0
\(934\) 4.44087e7 1.66571
\(935\) −5.61528e6 −0.210060
\(936\) 0 0
\(937\) −1.36354e7 −0.507362 −0.253681 0.967288i \(-0.581641\pi\)
−0.253681 + 0.967288i \(0.581641\pi\)
\(938\) −7.46584e7 −2.77058
\(939\) 0 0
\(940\) 542958. 0.0200423
\(941\) −2.28438e7 −0.840995 −0.420498 0.907294i \(-0.638144\pi\)
−0.420498 + 0.907294i \(0.638144\pi\)
\(942\) 0 0
\(943\) −4.76061e7 −1.74334
\(944\) 3.13245e6 0.114407
\(945\) 0 0
\(946\) −1.08865e7 −0.395512
\(947\) 6.46944e6 0.234418 0.117209 0.993107i \(-0.462605\pi\)
0.117209 + 0.993107i \(0.462605\pi\)
\(948\) 0 0
\(949\) 1.28276e7 0.462358
\(950\) 4.14690e6 0.149078
\(951\) 0 0
\(952\) −2.01417e7 −0.720284
\(953\) −2.58068e6 −0.0920452 −0.0460226 0.998940i \(-0.514655\pi\)
−0.0460226 + 0.998940i \(0.514655\pi\)
\(954\) 0 0
\(955\) −1.02370e7 −0.363215
\(956\) 2.64355e6 0.0935497
\(957\) 0 0
\(958\) −1.51165e7 −0.532154
\(959\) −3.50162e7 −1.22948
\(960\) 0 0
\(961\) −2.01807e7 −0.704899
\(962\) 284072. 0.00989672
\(963\) 0 0
\(964\) −1.96986e6 −0.0682722
\(965\) 8.48912e6 0.293457
\(966\) 0 0
\(967\) −1.88591e6 −0.0648568 −0.0324284 0.999474i \(-0.510324\pi\)
−0.0324284 + 0.999474i \(0.510324\pi\)
\(968\) 6.11627e6 0.209797
\(969\) 0 0
\(970\) −2.11454e7 −0.721584
\(971\) 2.49003e7 0.847534 0.423767 0.905771i \(-0.360708\pi\)
0.423767 + 0.905771i \(0.360708\pi\)
\(972\) 0 0
\(973\) −6.39242e7 −2.16463
\(974\) 2.18210e7 0.737016
\(975\) 0 0
\(976\) 1.53645e7 0.516292
\(977\) −1.01689e7 −0.340829 −0.170415 0.985372i \(-0.554511\pi\)
−0.170415 + 0.985372i \(0.554511\pi\)
\(978\) 0 0
\(979\) 1.85589e7 0.618864
\(980\) 1.41671e6 0.0471212
\(981\) 0 0
\(982\) 4.29143e7 1.42011
\(983\) −4.29289e6 −0.141699 −0.0708494 0.997487i \(-0.522571\pi\)
−0.0708494 + 0.997487i \(0.522571\pi\)
\(984\) 0 0
\(985\) 2.17867e7 0.715487
\(986\) −1.41796e7 −0.464486
\(987\) 0 0
\(988\) 605262. 0.0197265
\(989\) 1.81967e7 0.591565
\(990\) 0 0
\(991\) −2.64765e7 −0.856398 −0.428199 0.903684i \(-0.640852\pi\)
−0.428199 + 0.903684i \(0.640852\pi\)
\(992\) −3.35786e6 −0.108339
\(993\) 0 0
\(994\) −7.33082e7 −2.35335
\(995\) 6.77379e6 0.216907
\(996\) 0 0
\(997\) 4.21089e6 0.134164 0.0670820 0.997747i \(-0.478631\pi\)
0.0670820 + 0.997747i \(0.478631\pi\)
\(998\) 5.19227e6 0.165018
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.6.a.m.1.5 6
3.2 odd 2 65.6.a.d.1.2 6
12.11 even 2 1040.6.a.q.1.5 6
15.2 even 4 325.6.b.g.274.4 12
15.8 even 4 325.6.b.g.274.9 12
15.14 odd 2 325.6.a.g.1.5 6
39.38 odd 2 845.6.a.h.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.2 6 3.2 odd 2
325.6.a.g.1.5 6 15.14 odd 2
325.6.b.g.274.4 12 15.2 even 4
325.6.b.g.274.9 12 15.8 even 4
585.6.a.m.1.5 6 1.1 even 1 trivial
845.6.a.h.1.5 6 39.38 odd 2
1040.6.a.q.1.5 6 12.11 even 2