Properties

Label 588.2.e.a.491.2
Level $588$
Weight $2$
Character 588.491
Analytic conductor $4.695$
Analytic rank $0$
Dimension $4$
CM discriminant -84
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,2,Mod(491,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.491");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 491.2
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 588.491
Dual form 588.2.e.a.491.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{2} +1.73205i q^{3} +2.00000 q^{4} -2.44949i q^{5} -2.44949i q^{6} -2.82843 q^{8} -3.00000 q^{9} +3.46410i q^{10} -1.41421 q^{11} +3.46410i q^{12} +4.24264 q^{15} +4.00000 q^{16} +7.34847i q^{17} +4.24264 q^{18} +6.92820i q^{19} -4.89898i q^{20} +2.00000 q^{22} +7.07107 q^{23} -4.89898i q^{24} -1.00000 q^{25} -5.19615i q^{27} -6.00000 q^{30} +3.46410i q^{31} -5.65685 q^{32} -2.44949i q^{33} -10.3923i q^{34} -6.00000 q^{36} +8.00000 q^{37} -9.79796i q^{38} +6.92820i q^{40} +12.2474i q^{41} -2.82843 q^{44} +7.34847i q^{45} -10.0000 q^{46} +6.92820i q^{48} +1.41421 q^{50} -12.7279 q^{51} +7.34847i q^{54} +3.46410i q^{55} -12.0000 q^{57} +8.48528 q^{60} -4.89898i q^{62} +8.00000 q^{64} +3.46410i q^{66} +14.6969i q^{68} +12.2474i q^{69} -15.5563 q^{71} +8.48528 q^{72} -11.3137 q^{74} -1.73205i q^{75} +13.8564i q^{76} -9.79796i q^{80} +9.00000 q^{81} -17.3205i q^{82} +18.0000 q^{85} +4.00000 q^{88} -2.44949i q^{89} -10.3923i q^{90} +14.1421 q^{92} -6.00000 q^{93} +16.9706 q^{95} -9.79796i q^{96} +4.24264 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} - 12 q^{9} + 16 q^{16} + 8 q^{22} - 4 q^{25} - 24 q^{30} - 24 q^{36} + 32 q^{37} - 40 q^{46} - 48 q^{57} + 32 q^{64} + 36 q^{81} + 72 q^{85} + 16 q^{88} - 24 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 −1.00000
\(3\) 1.73205i 1.00000i
\(4\) 2.00000 1.00000
\(5\) − 2.44949i − 1.09545i −0.836660 0.547723i \(-0.815495\pi\)
0.836660 0.547723i \(-0.184505\pi\)
\(6\) − 2.44949i − 1.00000i
\(7\) 0 0
\(8\) −2.82843 −1.00000
\(9\) −3.00000 −1.00000
\(10\) 3.46410i 1.09545i
\(11\) −1.41421 −0.426401 −0.213201 0.977008i \(-0.568389\pi\)
−0.213201 + 0.977008i \(0.568389\pi\)
\(12\) 3.46410i 1.00000i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 4.24264 1.09545
\(16\) 4.00000 1.00000
\(17\) 7.34847i 1.78227i 0.453743 + 0.891133i \(0.350089\pi\)
−0.453743 + 0.891133i \(0.649911\pi\)
\(18\) 4.24264 1.00000
\(19\) 6.92820i 1.58944i 0.606977 + 0.794719i \(0.292382\pi\)
−0.606977 + 0.794719i \(0.707618\pi\)
\(20\) − 4.89898i − 1.09545i
\(21\) 0 0
\(22\) 2.00000 0.426401
\(23\) 7.07107 1.47442 0.737210 0.675664i \(-0.236143\pi\)
0.737210 + 0.675664i \(0.236143\pi\)
\(24\) − 4.89898i − 1.00000i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) − 5.19615i − 1.00000i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) −6.00000 −1.09545
\(31\) 3.46410i 0.622171i 0.950382 + 0.311086i \(0.100693\pi\)
−0.950382 + 0.311086i \(0.899307\pi\)
\(32\) −5.65685 −1.00000
\(33\) − 2.44949i − 0.426401i
\(34\) − 10.3923i − 1.78227i
\(35\) 0 0
\(36\) −6.00000 −1.00000
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) − 9.79796i − 1.58944i
\(39\) 0 0
\(40\) 6.92820i 1.09545i
\(41\) 12.2474i 1.91273i 0.292174 + 0.956365i \(0.405621\pi\)
−0.292174 + 0.956365i \(0.594379\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −2.82843 −0.426401
\(45\) 7.34847i 1.09545i
\(46\) −10.0000 −1.47442
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 6.92820i 1.00000i
\(49\) 0 0
\(50\) 1.41421 0.200000
\(51\) −12.7279 −1.78227
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 7.34847i 1.00000i
\(55\) 3.46410i 0.467099i
\(56\) 0 0
\(57\) −12.0000 −1.58944
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 8.48528 1.09545
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) − 4.89898i − 0.622171i
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) 0 0
\(66\) 3.46410i 0.426401i
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 14.6969i 1.78227i
\(69\) 12.2474i 1.47442i
\(70\) 0 0
\(71\) −15.5563 −1.84620 −0.923099 0.384561i \(-0.874353\pi\)
−0.923099 + 0.384561i \(0.874353\pi\)
\(72\) 8.48528 1.00000
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) −11.3137 −1.31519
\(75\) − 1.73205i − 0.200000i
\(76\) 13.8564i 1.58944i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) − 9.79796i − 1.09545i
\(81\) 9.00000 1.00000
\(82\) − 17.3205i − 1.91273i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 18.0000 1.95237
\(86\) 0 0
\(87\) 0 0
\(88\) 4.00000 0.426401
\(89\) − 2.44949i − 0.259645i −0.991537 0.129823i \(-0.958559\pi\)
0.991537 0.129823i \(-0.0414408\pi\)
\(90\) − 10.3923i − 1.09545i
\(91\) 0 0
\(92\) 14.1421 1.47442
\(93\) −6.00000 −0.622171
\(94\) 0 0
\(95\) 16.9706 1.74114
\(96\) − 9.79796i − 1.00000i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 4.24264 0.426401
\(100\) −2.00000 −0.200000
\(101\) 7.34847i 0.731200i 0.930772 + 0.365600i \(0.119136\pi\)
−0.930772 + 0.365600i \(0.880864\pi\)
\(102\) 18.0000 1.78227
\(103\) − 17.3205i − 1.70664i −0.521387 0.853320i \(-0.674585\pi\)
0.521387 0.853320i \(-0.325415\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.07107 0.683586 0.341793 0.939775i \(-0.388966\pi\)
0.341793 + 0.939775i \(0.388966\pi\)
\(108\) − 10.3923i − 1.00000i
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) − 4.89898i − 0.467099i
\(111\) 13.8564i 1.31519i
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 16.9706 1.58944
\(115\) − 17.3205i − 1.61515i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) −12.0000 −1.09545
\(121\) −9.00000 −0.818182
\(122\) 0 0
\(123\) −21.2132 −1.91273
\(124\) 6.92820i 0.622171i
\(125\) − 9.79796i − 0.876356i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −11.3137 −1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) − 4.89898i − 0.426401i
\(133\) 0 0
\(134\) 0 0
\(135\) −12.7279 −1.09545
\(136\) − 20.7846i − 1.78227i
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) − 17.3205i − 1.47442i
\(139\) − 10.3923i − 0.881464i −0.897639 0.440732i \(-0.854719\pi\)
0.897639 0.440732i \(-0.145281\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 22.0000 1.84620
\(143\) 0 0
\(144\) −12.0000 −1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 16.0000 1.31519
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 2.44949i 0.200000i
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) − 19.5959i − 1.58944i
\(153\) − 22.0454i − 1.78227i
\(154\) 0 0
\(155\) 8.48528 0.681554
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 13.8564i 1.09545i
\(161\) 0 0
\(162\) −12.7279 −1.00000
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 24.4949i 1.91273i
\(165\) −6.00000 −0.467099
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) −25.4558 −1.95237
\(171\) − 20.7846i − 1.58944i
\(172\) 0 0
\(173\) − 2.44949i − 0.186231i −0.995655 0.0931156i \(-0.970317\pi\)
0.995655 0.0931156i \(-0.0296826\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −5.65685 −0.426401
\(177\) 0 0
\(178\) 3.46410i 0.259645i
\(179\) 18.3848 1.37414 0.687071 0.726590i \(-0.258896\pi\)
0.687071 + 0.726590i \(0.258896\pi\)
\(180\) 14.6969i 1.09545i
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −20.0000 −1.47442
\(185\) − 19.5959i − 1.44072i
\(186\) 8.48528 0.622171
\(187\) − 10.3923i − 0.759961i
\(188\) 0 0
\(189\) 0 0
\(190\) −24.0000 −1.74114
\(191\) 26.8701 1.94425 0.972125 0.234465i \(-0.0753338\pi\)
0.972125 + 0.234465i \(0.0753338\pi\)
\(192\) 13.8564i 1.00000i
\(193\) 4.00000 0.287926 0.143963 0.989583i \(-0.454015\pi\)
0.143963 + 0.989583i \(0.454015\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −6.00000 −0.426401
\(199\) 27.7128i 1.96451i 0.187552 + 0.982255i \(0.439945\pi\)
−0.187552 + 0.982255i \(0.560055\pi\)
\(200\) 2.82843 0.200000
\(201\) 0 0
\(202\) − 10.3923i − 0.731200i
\(203\) 0 0
\(204\) −25.4558 −1.78227
\(205\) 30.0000 2.09529
\(206\) 24.4949i 1.70664i
\(207\) −21.2132 −1.47442
\(208\) 0 0
\(209\) − 9.79796i − 0.677739i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) − 26.9444i − 1.84620i
\(214\) −10.0000 −0.683586
\(215\) 0 0
\(216\) 14.6969i 1.00000i
\(217\) 0 0
\(218\) 14.1421 0.957826
\(219\) 0 0
\(220\) 6.92820i 0.467099i
\(221\) 0 0
\(222\) − 19.5959i − 1.31519i
\(223\) 13.8564i 0.927894i 0.885863 + 0.463947i \(0.153567\pi\)
−0.885863 + 0.463947i \(0.846433\pi\)
\(224\) 0 0
\(225\) 3.00000 0.200000
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) −24.0000 −1.58944
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 24.4949i 1.61515i
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 24.0416 1.55512 0.777562 0.628806i \(-0.216456\pi\)
0.777562 + 0.628806i \(0.216456\pi\)
\(240\) 16.9706 1.09545
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 12.7279 0.818182
\(243\) 15.5885i 1.00000i
\(244\) 0 0
\(245\) 0 0
\(246\) 30.0000 1.91273
\(247\) 0 0
\(248\) − 9.79796i − 0.622171i
\(249\) 0 0
\(250\) 13.8564i 0.876356i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −10.0000 −0.628695
\(254\) 0 0
\(255\) 31.1769i 1.95237i
\(256\) 16.0000 1.00000
\(257\) 31.8434i 1.98633i 0.116699 + 0.993167i \(0.462769\pi\)
−0.116699 + 0.993167i \(0.537231\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.41421 −0.0872041 −0.0436021 0.999049i \(-0.513883\pi\)
−0.0436021 + 0.999049i \(0.513883\pi\)
\(264\) 6.92820i 0.426401i
\(265\) 0 0
\(266\) 0 0
\(267\) 4.24264 0.259645
\(268\) 0 0
\(269\) − 26.9444i − 1.64283i −0.570332 0.821414i \(-0.693186\pi\)
0.570332 0.821414i \(-0.306814\pi\)
\(270\) 18.0000 1.09545
\(271\) 31.1769i 1.89386i 0.321436 + 0.946931i \(0.395835\pi\)
−0.321436 + 0.946931i \(0.604165\pi\)
\(272\) 29.3939i 1.78227i
\(273\) 0 0
\(274\) 0 0
\(275\) 1.41421 0.0852803
\(276\) 24.4949i 1.47442i
\(277\) 32.0000 1.92269 0.961347 0.275340i \(-0.0887905\pi\)
0.961347 + 0.275340i \(0.0887905\pi\)
\(278\) 14.6969i 0.881464i
\(279\) − 10.3923i − 0.622171i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) − 20.7846i − 1.23552i −0.786368 0.617758i \(-0.788041\pi\)
0.786368 0.617758i \(-0.211959\pi\)
\(284\) −31.1127 −1.84620
\(285\) 29.3939i 1.74114i
\(286\) 0 0
\(287\) 0 0
\(288\) 16.9706 1.00000
\(289\) −37.0000 −2.17647
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 22.0454i − 1.28791i −0.765065 0.643953i \(-0.777293\pi\)
0.765065 0.643953i \(-0.222707\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −22.6274 −1.31519
\(297\) 7.34847i 0.426401i
\(298\) 0 0
\(299\) 0 0
\(300\) − 3.46410i − 0.200000i
\(301\) 0 0
\(302\) 0 0
\(303\) −12.7279 −0.731200
\(304\) 27.7128i 1.58944i
\(305\) 0 0
\(306\) 31.1769i 1.78227i
\(307\) − 34.6410i − 1.97707i −0.151001 0.988534i \(-0.548250\pi\)
0.151001 0.988534i \(-0.451750\pi\)
\(308\) 0 0
\(309\) 30.0000 1.70664
\(310\) −12.0000 −0.681554
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) − 19.5959i − 1.09545i
\(321\) 12.2474i 0.683586i
\(322\) 0 0
\(323\) −50.9117 −2.83280
\(324\) 18.0000 1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) − 17.3205i − 0.957826i
\(328\) − 34.6410i − 1.91273i
\(329\) 0 0
\(330\) 8.48528 0.467099
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) −24.0000 −1.31519
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 18.3848 1.00000
\(339\) 0 0
\(340\) 36.0000 1.95237
\(341\) − 4.89898i − 0.265295i
\(342\) 29.3939i 1.58944i
\(343\) 0 0
\(344\) 0 0
\(345\) 30.0000 1.61515
\(346\) 3.46410i 0.186231i
\(347\) 18.3848 0.986947 0.493473 0.869761i \(-0.335727\pi\)
0.493473 + 0.869761i \(0.335727\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 8.00000 0.426401
\(353\) − 26.9444i − 1.43411i −0.697019 0.717053i \(-0.745491\pi\)
0.697019 0.717053i \(-0.254509\pi\)
\(354\) 0 0
\(355\) 38.1051i 2.02241i
\(356\) − 4.89898i − 0.259645i
\(357\) 0 0
\(358\) −26.0000 −1.37414
\(359\) −32.5269 −1.71670 −0.858352 0.513061i \(-0.828512\pi\)
−0.858352 + 0.513061i \(0.828512\pi\)
\(360\) − 20.7846i − 1.09545i
\(361\) −29.0000 −1.52632
\(362\) 0 0
\(363\) − 15.5885i − 0.818182i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 27.7128i 1.44660i 0.690535 + 0.723299i \(0.257375\pi\)
−0.690535 + 0.723299i \(0.742625\pi\)
\(368\) 28.2843 1.47442
\(369\) − 36.7423i − 1.91273i
\(370\) 27.7128i 1.44072i
\(371\) 0 0
\(372\) −12.0000 −0.622171
\(373\) −34.0000 −1.76045 −0.880227 0.474554i \(-0.842610\pi\)
−0.880227 + 0.474554i \(0.842610\pi\)
\(374\) 14.6969i 0.759961i
\(375\) 16.9706 0.876356
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 33.9411 1.74114
\(381\) 0 0
\(382\) −38.0000 −1.94425
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) − 19.5959i − 1.00000i
\(385\) 0 0
\(386\) −5.65685 −0.287926
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 51.9615i 2.62781i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 8.48528 0.426401
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) − 39.1918i − 1.96451i
\(399\) 0 0
\(400\) −4.00000 −0.200000
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 14.6969i 0.731200i
\(405\) − 22.0454i − 1.09545i
\(406\) 0 0
\(407\) −11.3137 −0.560800
\(408\) 36.0000 1.78227
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) −42.4264 −2.09529
\(411\) 0 0
\(412\) − 34.6410i − 1.70664i
\(413\) 0 0
\(414\) 30.0000 1.47442
\(415\) 0 0
\(416\) 0 0
\(417\) 18.0000 0.881464
\(418\) 13.8564i 0.677739i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −40.0000 −1.94948 −0.974740 0.223341i \(-0.928304\pi\)
−0.974740 + 0.223341i \(0.928304\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 7.34847i − 0.356453i
\(426\) 38.1051i 1.84620i
\(427\) 0 0
\(428\) 14.1421 0.683586
\(429\) 0 0
\(430\) 0 0
\(431\) −41.0122 −1.97549 −0.987744 0.156083i \(-0.950113\pi\)
−0.987744 + 0.156083i \(0.950113\pi\)
\(432\) − 20.7846i − 1.00000i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −20.0000 −0.957826
\(437\) 48.9898i 2.34350i
\(438\) 0 0
\(439\) − 41.5692i − 1.98399i −0.126275 0.991995i \(-0.540302\pi\)
0.126275 0.991995i \(-0.459698\pi\)
\(440\) − 9.79796i − 0.467099i
\(441\) 0 0
\(442\) 0 0
\(443\) 26.8701 1.27663 0.638317 0.769773i \(-0.279631\pi\)
0.638317 + 0.769773i \(0.279631\pi\)
\(444\) 27.7128i 1.31519i
\(445\) −6.00000 −0.284427
\(446\) − 19.5959i − 0.927894i
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −4.24264 −0.200000
\(451\) − 17.3205i − 0.815591i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 33.9411 1.58944
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) 0 0
\(459\) 38.1838 1.78227
\(460\) − 34.6410i − 1.61515i
\(461\) 12.2474i 0.570421i 0.958465 + 0.285210i \(0.0920634\pi\)
−0.958465 + 0.285210i \(0.907937\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 14.6969i 0.681554i
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 6.92820i − 0.317888i
\(476\) 0 0
\(477\) 0 0
\(478\) −34.0000 −1.55512
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) −24.0000 −1.09545
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −18.0000 −0.818182
\(485\) 0 0
\(486\) − 22.0454i − 1.00000i
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 43.8406 1.97850 0.989250 0.146236i \(-0.0467158\pi\)
0.989250 + 0.146236i \(0.0467158\pi\)
\(492\) −42.4264 −1.91273
\(493\) 0 0
\(494\) 0 0
\(495\) − 10.3923i − 0.467099i
\(496\) 13.8564i 0.622171i
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) − 19.5959i − 0.876356i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 14.1421 0.628695
\(507\) − 22.5167i − 1.00000i
\(508\) 0 0
\(509\) − 36.7423i − 1.62858i −0.580461 0.814288i \(-0.697128\pi\)
0.580461 0.814288i \(-0.302872\pi\)
\(510\) − 44.0908i − 1.95237i
\(511\) 0 0
\(512\) −22.6274 −1.00000
\(513\) 36.0000 1.58944
\(514\) − 45.0333i − 1.98633i
\(515\) −42.4264 −1.86953
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 4.24264 0.186231
\(520\) 0 0
\(521\) 41.6413i 1.82434i 0.409812 + 0.912170i \(0.365594\pi\)
−0.409812 + 0.912170i \(0.634406\pi\)
\(522\) 0 0
\(523\) − 17.3205i − 0.757373i −0.925525 0.378686i \(-0.876376\pi\)
0.925525 0.378686i \(-0.123624\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 2.00000 0.0872041
\(527\) −25.4558 −1.10887
\(528\) − 9.79796i − 0.426401i
\(529\) 27.0000 1.17391
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) −6.00000 −0.259645
\(535\) − 17.3205i − 0.748831i
\(536\) 0 0
\(537\) 31.8434i 1.37414i
\(538\) 38.1051i 1.64283i
\(539\) 0 0
\(540\) −25.4558 −1.09545
\(541\) 8.00000 0.343947 0.171973 0.985102i \(-0.444986\pi\)
0.171973 + 0.985102i \(0.444986\pi\)
\(542\) − 44.0908i − 1.89386i
\(543\) 0 0
\(544\) − 41.5692i − 1.78227i
\(545\) 24.4949i 1.04925i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −2.00000 −0.0852803
\(551\) 0 0
\(552\) − 34.6410i − 1.47442i
\(553\) 0 0
\(554\) −45.2548 −1.92269
\(555\) 33.9411 1.44072
\(556\) − 20.7846i − 0.881464i
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 14.6969i 0.622171i
\(559\) 0 0
\(560\) 0 0
\(561\) 18.0000 0.759961
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 29.3939i 1.23552i
\(567\) 0 0
\(568\) 44.0000 1.84620
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) − 41.5692i − 1.74114i
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 46.5403i 1.94425i
\(574\) 0 0
\(575\) −7.07107 −0.294884
\(576\) −24.0000 −1.00000
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 52.3259 2.17647
\(579\) 6.92820i 0.287926i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 31.1769i 1.28791i
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −24.0000 −0.988903
\(590\) 0 0
\(591\) 0 0
\(592\) 32.0000 1.31519
\(593\) − 2.44949i − 0.100588i −0.998734 0.0502942i \(-0.983984\pi\)
0.998734 0.0502942i \(-0.0160159\pi\)
\(594\) − 10.3923i − 0.426401i
\(595\) 0 0
\(596\) 0 0
\(597\) −48.0000 −1.96451
\(598\) 0 0
\(599\) 18.3848 0.751182 0.375591 0.926786i \(-0.377440\pi\)
0.375591 + 0.926786i \(0.377440\pi\)
\(600\) 4.89898i 0.200000i
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 22.0454i 0.896273i
\(606\) 18.0000 0.731200
\(607\) − 41.5692i − 1.68724i −0.536939 0.843621i \(-0.680419\pi\)
0.536939 0.843621i \(-0.319581\pi\)
\(608\) − 39.1918i − 1.58944i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) − 44.0908i − 1.78227i
\(613\) 46.0000 1.85792 0.928961 0.370177i \(-0.120703\pi\)
0.928961 + 0.370177i \(0.120703\pi\)
\(614\) 48.9898i 1.97707i
\(615\) 51.9615i 2.09529i
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) −42.4264 −1.70664
\(619\) − 45.0333i − 1.81004i −0.425367 0.905021i \(-0.639855\pi\)
0.425367 0.905021i \(-0.360145\pi\)
\(620\) 16.9706 0.681554
\(621\) − 36.7423i − 1.47442i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 16.9706 0.677739
\(628\) 0 0
\(629\) 58.7878i 2.34402i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 46.6690 1.84620
\(640\) 27.7128i 1.09545i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) − 17.3205i − 0.683586i
\(643\) − 34.6410i − 1.36611i −0.730368 0.683054i \(-0.760651\pi\)
0.730368 0.683054i \(-0.239349\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 72.0000 2.83280
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −25.4558 −1.00000
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 24.4949i 0.957826i
\(655\) 0 0
\(656\) 48.9898i 1.91273i
\(657\) 0 0
\(658\) 0 0
\(659\) 24.0416 0.936529 0.468264 0.883588i \(-0.344879\pi\)
0.468264 + 0.883588i \(0.344879\pi\)
\(660\) −12.0000 −0.467099
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 33.9411 1.31519
\(667\) 0 0
\(668\) 0 0
\(669\) −24.0000 −0.927894
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 44.0000 1.69608 0.848038 0.529936i \(-0.177784\pi\)
0.848038 + 0.529936i \(0.177784\pi\)
\(674\) −2.82843 −0.108947
\(675\) 5.19615i 0.200000i
\(676\) −26.0000 −1.00000
\(677\) 31.8434i 1.22384i 0.790920 + 0.611920i \(0.209603\pi\)
−0.790920 + 0.611920i \(0.790397\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −50.9117 −1.95237
\(681\) 0 0
\(682\) 6.92820i 0.265295i
\(683\) −41.0122 −1.56929 −0.784644 0.619947i \(-0.787154\pi\)
−0.784644 + 0.619947i \(0.787154\pi\)
\(684\) − 41.5692i − 1.58944i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) −42.4264 −1.61515
\(691\) 31.1769i 1.18603i 0.805193 + 0.593013i \(0.202062\pi\)
−0.805193 + 0.593013i \(0.797938\pi\)
\(692\) − 4.89898i − 0.186231i
\(693\) 0 0
\(694\) −26.0000 −0.986947
\(695\) −25.4558 −0.965595
\(696\) 0 0
\(697\) −90.0000 −3.40899
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 55.4256i 2.09042i
\(704\) −11.3137 −0.426401
\(705\) 0 0
\(706\) 38.1051i 1.43411i
\(707\) 0 0
\(708\) 0 0
\(709\) 50.0000 1.87779 0.938895 0.344204i \(-0.111851\pi\)
0.938895 + 0.344204i \(0.111851\pi\)
\(710\) − 53.8888i − 2.02241i
\(711\) 0 0
\(712\) 6.92820i 0.259645i
\(713\) 24.4949i 0.917341i
\(714\) 0 0
\(715\) 0 0
\(716\) 36.7696 1.37414
\(717\) 41.6413i 1.55512i
\(718\) 46.0000 1.71670
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 29.3939i 1.09545i
\(721\) 0 0
\(722\) 41.0122 1.52632
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 22.0454i 0.818182i
\(727\) − 10.3923i − 0.385429i −0.981255 0.192715i \(-0.938271\pi\)
0.981255 0.192715i \(-0.0617292\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) − 39.1918i − 1.44660i
\(735\) 0 0
\(736\) −40.0000 −1.47442
\(737\) 0 0
\(738\) 51.9615i 1.91273i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) − 39.1918i − 1.44072i
\(741\) 0 0
\(742\) 0 0
\(743\) 43.8406 1.60836 0.804178 0.594388i \(-0.202606\pi\)
0.804178 + 0.594388i \(0.202606\pi\)
\(744\) 16.9706 0.622171
\(745\) 0 0
\(746\) 48.0833 1.76045
\(747\) 0 0
\(748\) − 20.7846i − 0.759961i
\(749\) 0 0
\(750\) −24.0000 −0.876356
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) − 17.3205i − 0.628695i
\(760\) −48.0000 −1.74114
\(761\) − 36.7423i − 1.33191i −0.745992 0.665955i \(-0.768024\pi\)
0.745992 0.665955i \(-0.231976\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 53.7401 1.94425
\(765\) −54.0000 −1.95237
\(766\) 0 0
\(767\) 0 0
\(768\) 27.7128i 1.00000i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −55.1543 −1.98633
\(772\) 8.00000 0.287926
\(773\) − 26.9444i − 0.969122i −0.874757 0.484561i \(-0.838979\pi\)
0.874757 0.484561i \(-0.161021\pi\)
\(774\) 0 0
\(775\) − 3.46410i − 0.124434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −84.8528 −3.04017
\(780\) 0 0
\(781\) 22.0000 0.787222
\(782\) − 73.4847i − 2.62781i
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 51.9615i 1.85223i 0.377243 + 0.926114i \(0.376872\pi\)
−0.377243 + 0.926114i \(0.623128\pi\)
\(788\) 0 0
\(789\) − 2.44949i − 0.0872041i
\(790\) 0 0
\(791\) 0 0
\(792\) −12.0000 −0.426401
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 55.4256i 1.96451i
\(797\) − 56.3383i − 1.99560i −0.0662682 0.997802i \(-0.521109\pi\)
0.0662682 0.997802i \(-0.478891\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 5.65685 0.200000
\(801\) 7.34847i 0.259645i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 46.6690 1.64283
\(808\) − 20.7846i − 0.731200i
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 31.1769i 1.09545i
\(811\) 38.1051i 1.33805i 0.743239 + 0.669026i \(0.233288\pi\)
−0.743239 + 0.669026i \(0.766712\pi\)
\(812\) 0 0
\(813\) −54.0000 −1.89386
\(814\) 16.0000 0.560800
\(815\) 0 0
\(816\) −50.9117 −1.78227
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 60.0000 2.09529
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 48.9898i 1.70664i
\(825\) 2.44949i 0.0852803i
\(826\) 0 0
\(827\) −35.3553 −1.22943 −0.614713 0.788751i \(-0.710728\pi\)
−0.614713 + 0.788751i \(0.710728\pi\)
\(828\) −42.4264 −1.47442
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 55.4256i 1.92269i
\(832\) 0 0
\(833\) 0 0
\(834\) −25.4558 −0.881464
\(835\) 0 0
\(836\) − 19.5959i − 0.677739i
\(837\) 18.0000 0.622171
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 56.5685 1.94948
\(843\) 0 0
\(844\) 0 0
\(845\) 31.8434i 1.09545i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 36.0000 1.23552
\(850\) 10.3923i 0.356453i
\(851\) 56.5685 1.93914
\(852\) − 53.8888i − 1.84620i
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) −50.9117 −1.74114
\(856\) −20.0000 −0.683586
\(857\) 41.6413i 1.42244i 0.702969 + 0.711220i \(0.251857\pi\)
−0.702969 + 0.711220i \(0.748143\pi\)
\(858\) 0 0
\(859\) 6.92820i 0.236387i 0.992991 + 0.118194i \(0.0377103\pi\)
−0.992991 + 0.118194i \(0.962290\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 58.0000 1.97549
\(863\) 7.07107 0.240702 0.120351 0.992731i \(-0.461598\pi\)
0.120351 + 0.992731i \(0.461598\pi\)
\(864\) 29.3939i 1.00000i
\(865\) −6.00000 −0.204006
\(866\) 0 0
\(867\) − 64.0859i − 2.17647i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 28.2843 0.957826
\(873\) 0 0
\(874\) − 69.2820i − 2.34350i
\(875\) 0 0
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) 58.7878i 1.98399i
\(879\) 38.1838 1.28791
\(880\) 13.8564i 0.467099i
\(881\) − 56.3383i − 1.89808i −0.315149 0.949042i \(-0.602055\pi\)
0.315149 0.949042i \(-0.397945\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −38.0000 −1.27663
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) − 39.1918i − 1.31519i
\(889\) 0 0
\(890\) 8.48528 0.284427
\(891\) −12.7279 −0.426401
\(892\) 27.7128i 0.927894i
\(893\) 0 0
\(894\) 0 0
\(895\) − 45.0333i − 1.50530i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) 0 0
\(902\) 24.4949i 0.815591i
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) − 22.0454i − 0.731200i
\(910\) 0 0
\(911\) −15.5563 −0.515405 −0.257702 0.966224i \(-0.582965\pi\)
−0.257702 + 0.966224i \(0.582965\pi\)
\(912\) −48.0000 −1.58944
\(913\) 0 0
\(914\) −31.1127 −1.02912
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) −54.0000 −1.78227
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 48.9898i 1.61515i
\(921\) 60.0000 1.97707
\(922\) − 17.3205i − 0.570421i
\(923\) 0 0
\(924\) 0 0
\(925\) −8.00000 −0.263038
\(926\) 0 0
\(927\) 51.9615i 1.70664i
\(928\) 0 0
\(929\) − 36.7423i − 1.20548i −0.797939 0.602739i \(-0.794076\pi\)
0.797939 0.602739i \(-0.205924\pi\)
\(930\) − 20.7846i − 0.681554i
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −25.4558 −0.832495
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 61.2372i − 1.99628i −0.0609873 0.998139i \(-0.519425\pi\)
0.0609873 0.998139i \(-0.480575\pi\)
\(942\) 0 0
\(943\) 86.6025i 2.82017i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −52.3259 −1.70036 −0.850182 0.526489i \(-0.823508\pi\)
−0.850182 + 0.526489i \(0.823508\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 9.79796i 0.317888i
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) − 65.8179i − 2.12982i
\(956\) 48.0833 1.55512
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 33.9411 1.09545
\(961\) 19.0000 0.612903
\(962\) 0 0
\(963\) −21.2132 −0.683586
\(964\) 0 0
\(965\) − 9.79796i − 0.315407i
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 25.4558 0.818182
\(969\) − 88.1816i − 2.83280i
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 31.1769i 1.00000i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 3.46410i 0.110713i
\(980\) 0 0
\(981\) 30.0000 0.957826
\(982\) −62.0000 −1.97850
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 60.0000 1.91273
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 14.6969i 0.467099i
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) − 19.5959i − 0.622171i
\(993\) 0 0
\(994\) 0 0
\(995\) 67.8823 2.15201
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) − 41.5692i − 1.31519i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.e.a.491.2 yes 4
3.2 odd 2 inner 588.2.e.a.491.4 yes 4
4.3 odd 2 inner 588.2.e.a.491.3 yes 4
7.2 even 3 588.2.n.a.263.2 4
7.3 odd 6 588.2.n.a.275.2 4
7.4 even 3 588.2.n.b.275.2 4
7.5 odd 6 588.2.n.b.263.2 4
7.6 odd 2 inner 588.2.e.a.491.1 4
12.11 even 2 inner 588.2.e.a.491.1 4
21.2 odd 6 588.2.n.a.263.1 4
21.5 even 6 588.2.n.b.263.1 4
21.11 odd 6 588.2.n.b.275.1 4
21.17 even 6 588.2.n.a.275.1 4
21.20 even 2 inner 588.2.e.a.491.3 yes 4
28.3 even 6 588.2.n.b.275.1 4
28.11 odd 6 588.2.n.a.275.1 4
28.19 even 6 588.2.n.a.263.1 4
28.23 odd 6 588.2.n.b.263.1 4
28.27 even 2 inner 588.2.e.a.491.4 yes 4
84.11 even 6 588.2.n.a.275.2 4
84.23 even 6 588.2.n.b.263.2 4
84.47 odd 6 588.2.n.a.263.2 4
84.59 odd 6 588.2.n.b.275.2 4
84.83 odd 2 CM 588.2.e.a.491.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.e.a.491.1 4 7.6 odd 2 inner
588.2.e.a.491.1 4 12.11 even 2 inner
588.2.e.a.491.2 yes 4 1.1 even 1 trivial
588.2.e.a.491.2 yes 4 84.83 odd 2 CM
588.2.e.a.491.3 yes 4 4.3 odd 2 inner
588.2.e.a.491.3 yes 4 21.20 even 2 inner
588.2.e.a.491.4 yes 4 3.2 odd 2 inner
588.2.e.a.491.4 yes 4 28.27 even 2 inner
588.2.n.a.263.1 4 21.2 odd 6
588.2.n.a.263.1 4 28.19 even 6
588.2.n.a.263.2 4 7.2 even 3
588.2.n.a.263.2 4 84.47 odd 6
588.2.n.a.275.1 4 21.17 even 6
588.2.n.a.275.1 4 28.11 odd 6
588.2.n.a.275.2 4 7.3 odd 6
588.2.n.a.275.2 4 84.11 even 6
588.2.n.b.263.1 4 21.5 even 6
588.2.n.b.263.1 4 28.23 odd 6
588.2.n.b.263.2 4 7.5 odd 6
588.2.n.b.263.2 4 84.23 even 6
588.2.n.b.275.1 4 21.11 odd 6
588.2.n.b.275.1 4 28.3 even 6
588.2.n.b.275.2 4 7.4 even 3
588.2.n.b.275.2 4 84.59 odd 6