Properties

Label 5850.2.a.cg
Level 58505850
Weight 22
Character orbit 5850.a
Self dual yes
Analytic conductor 46.71246.712
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5850,2,Mod(1,5850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5850.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5850=2325213 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5850.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 46.712485182446.7124851824
Analytic rank: 11
Dimension: 22
Coefficient field: Q(41)\Q(\sqrt{41})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x10 x^{2} - x - 10 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1950)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+41)\beta = \frac{1}{2}(1 + \sqrt{41}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq2+q4+(β+1)q7q8+(β1)q11q13+(β1)q14+q16+(β3)q17+(β+2)q19+(β+1)q22+q26+(β+1)q28++(3β4)q98+O(q100) q - q^{2} + q^{4} + (\beta + 1) q^{7} - q^{8} + ( - \beta - 1) q^{11} - q^{13} + ( - \beta - 1) q^{14} + q^{16} + (\beta - 3) q^{17} + ( - \beta + 2) q^{19} + (\beta + 1) q^{22} + q^{26} + (\beta + 1) q^{28}+ \cdots + ( - 3 \beta - 4) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q2+2q4+3q72q83q112q133q14+2q165q17+3q19+3q22+2q26+3q28q312q32+5q34+3q373q38+q41+11q98+O(q100) 2 q - 2 q^{2} + 2 q^{4} + 3 q^{7} - 2 q^{8} - 3 q^{11} - 2 q^{13} - 3 q^{14} + 2 q^{16} - 5 q^{17} + 3 q^{19} + 3 q^{22} + 2 q^{26} + 3 q^{28} - q^{31} - 2 q^{32} + 5 q^{34} + 3 q^{37} - 3 q^{38} + q^{41}+ \cdots - 11 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.70156
3.70156
−1.00000 0 1.00000 0 0 −1.70156 −1.00000 0 0
1.2 −1.00000 0 1.00000 0 0 4.70156 −1.00000 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
55 1 -1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5850.2.a.cg 2
3.b odd 2 1 1950.2.a.bg yes 2
5.b even 2 1 5850.2.a.cj 2
5.c odd 4 2 5850.2.e.bi 4
15.d odd 2 1 1950.2.a.bc 2
15.e even 4 2 1950.2.e.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1950.2.a.bc 2 15.d odd 2 1
1950.2.a.bg yes 2 3.b odd 2 1
1950.2.e.p 4 15.e even 4 2
5850.2.a.cg 2 1.a even 1 1 trivial
5850.2.a.cj 2 5.b even 2 1
5850.2.e.bi 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(5850))S_{2}^{\mathrm{new}}(\Gamma_0(5850)):

T723T78 T_{7}^{2} - 3T_{7} - 8 Copy content Toggle raw display
T112+3T118 T_{11}^{2} + 3T_{11} - 8 Copy content Toggle raw display
T172+5T174 T_{17}^{2} + 5T_{17} - 4 Copy content Toggle raw display
T23 T_{23} Copy content Toggle raw display
T312+T3192 T_{31}^{2} + T_{31} - 92 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T23T8 T^{2} - 3T - 8 Copy content Toggle raw display
1111 T2+3T8 T^{2} + 3T - 8 Copy content Toggle raw display
1313 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
1717 T2+5T4 T^{2} + 5T - 4 Copy content Toggle raw display
1919 T23T8 T^{2} - 3T - 8 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T241 T^{2} - 41 Copy content Toggle raw display
3131 T2+T92 T^{2} + T - 92 Copy content Toggle raw display
3737 T23T8 T^{2} - 3T - 8 Copy content Toggle raw display
4141 T2T10 T^{2} - T - 10 Copy content Toggle raw display
4343 T2+10T16 T^{2} + 10T - 16 Copy content Toggle raw display
4747 (T+7)2 (T + 7)^{2} Copy content Toggle raw display
5353 T28T25 T^{2} - 8T - 25 Copy content Toggle raw display
5959 T2T10 T^{2} - T - 10 Copy content Toggle raw display
6161 T29T72 T^{2} - 9T - 72 Copy content Toggle raw display
6767 T241 T^{2} - 41 Copy content Toggle raw display
7171 T2+3T8 T^{2} + 3T - 8 Copy content Toggle raw display
7373 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
7979 T2+5T4 T^{2} + 5T - 4 Copy content Toggle raw display
8383 T215T+46 T^{2} - 15T + 46 Copy content Toggle raw display
8989 T2+10T16 T^{2} + 10T - 16 Copy content Toggle raw display
9797 T2+18T+40 T^{2} + 18T + 40 Copy content Toggle raw display
show more
show less