Properties

Label 5850.2.e.h
Level 58505850
Weight 22
Character orbit 5850.e
Analytic conductor 46.71246.712
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5850,2,Mod(5149,5850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5850.5149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5850=2325213 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5850.e (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 46.712485182446.7124851824
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qiq2q4+2iq7+iq84q11iq13+2q14+q16+4iq17+2q19+4iq222iq23q262iq28+8q29+4q31iq32+4q34+3iq98+O(q100) q - i q^{2} - q^{4} + 2 i q^{7} + i q^{8} - 4 q^{11} - i q^{13} + 2 q^{14} + q^{16} + 4 i q^{17} + 2 q^{19} + 4 i q^{22} - 2 i q^{23} - q^{26} - 2 i q^{28} + 8 q^{29} + 4 q^{31} - i q^{32} + 4 q^{34} + \cdots - 3 i q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q48q11+4q14+2q16+4q192q26+16q29+8q31+8q3420q41+8q444q46+6q494q5624q594q612q6412q74++4q91+O(q100) 2 q - 2 q^{4} - 8 q^{11} + 4 q^{14} + 2 q^{16} + 4 q^{19} - 2 q^{26} + 16 q^{29} + 8 q^{31} + 8 q^{34} - 20 q^{41} + 8 q^{44} - 4 q^{46} + 6 q^{49} - 4 q^{56} - 24 q^{59} - 4 q^{61} - 2 q^{64} - 12 q^{74}+ \cdots + 4 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/5850Z)×\left(\mathbb{Z}/5850\mathbb{Z}\right)^\times.

nn 22512251 32513251 32773277
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
5149.1
1.00000i
1.00000i
1.00000i 0 −1.00000 0 0 2.00000i 1.00000i 0 0
5149.2 1.00000i 0 −1.00000 0 0 2.00000i 1.00000i 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5850.2.e.h 2
3.b odd 2 1 1950.2.e.m 2
5.b even 2 1 inner 5850.2.e.h 2
5.c odd 4 1 1170.2.a.j 1
5.c odd 4 1 5850.2.a.s 1
15.d odd 2 1 1950.2.e.m 2
15.e even 4 1 390.2.a.b 1
15.e even 4 1 1950.2.a.ba 1
20.e even 4 1 9360.2.a.v 1
60.l odd 4 1 3120.2.a.y 1
195.j odd 4 1 5070.2.b.f 2
195.s even 4 1 5070.2.a.n 1
195.u odd 4 1 5070.2.b.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.a.b 1 15.e even 4 1
1170.2.a.j 1 5.c odd 4 1
1950.2.a.ba 1 15.e even 4 1
1950.2.e.m 2 3.b odd 2 1
1950.2.e.m 2 15.d odd 2 1
3120.2.a.y 1 60.l odd 4 1
5070.2.a.n 1 195.s even 4 1
5070.2.b.f 2 195.j odd 4 1
5070.2.b.f 2 195.u odd 4 1
5850.2.a.s 1 5.c odd 4 1
5850.2.e.h 2 1.a even 1 1 trivial
5850.2.e.h 2 5.b even 2 1 inner
9360.2.a.v 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(5850,[χ])S_{2}^{\mathrm{new}}(5850, [\chi]):

T72+4 T_{7}^{2} + 4 Copy content Toggle raw display
T11+4 T_{11} + 4 Copy content Toggle raw display
T172+16 T_{17}^{2} + 16 Copy content Toggle raw display
T192 T_{19} - 2 Copy content Toggle raw display
T298 T_{29} - 8 Copy content Toggle raw display
T314 T_{31} - 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+1 T^{2} + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+4 T^{2} + 4 Copy content Toggle raw display
1111 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
1313 T2+1 T^{2} + 1 Copy content Toggle raw display
1717 T2+16 T^{2} + 16 Copy content Toggle raw display
1919 (T2)2 (T - 2)^{2} Copy content Toggle raw display
2323 T2+4 T^{2} + 4 Copy content Toggle raw display
2929 (T8)2 (T - 8)^{2} Copy content Toggle raw display
3131 (T4)2 (T - 4)^{2} Copy content Toggle raw display
3737 T2+36 T^{2} + 36 Copy content Toggle raw display
4141 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
4343 T2+16 T^{2} + 16 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+36 T^{2} + 36 Copy content Toggle raw display
5959 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
6161 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
6767 T2+64 T^{2} + 64 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 (T8)2 (T - 8)^{2} Copy content Toggle raw display
8383 T2+144 T^{2} + 144 Copy content Toggle raw display
8989 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
9797 T2+64 T^{2} + 64 Copy content Toggle raw display
show more
show less