Properties

Label 5850.2.a.cg
Level $5850$
Weight $2$
Character orbit 5850.a
Self dual yes
Analytic conductor $46.712$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5850,2,Mod(1,5850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5850.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5850.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.7124851824\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1950)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{41})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + (\beta + 1) q^{7} - q^{8} + ( - \beta - 1) q^{11} - q^{13} + ( - \beta - 1) q^{14} + q^{16} + (\beta - 3) q^{17} + ( - \beta + 2) q^{19} + (\beta + 1) q^{22} + q^{26} + (\beta + 1) q^{28}+ \cdots + ( - 3 \beta - 4) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 3 q^{7} - 2 q^{8} - 3 q^{11} - 2 q^{13} - 3 q^{14} + 2 q^{16} - 5 q^{17} + 3 q^{19} + 3 q^{22} + 2 q^{26} + 3 q^{28} - q^{31} - 2 q^{32} + 5 q^{34} + 3 q^{37} - 3 q^{38} + q^{41}+ \cdots - 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.70156
3.70156
−1.00000 0 1.00000 0 0 −1.70156 −1.00000 0 0
1.2 −1.00000 0 1.00000 0 0 4.70156 −1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5850.2.a.cg 2
3.b odd 2 1 1950.2.a.bg yes 2
5.b even 2 1 5850.2.a.cj 2
5.c odd 4 2 5850.2.e.bi 4
15.d odd 2 1 1950.2.a.bc 2
15.e even 4 2 1950.2.e.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1950.2.a.bc 2 15.d odd 2 1
1950.2.a.bg yes 2 3.b odd 2 1
1950.2.e.p 4 15.e even 4 2
5850.2.a.cg 2 1.a even 1 1 trivial
5850.2.a.cj 2 5.b even 2 1
5850.2.e.bi 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5850))\):

\( T_{7}^{2} - 3T_{7} - 8 \) Copy content Toggle raw display
\( T_{11}^{2} + 3T_{11} - 8 \) Copy content Toggle raw display
\( T_{17}^{2} + 5T_{17} - 4 \) Copy content Toggle raw display
\( T_{23} \) Copy content Toggle raw display
\( T_{31}^{2} + T_{31} - 92 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 3T - 8 \) Copy content Toggle raw display
$11$ \( T^{2} + 3T - 8 \) Copy content Toggle raw display
$13$ \( (T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 5T - 4 \) Copy content Toggle raw display
$19$ \( T^{2} - 3T - 8 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 41 \) Copy content Toggle raw display
$31$ \( T^{2} + T - 92 \) Copy content Toggle raw display
$37$ \( T^{2} - 3T - 8 \) Copy content Toggle raw display
$41$ \( T^{2} - T - 10 \) Copy content Toggle raw display
$43$ \( T^{2} + 10T - 16 \) Copy content Toggle raw display
$47$ \( (T + 7)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 8T - 25 \) Copy content Toggle raw display
$59$ \( T^{2} - T - 10 \) Copy content Toggle raw display
$61$ \( T^{2} - 9T - 72 \) Copy content Toggle raw display
$67$ \( T^{2} - 41 \) Copy content Toggle raw display
$71$ \( T^{2} + 3T - 8 \) Copy content Toggle raw display
$73$ \( (T + 12)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 5T - 4 \) Copy content Toggle raw display
$83$ \( T^{2} - 15T + 46 \) Copy content Toggle raw display
$89$ \( T^{2} + 10T - 16 \) Copy content Toggle raw display
$97$ \( T^{2} + 18T + 40 \) Copy content Toggle raw display
show more
show less