Properties

Label 588.2.e.f.491.23
Level $588$
Weight $2$
Character 588.491
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,2,Mod(491,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.491");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 491.23
Character \(\chi\) \(=\) 588.491
Dual form 588.2.e.f.491.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.29871 + 0.559784i) q^{2} +(-1.60392 + 0.653796i) q^{3} +(1.37328 + 1.45399i) q^{4} +3.97283i q^{5} +(-2.44900 - 0.0487576i) q^{6} +(0.969574 + 2.65705i) q^{8} +(2.14510 - 2.09727i) q^{9} +(-2.22392 + 5.15954i) q^{10} -3.30344 q^{11} +(-3.15325 - 1.43424i) q^{12} +0.850601 q^{13} +(-2.59742 - 6.37208i) q^{15} +(-0.228181 + 3.99349i) q^{16} -0.576468i q^{17} +(3.95988 - 1.52295i) q^{18} -3.59139i q^{19} +(-5.77645 + 5.45582i) q^{20} +(-4.29021 - 1.84921i) q^{22} +3.96171 q^{23} +(-3.29229 - 3.62779i) q^{24} -10.7833 q^{25} +(1.10468 + 0.476153i) q^{26} +(-2.06938 + 4.76630i) q^{27} +3.37929i q^{29} +(0.193706 - 9.72947i) q^{30} -4.89898i q^{31} +(-2.53183 + 5.05864i) q^{32} +(5.29845 - 2.15978i) q^{33} +(0.322697 - 0.748663i) q^{34} +(5.99525 + 0.238815i) q^{36} +4.29021 q^{37} +(2.01040 - 4.66416i) q^{38} +(-1.36429 + 0.556119i) q^{39} +(-10.5560 + 3.85195i) q^{40} +5.35550i q^{41} +7.66518i q^{43} +(-4.53656 - 4.80318i) q^{44} +(8.33208 + 8.52212i) q^{45} +(5.14510 + 2.21770i) q^{46} -9.09050 q^{47} +(-2.24494 - 6.55441i) q^{48} +(-14.0044 - 6.03634i) q^{50} +(0.376892 + 0.924607i) q^{51} +(1.16812 + 1.23677i) q^{52} -0.608639i q^{53} +(-5.35562 + 5.03163i) q^{54} -13.1240i q^{55} +(2.34803 + 5.76029i) q^{57} +(-1.89167 + 4.38871i) q^{58} +7.87961 q^{59} +(5.69797 - 12.5273i) q^{60} +9.74629 q^{61} +(2.74237 - 6.36234i) q^{62} +(-6.11985 + 5.15242i) q^{64} +3.37929i q^{65} +(8.09014 + 0.161068i) q^{66} +9.04574i q^{67} +(0.838179 - 0.791654i) q^{68} +(-6.35425 + 2.59015i) q^{69} +9.15654 q^{71} +(7.65239 + 3.66619i) q^{72} +1.41421 q^{73} +(5.57172 + 2.40159i) q^{74} +(17.2956 - 7.05010i) q^{75} +(5.22185 - 4.93200i) q^{76} +(-2.08312 - 0.0414733i) q^{78} -6.92820i q^{79} +(-15.8654 - 0.906525i) q^{80} +(0.202931 - 8.99771i) q^{81} +(-2.99792 + 6.95523i) q^{82} +4.13877 q^{83} +2.29021 q^{85} +(-4.29084 + 9.95483i) q^{86} +(-2.20936 - 5.42010i) q^{87} +(-3.20293 - 8.77742i) q^{88} +5.75676i q^{89} +(6.05039 + 15.7319i) q^{90} +(5.44055 + 5.76029i) q^{92} +(3.20293 + 7.85756i) q^{93} +(-11.8059 - 5.08871i) q^{94} +14.2680 q^{95} +(0.753530 - 9.76894i) q^{96} +13.5487 q^{97} +(-7.08622 + 6.92820i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{16} - 12 q^{18} - 24 q^{25} - 48 q^{30} + 12 q^{36} + 72 q^{46} - 24 q^{57} + 72 q^{58} + 72 q^{60} - 48 q^{64} + 108 q^{72} - 24 q^{78} - 24 q^{81} - 48 q^{85} - 48 q^{88} + 48 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.29871 + 0.559784i 0.918325 + 0.395827i
\(3\) −1.60392 + 0.653796i −0.926022 + 0.377469i
\(4\) 1.37328 + 1.45399i 0.686642 + 0.726996i
\(5\) 3.97283i 1.77670i 0.459165 + 0.888351i \(0.348149\pi\)
−0.459165 + 0.888351i \(0.651851\pi\)
\(6\) −2.44900 0.0487576i −0.999802 0.0199052i
\(7\) 0 0
\(8\) 0.969574 + 2.65705i 0.342796 + 0.939410i
\(9\) 2.14510 2.09727i 0.715034 0.699089i
\(10\) −2.22392 + 5.15954i −0.703266 + 1.63159i
\(11\) −3.30344 −0.996025 −0.498013 0.867170i \(-0.665937\pi\)
−0.498013 + 0.867170i \(0.665937\pi\)
\(12\) −3.15325 1.43424i −0.910264 0.414028i
\(13\) 0.850601 0.235914 0.117957 0.993019i \(-0.462365\pi\)
0.117957 + 0.993019i \(0.462365\pi\)
\(14\) 0 0
\(15\) −2.59742 6.37208i −0.670650 1.64527i
\(16\) −0.228181 + 3.99349i −0.0570454 + 0.998372i
\(17\) 0.576468i 0.139814i −0.997554 0.0699070i \(-0.977730\pi\)
0.997554 0.0699070i \(-0.0222702\pi\)
\(18\) 3.95988 1.52295i 0.933352 0.358962i
\(19\) 3.59139i 0.823921i −0.911202 0.411960i \(-0.864844\pi\)
0.911202 0.411960i \(-0.135156\pi\)
\(20\) −5.77645 + 5.45582i −1.29165 + 1.21996i
\(21\) 0 0
\(22\) −4.29021 1.84921i −0.914675 0.394254i
\(23\) 3.96171 0.826073 0.413037 0.910714i \(-0.364468\pi\)
0.413037 + 0.910714i \(0.364468\pi\)
\(24\) −3.29229 3.62779i −0.672035 0.740519i
\(25\) −10.7833 −2.15667
\(26\) 1.10468 + 0.476153i 0.216646 + 0.0933812i
\(27\) −2.06938 + 4.76630i −0.398253 + 0.917276i
\(28\) 0 0
\(29\) 3.37929i 0.627518i 0.949503 + 0.313759i \(0.101588\pi\)
−0.949503 + 0.313759i \(0.898412\pi\)
\(30\) 0.193706 9.72947i 0.0353656 1.77635i
\(31\) 4.89898i 0.879883i −0.898027 0.439941i \(-0.854999\pi\)
0.898027 0.439941i \(-0.145001\pi\)
\(32\) −2.53183 + 5.05864i −0.447569 + 0.894250i
\(33\) 5.29845 2.15978i 0.922341 0.375969i
\(34\) 0.322697 0.748663i 0.0553421 0.128395i
\(35\) 0 0
\(36\) 5.99525 + 0.238815i 0.999208 + 0.0398026i
\(37\) 4.29021 0.705305 0.352653 0.935754i \(-0.385280\pi\)
0.352653 + 0.935754i \(0.385280\pi\)
\(38\) 2.01040 4.66416i 0.326130 0.756627i
\(39\) −1.36429 + 0.556119i −0.218462 + 0.0890503i
\(40\) −10.5560 + 3.85195i −1.66905 + 0.609047i
\(41\) 5.35550i 0.836389i 0.908357 + 0.418195i \(0.137337\pi\)
−0.908357 + 0.418195i \(0.862663\pi\)
\(42\) 0 0
\(43\) 7.66518i 1.16893i 0.811419 + 0.584464i \(0.198695\pi\)
−0.811419 + 0.584464i \(0.801305\pi\)
\(44\) −4.53656 4.80318i −0.683913 0.724106i
\(45\) 8.33208 + 8.52212i 1.24207 + 1.27040i
\(46\) 5.14510 + 2.21770i 0.758604 + 0.326982i
\(47\) −9.09050 −1.32599 −0.662993 0.748626i \(-0.730714\pi\)
−0.662993 + 0.748626i \(0.730714\pi\)
\(48\) −2.24494 6.55441i −0.324029 0.946047i
\(49\) 0 0
\(50\) −14.0044 6.03634i −1.98052 0.853667i
\(51\) 0.376892 + 0.924607i 0.0527754 + 0.129471i
\(52\) 1.16812 + 1.23677i 0.161989 + 0.171509i
\(53\) 0.608639i 0.0836029i −0.999126 0.0418015i \(-0.986690\pi\)
0.999126 0.0418015i \(-0.0133097\pi\)
\(54\) −5.35562 + 5.03163i −0.728808 + 0.684718i
\(55\) 13.1240i 1.76964i
\(56\) 0 0
\(57\) 2.34803 + 5.76029i 0.311005 + 0.762969i
\(58\) −1.89167 + 4.38871i −0.248389 + 0.576266i
\(59\) 7.87961 1.02584 0.512919 0.858437i \(-0.328564\pi\)
0.512919 + 0.858437i \(0.328564\pi\)
\(60\) 5.69797 12.5273i 0.735604 1.61727i
\(61\) 9.74629 1.24789 0.623943 0.781470i \(-0.285530\pi\)
0.623943 + 0.781470i \(0.285530\pi\)
\(62\) 2.74237 6.36234i 0.348281 0.808018i
\(63\) 0 0
\(64\) −6.11985 + 5.15242i −0.764982 + 0.644052i
\(65\) 3.37929i 0.419149i
\(66\) 8.09014 + 0.161068i 0.995828 + 0.0198261i
\(67\) 9.04574i 1.10511i 0.833475 + 0.552557i \(0.186348\pi\)
−0.833475 + 0.552557i \(0.813652\pi\)
\(68\) 0.838179 0.791654i 0.101644 0.0960021i
\(69\) −6.35425 + 2.59015i −0.764962 + 0.311817i
\(70\) 0 0
\(71\) 9.15654 1.08668 0.543341 0.839512i \(-0.317159\pi\)
0.543341 + 0.839512i \(0.317159\pi\)
\(72\) 7.65239 + 3.66619i 0.901842 + 0.432065i
\(73\) 1.41421 0.165521 0.0827606 0.996569i \(-0.473626\pi\)
0.0827606 + 0.996569i \(0.473626\pi\)
\(74\) 5.57172 + 2.40159i 0.647700 + 0.279179i
\(75\) 17.2956 7.05010i 1.99712 0.814076i
\(76\) 5.22185 4.93200i 0.598987 0.565739i
\(77\) 0 0
\(78\) −2.08312 0.0414733i −0.235867 0.00469593i
\(79\) 6.92820i 0.779484i −0.920924 0.389742i \(-0.872564\pi\)
0.920924 0.389742i \(-0.127436\pi\)
\(80\) −15.8654 0.906525i −1.77381 0.101353i
\(81\) 0.202931 8.99771i 0.0225479 0.999746i
\(82\) −2.99792 + 6.95523i −0.331065 + 0.768077i
\(83\) 4.13877 0.454289 0.227144 0.973861i \(-0.427061\pi\)
0.227144 + 0.973861i \(0.427061\pi\)
\(84\) 0 0
\(85\) 2.29021 0.248408
\(86\) −4.29084 + 9.95483i −0.462693 + 1.07346i
\(87\) −2.20936 5.42010i −0.236869 0.581096i
\(88\) −3.20293 8.77742i −0.341434 0.935676i
\(89\) 5.75676i 0.610216i 0.952318 + 0.305108i \(0.0986925\pi\)
−0.952318 + 0.305108i \(0.901307\pi\)
\(90\) 6.05039 + 15.7319i 0.637768 + 1.65829i
\(91\) 0 0
\(92\) 5.44055 + 5.76029i 0.567217 + 0.600552i
\(93\) 3.20293 + 7.85756i 0.332128 + 0.814791i
\(94\) −11.8059 5.08871i −1.21769 0.524861i
\(95\) 14.2680 1.46386
\(96\) 0.753530 9.76894i 0.0769069 0.997038i
\(97\) 13.5487 1.37567 0.687833 0.725869i \(-0.258562\pi\)
0.687833 + 0.725869i \(0.258562\pi\)
\(98\) 0 0
\(99\) −7.08622 + 6.92820i −0.712192 + 0.696311i
\(100\) −14.8086 15.6789i −1.48086 1.56789i
\(101\) 7.13944i 0.710401i −0.934790 0.355200i \(-0.884413\pi\)
0.934790 0.355200i \(-0.115587\pi\)
\(102\) −0.0281072 + 1.41177i −0.00278303 + 0.139786i
\(103\) 10.5088i 1.03546i 0.855543 + 0.517732i \(0.173224\pi\)
−0.855543 + 0.517732i \(0.826776\pi\)
\(104\) 0.824720 + 2.26009i 0.0808705 + 0.221620i
\(105\) 0 0
\(106\) 0.340706 0.790444i 0.0330923 0.0767747i
\(107\) 1.23312 0.119210 0.0596052 0.998222i \(-0.481016\pi\)
0.0596052 + 0.998222i \(0.481016\pi\)
\(108\) −9.77202 + 3.53662i −0.940313 + 0.340312i
\(109\) −3.20293 −0.306785 −0.153393 0.988165i \(-0.549020\pi\)
−0.153393 + 0.988165i \(0.549020\pi\)
\(110\) 7.34660 17.0442i 0.700471 1.62510i
\(111\) −6.88114 + 2.80492i −0.653128 + 0.266231i
\(112\) 0 0
\(113\) 19.9097i 1.87294i −0.350744 0.936471i \(-0.614071\pi\)
0.350744 0.936471i \(-0.385929\pi\)
\(114\) −0.175108 + 8.79533i −0.0164003 + 0.823758i
\(115\) 15.7392i 1.46769i
\(116\) −4.91346 + 4.64072i −0.456203 + 0.430880i
\(117\) 1.82463 1.78394i 0.168687 0.164925i
\(118\) 10.2333 + 4.41088i 0.942052 + 0.406054i
\(119\) 0 0
\(120\) 14.4126 13.0797i 1.31568 1.19401i
\(121\) −0.0872743 −0.00793402
\(122\) 12.6576 + 5.45582i 1.14596 + 0.493947i
\(123\) −3.50140 8.58978i −0.315711 0.774515i
\(124\) 7.12307 6.72769i 0.639671 0.604164i
\(125\) 22.9762i 2.05505i
\(126\) 0 0
\(127\) 16.4426i 1.45904i −0.683957 0.729522i \(-0.739742\pi\)
0.683957 0.729522i \(-0.260258\pi\)
\(128\) −10.8321 + 3.26569i −0.957435 + 0.288649i
\(129\) −5.01146 12.2943i −0.441234 1.08245i
\(130\) −1.89167 + 4.38871i −0.165911 + 0.384915i
\(131\) 2.27690 0.198934 0.0994670 0.995041i \(-0.468286\pi\)
0.0994670 + 0.995041i \(0.468286\pi\)
\(132\) 10.4166 + 4.73791i 0.906646 + 0.412382i
\(133\) 0 0
\(134\) −5.06366 + 11.7478i −0.437434 + 1.01485i
\(135\) −18.9357 8.22130i −1.62973 0.707577i
\(136\) 1.53170 0.558928i 0.131343 0.0479277i
\(137\) 9.20432i 0.786378i −0.919458 0.393189i \(-0.871372\pi\)
0.919458 0.393189i \(-0.128628\pi\)
\(138\) −9.70224 0.193164i −0.825910 0.0164432i
\(139\) 11.1056i 0.941960i 0.882144 + 0.470980i \(0.156100\pi\)
−0.882144 + 0.470980i \(0.843900\pi\)
\(140\) 0 0
\(141\) 14.5804 5.94333i 1.22789 0.500519i
\(142\) 11.8917 + 5.12568i 0.997927 + 0.430138i
\(143\) −2.80991 −0.234976
\(144\) 7.88594 + 9.04500i 0.657162 + 0.753750i
\(145\) −13.4253 −1.11491
\(146\) 1.83665 + 0.791654i 0.152002 + 0.0655177i
\(147\) 0 0
\(148\) 5.89167 + 6.23792i 0.484292 + 0.512754i
\(149\) 6.71741i 0.550311i −0.961400 0.275156i \(-0.911271\pi\)
0.961400 0.275156i \(-0.0887294\pi\)
\(150\) 26.4085 + 0.525770i 2.15624 + 0.0429290i
\(151\) 13.2128i 1.07524i 0.843186 + 0.537622i \(0.180677\pi\)
−0.843186 + 0.537622i \(0.819323\pi\)
\(152\) 9.54251 3.48212i 0.773999 0.282437i
\(153\) −1.20901 1.23658i −0.0977425 0.0999718i
\(154\) 0 0
\(155\) 19.4628 1.56329
\(156\) −2.68215 1.21996i −0.214744 0.0976751i
\(157\) 2.38824 0.190602 0.0953011 0.995448i \(-0.469619\pi\)
0.0953011 + 0.995448i \(0.469619\pi\)
\(158\) 3.87830 8.99771i 0.308541 0.715820i
\(159\) 0.397925 + 0.976206i 0.0315575 + 0.0774182i
\(160\) −20.0971 10.0585i −1.58881 0.795196i
\(161\) 0 0
\(162\) 5.30032 11.5718i 0.416433 0.909167i
\(163\) 18.2918i 1.43272i 0.697728 + 0.716362i \(0.254194\pi\)
−0.697728 + 0.716362i \(0.745806\pi\)
\(164\) −7.78685 + 7.35463i −0.608051 + 0.574300i
\(165\) 8.58041 + 21.0498i 0.667984 + 1.63873i
\(166\) 5.37505 + 2.31681i 0.417185 + 0.179820i
\(167\) 19.3650 1.49851 0.749253 0.662284i \(-0.230413\pi\)
0.749253 + 0.662284i \(0.230413\pi\)
\(168\) 0 0
\(169\) −12.2765 −0.944344
\(170\) 2.97431 + 1.28202i 0.228119 + 0.0983264i
\(171\) −7.53211 7.70390i −0.575994 0.589132i
\(172\) −11.1451 + 10.5265i −0.849806 + 0.802636i
\(173\) 5.58525i 0.424638i −0.977200 0.212319i \(-0.931898\pi\)
0.977200 0.212319i \(-0.0681016\pi\)
\(174\) 0.164766 8.27589i 0.0124909 0.627394i
\(175\) 0 0
\(176\) 0.753784 13.1922i 0.0568186 0.994403i
\(177\) −12.6382 + 5.15165i −0.949948 + 0.387222i
\(178\) −3.22254 + 7.47635i −0.241540 + 0.560376i
\(179\) −19.3794 −1.44848 −0.724241 0.689547i \(-0.757810\pi\)
−0.724241 + 0.689547i \(0.757810\pi\)
\(180\) −0.948772 + 23.8181i −0.0707173 + 1.77529i
\(181\) −10.8735 −0.808222 −0.404111 0.914710i \(-0.632419\pi\)
−0.404111 + 0.914710i \(0.632419\pi\)
\(182\) 0 0
\(183\) −15.6323 + 6.37208i −1.15557 + 0.471038i
\(184\) 3.84117 + 10.5265i 0.283175 + 0.776021i
\(185\) 17.0442i 1.25312i
\(186\) −0.238863 + 11.9976i −0.0175143 + 0.879708i
\(187\) 1.90433i 0.139258i
\(188\) −12.4838 13.2175i −0.910477 0.963986i
\(189\) 0 0
\(190\) 18.5299 + 7.98697i 1.34430 + 0.579436i
\(191\) 1.23312 0.0892256 0.0446128 0.999004i \(-0.485795\pi\)
0.0446128 + 0.999004i \(0.485795\pi\)
\(192\) 6.44711 12.2652i 0.465280 0.885163i
\(193\) 15.7833 1.13611 0.568055 0.822991i \(-0.307696\pi\)
0.568055 + 0.822991i \(0.307696\pi\)
\(194\) 17.5959 + 7.58437i 1.26331 + 0.544526i
\(195\) −2.20936 5.42010i −0.158216 0.388141i
\(196\) 0 0
\(197\) 17.3868i 1.23876i 0.785092 + 0.619379i \(0.212615\pi\)
−0.785092 + 0.619379i \(0.787385\pi\)
\(198\) −13.0812 + 5.03096i −0.929642 + 0.357535i
\(199\) 4.56759i 0.323788i 0.986808 + 0.161894i \(0.0517603\pi\)
−0.986808 + 0.161894i \(0.948240\pi\)
\(200\) −10.4552 28.6519i −0.739298 2.02600i
\(201\) −5.91407 14.5086i −0.417146 1.02336i
\(202\) 3.99654 9.27205i 0.281196 0.652379i
\(203\) 0 0
\(204\) −0.826790 + 1.81775i −0.0578869 + 0.127268i
\(205\) −21.2765 −1.48601
\(206\) −5.88266 + 13.6479i −0.409865 + 0.950893i
\(207\) 8.49827 8.30877i 0.590671 0.577499i
\(208\) −0.194091 + 3.39686i −0.0134578 + 0.235530i
\(209\) 11.8639i 0.820646i
\(210\) 0 0
\(211\) 1.11224i 0.0765696i 0.999267 + 0.0382848i \(0.0121894\pi\)
−0.999267 + 0.0382848i \(0.987811\pi\)
\(212\) 0.884955 0.835834i 0.0607790 0.0574053i
\(213\) −14.6863 + 5.98651i −1.00629 + 0.410189i
\(214\) 1.60147 + 0.690282i 0.109474 + 0.0471867i
\(215\) −30.4524 −2.07684
\(216\) −14.6707 0.877174i −0.998217 0.0596841i
\(217\) 0 0
\(218\) −4.15967 1.79295i −0.281729 0.121434i
\(219\) −2.26828 + 0.924607i −0.153276 + 0.0624791i
\(220\) 19.0822 18.0230i 1.28652 1.21511i
\(221\) 0.490344i 0.0329841i
\(222\) −10.5067 0.209180i −0.705166 0.0140393i
\(223\) 23.6328i 1.58257i 0.611447 + 0.791285i \(0.290588\pi\)
−0.611447 + 0.791285i \(0.709412\pi\)
\(224\) 0 0
\(225\) −23.1314 + 22.6156i −1.54209 + 1.50770i
\(226\) 11.1451 25.8568i 0.741361 1.71997i
\(227\) 12.2983 0.816269 0.408135 0.912922i \(-0.366179\pi\)
0.408135 + 0.912922i \(0.366179\pi\)
\(228\) −5.15089 + 11.3245i −0.341126 + 0.749986i
\(229\) −9.02948 −0.596685 −0.298342 0.954459i \(-0.596434\pi\)
−0.298342 + 0.954459i \(0.596434\pi\)
\(230\) −8.81054 + 20.4406i −0.580950 + 1.34781i
\(231\) 0 0
\(232\) −8.97895 + 3.27647i −0.589497 + 0.215111i
\(233\) 7.57382i 0.496178i −0.968737 0.248089i \(-0.920197\pi\)
0.968737 0.248089i \(-0.0798025\pi\)
\(234\) 3.36828 1.29542i 0.220191 0.0846841i
\(235\) 36.1150i 2.35588i
\(236\) 10.8209 + 11.4569i 0.704383 + 0.745779i
\(237\) 4.52963 + 11.1123i 0.294231 + 0.721819i
\(238\) 0 0
\(239\) −9.25206 −0.598466 −0.299233 0.954180i \(-0.596731\pi\)
−0.299233 + 0.954180i \(0.596731\pi\)
\(240\) 26.0395 8.91875i 1.68084 0.575703i
\(241\) −15.6604 −1.00877 −0.504386 0.863478i \(-0.668281\pi\)
−0.504386 + 0.863478i \(0.668281\pi\)
\(242\) −0.113344 0.0488547i −0.00728601 0.00314050i
\(243\) 5.55718 + 14.5643i 0.356493 + 0.934298i
\(244\) 13.3844 + 14.1710i 0.856850 + 0.907207i
\(245\) 0 0
\(246\) 0.261122 13.1157i 0.0166485 0.836223i
\(247\) 3.05484i 0.194375i
\(248\) 13.0168 4.74992i 0.826570 0.301620i
\(249\) −6.63824 + 2.70591i −0.420681 + 0.171480i
\(250\) 12.8617 29.8394i 0.813446 1.88721i
\(251\) 3.08987 0.195031 0.0975155 0.995234i \(-0.468910\pi\)
0.0975155 + 0.995234i \(0.468910\pi\)
\(252\) 0 0
\(253\) −13.0873 −0.822790
\(254\) 9.20430 21.3541i 0.577529 1.33988i
\(255\) −3.67330 + 1.49733i −0.230031 + 0.0937662i
\(256\) −15.8959 1.82248i −0.993492 0.113905i
\(257\) 7.36918i 0.459677i −0.973229 0.229839i \(-0.926180\pi\)
0.973229 0.229839i \(-0.0738198\pi\)
\(258\) 0.373736 18.7721i 0.0232678 1.16870i
\(259\) 0 0
\(260\) −4.91346 + 4.64072i −0.304720 + 0.287805i
\(261\) 7.08727 + 7.24892i 0.438691 + 0.448697i
\(262\) 2.95703 + 1.27457i 0.182686 + 0.0787434i
\(263\) 22.2035 1.36913 0.684563 0.728954i \(-0.259993\pi\)
0.684563 + 0.728954i \(0.259993\pi\)
\(264\) 10.8759 + 11.9842i 0.669364 + 0.737576i
\(265\) 2.41801 0.148537
\(266\) 0 0
\(267\) −3.76375 9.23337i −0.230338 0.565073i
\(268\) −13.1524 + 12.4224i −0.803413 + 0.758817i
\(269\) 10.0139i 0.610556i −0.952263 0.305278i \(-0.901251\pi\)
0.952263 0.305278i \(-0.0987494\pi\)
\(270\) −19.9898 21.2770i −1.21654 1.29487i
\(271\) 23.5847i 1.43267i −0.697756 0.716335i \(-0.745818\pi\)
0.697756 0.716335i \(-0.254182\pi\)
\(272\) 2.30212 + 0.131539i 0.139586 + 0.00797574i
\(273\) 0 0
\(274\) 5.15243 11.9537i 0.311270 0.722151i
\(275\) 35.6221 2.14810
\(276\) −12.4922 5.68202i −0.751945 0.342018i
\(277\) 29.0598 1.74604 0.873018 0.487689i \(-0.162160\pi\)
0.873018 + 0.487689i \(0.162160\pi\)
\(278\) −6.21671 + 14.4229i −0.372853 + 0.865026i
\(279\) −10.2745 10.5088i −0.615117 0.629146i
\(280\) 0 0
\(281\) 23.2889i 1.38930i −0.719347 0.694651i \(-0.755559\pi\)
0.719347 0.694651i \(-0.244441\pi\)
\(282\) 22.2627 + 0.443231i 1.32572 + 0.0263940i
\(283\) 17.4262i 1.03588i −0.855416 0.517941i \(-0.826699\pi\)
0.855416 0.517941i \(-0.173301\pi\)
\(284\) 12.5745 + 13.3135i 0.746161 + 0.790013i
\(285\) −22.8846 + 9.32833i −1.35557 + 0.552562i
\(286\) −3.64925 1.57294i −0.215785 0.0930100i
\(287\) 0 0
\(288\) 5.17829 + 16.1612i 0.305134 + 0.952310i
\(289\) 16.6677 0.980452
\(290\) −17.4356 7.51528i −1.02385 0.441312i
\(291\) −21.7311 + 8.85811i −1.27390 + 0.519272i
\(292\) 1.94212 + 2.05625i 0.113654 + 0.120333i
\(293\) 1.20747i 0.0705412i −0.999378 0.0352706i \(-0.988771\pi\)
0.999378 0.0352706i \(-0.0112293\pi\)
\(294\) 0 0
\(295\) 31.3043i 1.82261i
\(296\) 4.15967 + 11.3993i 0.241776 + 0.662571i
\(297\) 6.83609 15.7452i 0.396670 0.913630i
\(298\) 3.76030 8.72395i 0.217828 0.505365i
\(299\) 3.36983 0.194882
\(300\) 34.0025 + 15.4658i 1.96314 + 0.892921i
\(301\) 0 0
\(302\) −7.39632 + 17.1596i −0.425610 + 0.987423i
\(303\) 4.66773 + 11.4511i 0.268154 + 0.657847i
\(304\) 14.3422 + 0.819488i 0.822579 + 0.0470009i
\(305\) 38.7203i 2.21712i
\(306\) −0.877929 2.28274i −0.0501878 0.130496i
\(307\) 34.0275i 1.94205i −0.238973 0.971026i \(-0.576811\pi\)
0.238973 0.971026i \(-0.423189\pi\)
\(308\) 0 0
\(309\) −6.87062 16.8553i −0.390856 0.958863i
\(310\) 25.2765 + 10.8950i 1.43561 + 0.618792i
\(311\) −26.7116 −1.51467 −0.757337 0.653024i \(-0.773500\pi\)
−0.757337 + 0.653024i \(0.773500\pi\)
\(312\) −2.80042 3.08580i −0.158543 0.174699i
\(313\) −9.32552 −0.527110 −0.263555 0.964644i \(-0.584895\pi\)
−0.263555 + 0.964644i \(0.584895\pi\)
\(314\) 3.10162 + 1.33690i 0.175035 + 0.0754455i
\(315\) 0 0
\(316\) 10.0735 9.51439i 0.566681 0.535226i
\(317\) 26.9931i 1.51609i −0.652205 0.758043i \(-0.726156\pi\)
0.652205 0.758043i \(-0.273844\pi\)
\(318\) −0.0296758 + 1.49056i −0.00166414 + 0.0835864i
\(319\) 11.1633i 0.625024i
\(320\) −20.4697 24.3131i −1.14429 1.35914i
\(321\) −1.97783 + 0.806210i −0.110392 + 0.0449982i
\(322\) 0 0
\(323\) −2.07032 −0.115196
\(324\) 13.3613 12.0614i 0.742293 0.670075i
\(325\) −9.17232 −0.508789
\(326\) −10.2395 + 23.7557i −0.567111 + 1.31571i
\(327\) 5.13724 2.09406i 0.284090 0.115802i
\(328\) −14.2299 + 5.19256i −0.785712 + 0.286711i
\(329\) 0 0
\(330\) −0.639895 + 32.1407i −0.0352251 + 1.76929i
\(331\) 14.5934i 0.802125i −0.916051 0.401062i \(-0.868641\pi\)
0.916051 0.401062i \(-0.131359\pi\)
\(332\) 5.68370 + 6.01773i 0.311934 + 0.330266i
\(333\) 9.20293 8.99771i 0.504318 0.493072i
\(334\) 25.1494 + 10.8402i 1.37612 + 0.593149i
\(335\) −35.9372 −1.96346
\(336\) 0 0
\(337\) 31.6823 1.72585 0.862924 0.505335i \(-0.168631\pi\)
0.862924 + 0.505335i \(0.168631\pi\)
\(338\) −15.9436 6.87217i −0.867215 0.373797i
\(339\) 13.0168 + 31.9334i 0.706978 + 1.73439i
\(340\) 3.14510 + 3.32994i 0.170567 + 0.180591i
\(341\) 16.1835i 0.876385i
\(342\) −5.46949 14.2215i −0.295756 0.769009i
\(343\) 0 0
\(344\) −20.3668 + 7.43196i −1.09810 + 0.400704i
\(345\) −10.2902 25.2443i −0.554006 1.35911i
\(346\) 3.12653 7.25360i 0.168083 0.389956i
\(347\) 2.15373 0.115618 0.0578092 0.998328i \(-0.481588\pi\)
0.0578092 + 0.998328i \(0.481588\pi\)
\(348\) 4.84669 10.6557i 0.259810 0.571207i
\(349\) −33.0517 −1.76922 −0.884608 0.466335i \(-0.845574\pi\)
−0.884608 + 0.466335i \(0.845574\pi\)
\(350\) 0 0
\(351\) −1.76022 + 4.05422i −0.0939535 + 0.216398i
\(352\) 8.36375 16.7109i 0.445790 0.890695i
\(353\) 15.6070i 0.830678i −0.909667 0.415339i \(-0.863663\pi\)
0.909667 0.415339i \(-0.136337\pi\)
\(354\) −19.2972 0.384191i −1.02563 0.0204195i
\(355\) 36.3773i 1.93071i
\(356\) −8.37028 + 7.90567i −0.443624 + 0.419000i
\(357\) 0 0
\(358\) −25.1681 10.8483i −1.33018 0.573348i
\(359\) −33.6473 −1.77584 −0.887919 0.459999i \(-0.847850\pi\)
−0.887919 + 0.459999i \(0.847850\pi\)
\(360\) −14.5651 + 30.4016i −0.767650 + 1.60230i
\(361\) 6.10193 0.321154
\(362\) −14.1215 6.08682i −0.742211 0.319916i
\(363\) 0.139981 0.0570595i 0.00734708 0.00299485i
\(364\) 0 0
\(365\) 5.61842i 0.294082i
\(366\) −23.8687 0.475206i −1.24764 0.0248394i
\(367\) 7.84555i 0.409534i −0.978811 0.204767i \(-0.934356\pi\)
0.978811 0.204767i \(-0.0656437\pi\)
\(368\) −0.903988 + 15.8210i −0.0471237 + 0.824728i
\(369\) 11.2319 + 11.4881i 0.584711 + 0.598047i
\(370\) −9.54109 + 22.1355i −0.496018 + 1.15077i
\(371\) 0 0
\(372\) −7.02629 + 15.4477i −0.364296 + 0.800926i
\(373\) 0.986273 0.0510673 0.0255336 0.999674i \(-0.491872\pi\)
0.0255336 + 0.999674i \(0.491872\pi\)
\(374\) −1.06601 + 2.47316i −0.0551221 + 0.127884i
\(375\) 15.0217 + 36.8519i 0.775719 + 1.90303i
\(376\) −8.81391 24.1539i −0.454543 1.24564i
\(377\) 2.87443i 0.148040i
\(378\) 0 0
\(379\) 18.8285i 0.967153i −0.875302 0.483576i \(-0.839337\pi\)
0.875302 0.483576i \(-0.160663\pi\)
\(380\) 19.5940 + 20.7455i 1.00515 + 1.06422i
\(381\) 10.7501 + 26.3726i 0.550744 + 1.35111i
\(382\) 1.60147 + 0.690282i 0.0819381 + 0.0353179i
\(383\) −3.62288 −0.185120 −0.0925602 0.995707i \(-0.529505\pi\)
−0.0925602 + 0.995707i \(0.529505\pi\)
\(384\) 15.2388 12.3199i 0.777650 0.628697i
\(385\) 0 0
\(386\) 20.4979 + 8.83526i 1.04332 + 0.449703i
\(387\) 16.0759 + 16.4426i 0.817186 + 0.835824i
\(388\) 18.6063 + 19.6998i 0.944591 + 1.00010i
\(389\) 14.6161i 0.741067i −0.928819 0.370534i \(-0.879175\pi\)
0.928819 0.370534i \(-0.120825\pi\)
\(390\) 0.164766 8.27589i 0.00834326 0.419066i
\(391\) 2.28380i 0.115497i
\(392\) 0 0
\(393\) −3.65197 + 1.48863i −0.184217 + 0.0750914i
\(394\) −9.73284 + 22.5804i −0.490333 + 1.13758i
\(395\) 27.5245 1.38491
\(396\) −19.8049 0.788913i −0.995236 0.0396443i
\(397\) 6.09704 0.306002 0.153001 0.988226i \(-0.451106\pi\)
0.153001 + 0.988226i \(0.451106\pi\)
\(398\) −2.55687 + 5.93197i −0.128164 + 0.297343i
\(399\) 0 0
\(400\) 2.46056 43.0631i 0.123028 2.15316i
\(401\) 7.29009i 0.364050i 0.983294 + 0.182025i \(0.0582651\pi\)
−0.983294 + 0.182025i \(0.941735\pi\)
\(402\) 0.441049 22.1531i 0.0219975 1.10489i
\(403\) 4.16708i 0.207577i
\(404\) 10.3807 9.80448i 0.516458 0.487791i
\(405\) 35.7463 + 0.806210i 1.77625 + 0.0400609i
\(406\) 0 0
\(407\) −14.1724 −0.702502
\(408\) −2.09130 + 1.89790i −0.103535 + 0.0939599i
\(409\) 20.1900 0.998331 0.499165 0.866507i \(-0.333640\pi\)
0.499165 + 0.866507i \(0.333640\pi\)
\(410\) −27.6319 11.9102i −1.36464 0.588204i
\(411\) 6.01774 + 14.7630i 0.296833 + 0.728204i
\(412\) −15.2797 + 14.4316i −0.752778 + 0.710993i
\(413\) 0 0
\(414\) 15.6879 6.03347i 0.771018 0.296529i
\(415\) 16.4426i 0.807135i
\(416\) −2.15358 + 4.30288i −0.105588 + 0.210966i
\(417\) −7.26076 17.8124i −0.355561 0.872276i
\(418\) −6.64124 + 15.4078i −0.324834 + 0.753620i
\(419\) 1.32886 0.0649189 0.0324594 0.999473i \(-0.489666\pi\)
0.0324594 + 0.999473i \(0.489666\pi\)
\(420\) 0 0
\(421\) −7.31859 −0.356686 −0.178343 0.983968i \(-0.557074\pi\)
−0.178343 + 0.983968i \(0.557074\pi\)
\(422\) −0.622613 + 1.44447i −0.0303083 + 0.0703158i
\(423\) −19.5001 + 19.0652i −0.948125 + 0.926983i
\(424\) 1.61718 0.590120i 0.0785374 0.0286588i
\(425\) 6.21625i 0.301532i
\(426\) −22.4244 0.446451i −1.08647 0.0216306i
\(427\) 0 0
\(428\) 1.69343 + 1.79295i 0.0818549 + 0.0866655i
\(429\) 4.50686 1.83711i 0.217593 0.0886963i
\(430\) −39.5488 17.0468i −1.90721 0.822068i
\(431\) −0.178929 −0.00861872 −0.00430936 0.999991i \(-0.501372\pi\)
−0.00430936 + 0.999991i \(0.501372\pi\)
\(432\) −18.5620 9.35163i −0.893063 0.449931i
\(433\) −15.2499 −0.732866 −0.366433 0.930444i \(-0.619421\pi\)
−0.366433 + 0.930444i \(0.619421\pi\)
\(434\) 0 0
\(435\) 21.5331 8.77742i 1.03243 0.420845i
\(436\) −4.39853 4.65703i −0.210652 0.223031i
\(437\) 14.2280i 0.680619i
\(438\) −3.46342 0.0689537i −0.165488 0.00329474i
\(439\) 29.9054i 1.42731i −0.700499 0.713654i \(-0.747039\pi\)
0.700499 0.713654i \(-0.252961\pi\)
\(440\) 34.8711 12.7247i 1.66242 0.606626i
\(441\) 0 0
\(442\) 0.274487 0.636813i 0.0130560 0.0302901i
\(443\) −5.01590 −0.238313 −0.119156 0.992876i \(-0.538019\pi\)
−0.119156 + 0.992876i \(0.538019\pi\)
\(444\) −13.5281 6.15316i −0.642014 0.292016i
\(445\) −22.8706 −1.08417
\(446\) −13.2293 + 30.6921i −0.626424 + 1.45331i
\(447\) 4.39181 + 10.7742i 0.207725 + 0.509601i
\(448\) 0 0
\(449\) 14.4978i 0.684195i 0.939664 + 0.342098i \(0.111137\pi\)
−0.939664 + 0.342098i \(0.888863\pi\)
\(450\) −42.7007 + 16.4224i −2.01293 + 0.774161i
\(451\) 17.6916i 0.833064i
\(452\) 28.9485 27.3416i 1.36162 1.28604i
\(453\) −8.63848 21.1923i −0.405871 0.995700i
\(454\) 15.9719 + 6.88441i 0.749600 + 0.323101i
\(455\) 0 0
\(456\) −13.0288 + 11.8239i −0.610129 + 0.553704i
\(457\) −19.8569 −0.928866 −0.464433 0.885608i \(-0.653742\pi\)
−0.464433 + 0.885608i \(0.653742\pi\)
\(458\) −11.7267 5.05456i −0.547951 0.236184i
\(459\) 2.74762 + 1.19293i 0.128248 + 0.0556813i
\(460\) −22.8846 + 21.6144i −1.06700 + 1.00777i
\(461\) 17.3910i 0.809978i 0.914322 + 0.404989i \(0.132725\pi\)
−0.914322 + 0.404989i \(0.867275\pi\)
\(462\) 0 0
\(463\) 15.3304i 0.712462i −0.934398 0.356231i \(-0.884062\pi\)
0.934398 0.356231i \(-0.115938\pi\)
\(464\) −13.4951 0.771091i −0.626496 0.0357970i
\(465\) −31.2167 + 12.7247i −1.44764 + 0.590093i
\(466\) 4.23970 9.83619i 0.196401 0.455653i
\(467\) 21.0820 0.975557 0.487778 0.872968i \(-0.337807\pi\)
0.487778 + 0.872968i \(0.337807\pi\)
\(468\) 5.09956 + 0.203137i 0.235727 + 0.00938999i
\(469\) 0 0
\(470\) 20.2166 46.9028i 0.932521 2.16346i
\(471\) −3.83054 + 1.56142i −0.176502 + 0.0719464i
\(472\) 7.63986 + 20.9365i 0.351653 + 0.963682i
\(473\) 25.3215i 1.16428i
\(474\) −0.337803 + 16.9672i −0.0155158 + 0.779329i
\(475\) 38.7272i 1.77692i
\(476\) 0 0
\(477\) −1.27648 1.30559i −0.0584459 0.0597790i
\(478\) −12.0157 5.17915i −0.549586 0.236889i
\(479\) 7.59965 0.347237 0.173618 0.984813i \(-0.444454\pi\)
0.173618 + 0.984813i \(0.444454\pi\)
\(480\) 38.8103 + 2.99364i 1.77144 + 0.136641i
\(481\) 3.64925 0.166392
\(482\) −20.3382 8.76642i −0.926381 0.399299i
\(483\) 0 0
\(484\) −0.119852 0.126896i −0.00544784 0.00576800i
\(485\) 53.8268i 2.44415i
\(486\) −0.935686 + 22.0255i −0.0424436 + 0.999099i
\(487\) 15.4373i 0.699531i 0.936837 + 0.349765i \(0.113739\pi\)
−0.936837 + 0.349765i \(0.886261\pi\)
\(488\) 9.44975 + 25.8964i 0.427770 + 1.17228i
\(489\) −11.9591 29.3386i −0.540809 1.32674i
\(490\) 0 0
\(491\) 40.5166 1.82849 0.914243 0.405165i \(-0.132786\pi\)
0.914243 + 0.405165i \(0.132786\pi\)
\(492\) 7.68105 16.8872i 0.346288 0.761335i
\(493\) 1.94805 0.0877358
\(494\) 1.71005 3.96734i 0.0769387 0.178499i
\(495\) −27.5245 28.1523i −1.23714 1.26535i
\(496\) 19.5640 + 1.11786i 0.878450 + 0.0501932i
\(497\) 0 0
\(498\) −10.1359 0.201796i −0.454199 0.00904272i
\(499\) 30.3670i 1.35941i −0.733484 0.679707i \(-0.762107\pi\)
0.733484 0.679707i \(-0.237893\pi\)
\(500\) 33.4072 31.5529i 1.49402 1.41109i
\(501\) −31.0598 + 12.6607i −1.38765 + 0.565640i
\(502\) 4.01284 + 1.72966i 0.179102 + 0.0771985i
\(503\) 13.8974 0.619652 0.309826 0.950793i \(-0.399729\pi\)
0.309826 + 0.950793i \(0.399729\pi\)
\(504\) 0 0
\(505\) 28.3638 1.26217
\(506\) −16.9965 7.32604i −0.755589 0.325682i
\(507\) 19.6905 8.02631i 0.874484 0.356461i
\(508\) 23.9074 22.5804i 1.06072 1.00184i
\(509\) 29.6562i 1.31449i −0.753679 0.657243i \(-0.771722\pi\)
0.753679 0.657243i \(-0.228278\pi\)
\(510\) −5.60872 0.111665i −0.248358 0.00494461i
\(511\) 0 0
\(512\) −19.6239 11.2651i −0.867262 0.497853i
\(513\) 17.1176 + 7.43196i 0.755763 + 0.328129i
\(514\) 4.12515 9.57042i 0.181953 0.422133i
\(515\) −41.7497 −1.83971
\(516\) 10.9937 24.1702i 0.483969 1.06403i
\(517\) 30.0299 1.32071
\(518\) 0 0
\(519\) 3.65161 + 8.95827i 0.160288 + 0.393225i
\(520\) −8.97895 + 3.27647i −0.393753 + 0.143683i
\(521\) 33.5702i 1.47074i 0.677667 + 0.735369i \(0.262991\pi\)
−0.677667 + 0.735369i \(0.737009\pi\)
\(522\) 5.14647 + 13.3816i 0.225255 + 0.585695i
\(523\) 10.1954i 0.445813i 0.974840 + 0.222906i \(0.0715544\pi\)
−0.974840 + 0.222906i \(0.928446\pi\)
\(524\) 3.12684 + 3.31060i 0.136596 + 0.144624i
\(525\) 0 0
\(526\) 28.8358 + 12.4291i 1.25730 + 0.541937i
\(527\) −2.82410 −0.123020
\(528\) 7.41603 + 21.6521i 0.322741 + 0.942287i
\(529\) −7.30486 −0.317603
\(530\) 3.14029 + 1.35357i 0.136406 + 0.0587951i
\(531\) 16.9026 16.5256i 0.733509 0.717152i
\(532\) 0 0
\(533\) 4.55539i 0.197316i
\(534\) 0.280686 14.0983i 0.0121465 0.610095i
\(535\) 4.89898i 0.211801i
\(536\) −24.0350 + 8.77052i −1.03815 + 0.378829i
\(537\) 31.0829 12.6702i 1.34133 0.546757i
\(538\) 5.60560 13.0051i 0.241675 0.560689i
\(539\) 0 0
\(540\) −14.0504 38.8225i −0.604633 1.67065i
\(541\) 10.3049 0.443041 0.221520 0.975156i \(-0.428898\pi\)
0.221520 + 0.975156i \(0.428898\pi\)
\(542\) 13.2023 30.6297i 0.567089 1.31566i
\(543\) 17.4402 7.10906i 0.748432 0.305079i
\(544\) 2.91614 + 1.45952i 0.125029 + 0.0625763i
\(545\) 12.7247i 0.545066i
\(546\) 0 0
\(547\) 5.44070i 0.232628i 0.993213 + 0.116314i \(0.0371078\pi\)
−0.993213 + 0.116314i \(0.962892\pi\)
\(548\) 13.3830 12.6401i 0.571694 0.539960i
\(549\) 20.9068 20.4406i 0.892281 0.872383i
\(550\) 46.2628 + 19.9407i 1.97265 + 0.850274i
\(551\) 12.1363 0.517025
\(552\) −13.0431 14.3722i −0.555150 0.611723i
\(553\) 0 0
\(554\) 37.7402 + 16.2672i 1.60343 + 0.691128i
\(555\) −11.1434 27.3376i −0.473013 1.16041i
\(556\) −16.1474 + 15.2511i −0.684801 + 0.646790i
\(557\) 4.43710i 0.188006i 0.995572 + 0.0940030i \(0.0299663\pi\)
−0.995572 + 0.0940030i \(0.970034\pi\)
\(558\) −7.46088 19.3994i −0.315844 0.821241i
\(559\) 6.52001i 0.275767i
\(560\) 0 0
\(561\) −1.24504 3.05438i −0.0525657 0.128956i
\(562\) 13.0368 30.2455i 0.549923 1.27583i
\(563\) −39.1279 −1.64904 −0.824522 0.565830i \(-0.808556\pi\)
−0.824522 + 0.565830i \(0.808556\pi\)
\(564\) 28.6646 + 13.0379i 1.20700 + 0.548995i
\(565\) 79.0976 3.32766
\(566\) 9.75493 22.6316i 0.410030 0.951277i
\(567\) 0 0
\(568\) 8.87794 + 24.3294i 0.372510 + 1.02084i
\(569\) 44.4159i 1.86201i 0.365006 + 0.931005i \(0.381067\pi\)
−0.365006 + 0.931005i \(0.618933\pi\)
\(570\) −34.9423 0.695672i −1.46357 0.0291385i
\(571\) 2.49280i 0.104321i 0.998639 + 0.0521603i \(0.0166107\pi\)
−0.998639 + 0.0521603i \(0.983389\pi\)
\(572\) −3.85880 4.08558i −0.161345 0.170827i
\(573\) −1.97783 + 0.806210i −0.0826249 + 0.0336799i
\(574\) 0 0
\(575\) −42.7205 −1.78157
\(576\) −2.32171 + 23.8874i −0.0967379 + 0.995310i
\(577\) 36.5866 1.52312 0.761560 0.648095i \(-0.224434\pi\)
0.761560 + 0.648095i \(0.224434\pi\)
\(578\) 21.6465 + 9.33030i 0.900374 + 0.388089i
\(579\) −25.3152 + 10.3191i −1.05206 + 0.428846i
\(580\) −18.4368 19.5203i −0.765546 0.810536i
\(581\) 0 0
\(582\) −33.1809 0.660605i −1.37539 0.0273830i
\(583\) 2.01060i 0.0832706i
\(584\) 1.37118 + 3.75764i 0.0567400 + 0.155492i
\(585\) 7.08727 + 7.24892i 0.293023 + 0.299706i
\(586\) 0.675922 1.56815i 0.0279221 0.0647797i
\(587\) 36.8412 1.52060 0.760299 0.649573i \(-0.225052\pi\)
0.760299 + 0.649573i \(0.225052\pi\)
\(588\) 0 0
\(589\) −17.5941 −0.724954
\(590\) −17.5236 + 40.6551i −0.721437 + 1.67375i
\(591\) −11.3674 27.8870i −0.467592 1.14712i
\(592\) −0.978945 + 17.1329i −0.0402344 + 0.704157i
\(593\) 17.2194i 0.707118i 0.935412 + 0.353559i \(0.115029\pi\)
−0.935412 + 0.353559i \(0.884971\pi\)
\(594\) 17.6920 16.6217i 0.725911 0.681996i
\(595\) 0 0
\(596\) 9.76705 9.22491i 0.400074 0.377867i
\(597\) −2.98627 7.32604i −0.122220 0.299835i
\(598\) 4.37643 + 1.88638i 0.178965 + 0.0771397i
\(599\) 19.0215 0.777198 0.388599 0.921407i \(-0.372959\pi\)
0.388599 + 0.921407i \(0.372959\pi\)
\(600\) 35.5018 + 39.1197i 1.44936 + 1.59705i
\(601\) 7.95144 0.324346 0.162173 0.986762i \(-0.448150\pi\)
0.162173 + 0.986762i \(0.448150\pi\)
\(602\) 0 0
\(603\) 18.9713 + 19.4040i 0.772573 + 0.790194i
\(604\) −19.2113 + 18.1450i −0.781698 + 0.738308i
\(605\) 0.346725i 0.0140964i
\(606\) −0.348102 + 17.4845i −0.0141407 + 0.710260i
\(607\) 23.7840i 0.965364i −0.875796 0.482682i \(-0.839663\pi\)
0.875796 0.482682i \(-0.160337\pi\)
\(608\) 18.1675 + 9.09279i 0.736791 + 0.368761i
\(609\) 0 0
\(610\) −21.6750 + 50.2864i −0.877596 + 2.03604i
\(611\) −7.73239 −0.312819
\(612\) 0.137669 3.45607i 0.00556495 0.139703i
\(613\) −29.7559 −1.20183 −0.600914 0.799313i \(-0.705197\pi\)
−0.600914 + 0.799313i \(0.705197\pi\)
\(614\) 19.0480 44.1918i 0.768717 1.78344i
\(615\) 34.1257 13.9105i 1.37608 0.560924i
\(616\) 0 0
\(617\) 28.7008i 1.15545i 0.816232 + 0.577724i \(0.196059\pi\)
−0.816232 + 0.577724i \(0.803941\pi\)
\(618\) 0.512385 25.7361i 0.0206111 1.03526i
\(619\) 22.9880i 0.923965i 0.886889 + 0.461983i \(0.152862\pi\)
−0.886889 + 0.461983i \(0.847138\pi\)
\(620\) 26.7279 + 28.2987i 1.07342 + 1.13650i
\(621\) −8.19829 + 18.8827i −0.328986 + 0.757737i
\(622\) −34.6905 14.9527i −1.39096 0.599549i
\(623\) 0 0
\(624\) −1.90955 5.57518i −0.0764431 0.223186i
\(625\) 37.3638 1.49455
\(626\) −12.1111 5.22027i −0.484058 0.208644i
\(627\) −7.75659 19.0288i −0.309768 0.759936i
\(628\) 3.27973 + 3.47248i 0.130875 + 0.138567i
\(629\) 2.47316i 0.0986115i
\(630\) 0 0
\(631\) 15.3304i 0.610292i −0.952306 0.305146i \(-0.901295\pi\)
0.952306 0.305146i \(-0.0987052\pi\)
\(632\) 18.4086 6.71741i 0.732255 0.267204i
\(633\) −0.727176 1.78394i −0.0289027 0.0709052i
\(634\) 15.1103 35.0562i 0.600108 1.39226i
\(635\) 65.3236 2.59229
\(636\) −0.872931 + 1.91919i −0.0346140 + 0.0761008i
\(637\) 0 0
\(638\) 6.24902 14.4978i 0.247401 0.573975i
\(639\) 19.6417 19.2037i 0.777014 0.759688i
\(640\) −12.9740 43.0342i −0.512843 1.70108i
\(641\) 13.3989i 0.529223i 0.964355 + 0.264612i \(0.0852437\pi\)
−0.964355 + 0.264612i \(0.914756\pi\)
\(642\) −3.01992 0.0601241i −0.119187 0.00237291i
\(643\) 2.68122i 0.105737i −0.998601 0.0528684i \(-0.983164\pi\)
0.998601 0.0528684i \(-0.0168364\pi\)
\(644\) 0 0
\(645\) 48.8432 19.9097i 1.92320 0.783942i
\(646\) −2.68874 1.15893i −0.105787 0.0455975i
\(647\) 19.7360 0.775902 0.387951 0.921680i \(-0.373183\pi\)
0.387951 + 0.921680i \(0.373183\pi\)
\(648\) 24.1041 8.18475i 0.946900 0.321527i
\(649\) −26.0298 −1.02176
\(650\) −11.9122 5.13452i −0.467233 0.201392i
\(651\) 0 0
\(652\) −26.5961 + 25.1198i −1.04158 + 0.983769i
\(653\) 35.2227i 1.37837i −0.724584 0.689186i \(-0.757968\pi\)
0.724584 0.689186i \(-0.242032\pi\)
\(654\) 7.84399 + 0.156167i 0.306724 + 0.00610663i
\(655\) 9.04574i 0.353446i
\(656\) −21.3871 1.22203i −0.835027 0.0477121i
\(657\) 3.03363 2.96599i 0.118353 0.115714i
\(658\) 0 0
\(659\) −39.7628 −1.54894 −0.774469 0.632612i \(-0.781983\pi\)
−0.774469 + 0.632612i \(0.781983\pi\)
\(660\) −18.8229 + 41.3832i −0.732680 + 1.61084i
\(661\) −14.9332 −0.580834 −0.290417 0.956900i \(-0.593794\pi\)
−0.290417 + 0.956900i \(0.593794\pi\)
\(662\) 8.16914 18.9525i 0.317503 0.736611i
\(663\) 0.320585 + 0.786471i 0.0124505 + 0.0305440i
\(664\) 4.01284 + 10.9969i 0.155728 + 0.426763i
\(665\) 0 0
\(666\) 16.9887 6.53375i 0.658298 0.253178i
\(667\) 13.3878i 0.518376i
\(668\) 26.5936 + 28.1565i 1.02894 + 1.08941i
\(669\) −15.4510 37.9051i −0.597371 1.46549i
\(670\) −46.6719 20.1170i −1.80309 0.777189i
\(671\) −32.1963 −1.24292
\(672\) 0 0
\(673\) 1.52059 0.0586145 0.0293072 0.999570i \(-0.490670\pi\)
0.0293072 + 0.999570i \(0.490670\pi\)
\(674\) 41.1461 + 17.7353i 1.58489 + 0.683137i
\(675\) 22.3149 51.3967i 0.858900 1.97826i
\(676\) −16.8591 17.8499i −0.648427 0.686534i
\(677\) 16.4053i 0.630508i 0.949007 + 0.315254i \(0.102090\pi\)
−0.949007 + 0.315254i \(0.897910\pi\)
\(678\) −0.970748 + 48.7588i −0.0372813 + 1.87257i
\(679\) 0 0
\(680\) 2.22052 + 6.08520i 0.0851532 + 0.233357i
\(681\) −19.7255 + 8.04060i −0.755883 + 0.308116i
\(682\) −9.05926 + 21.0176i −0.346897 + 0.804807i
\(683\) −9.15654 −0.350365 −0.175183 0.984536i \(-0.556052\pi\)
−0.175183 + 0.984536i \(0.556052\pi\)
\(684\) 0.857679 21.5313i 0.0327942 0.823268i
\(685\) 36.5672 1.39716
\(686\) 0 0
\(687\) 14.4825 5.90343i 0.552543 0.225230i
\(688\) −30.6108 1.74905i −1.16703 0.0666820i
\(689\) 0.517708i 0.0197231i
\(690\) 0.767405 38.5453i 0.0292146 1.46740i
\(691\) 33.1654i 1.26167i −0.775916 0.630836i \(-0.782712\pi\)
0.775916 0.630836i \(-0.217288\pi\)
\(692\) 8.12090 7.67013i 0.308710 0.291575i
\(693\) 0 0
\(694\) 2.79707 + 1.20562i 0.106175 + 0.0457649i
\(695\) −44.1204 −1.67358
\(696\) 12.2593 11.1256i 0.464689 0.421714i
\(697\) 3.08727 0.116939
\(698\) −42.9245 18.5018i −1.62472 0.700304i
\(699\) 4.95173 + 12.1478i 0.187292 + 0.459472i
\(700\) 0 0
\(701\) 38.1529i 1.44101i −0.693448 0.720507i \(-0.743909\pi\)
0.693448 0.720507i \(-0.256091\pi\)
\(702\) −4.55550 + 4.27991i −0.171936 + 0.161535i
\(703\) 15.4078i 0.581116i
\(704\) 20.2166 17.0207i 0.761941 0.641492i
\(705\) 23.6118 + 57.9254i 0.889272 + 2.18160i
\(706\) 8.73656 20.2690i 0.328805 0.762833i
\(707\) 0 0
\(708\) −24.8464 11.3012i −0.933783 0.424725i
\(709\) 13.9579 0.524200 0.262100 0.965041i \(-0.415585\pi\)
0.262100 + 0.965041i \(0.415585\pi\)
\(710\) −20.3634 + 47.2435i −0.764226 + 1.77302i
\(711\) −14.5303 14.8617i −0.544929 0.557358i
\(712\) −15.2960 + 5.58161i −0.573243 + 0.209180i
\(713\) 19.4083i 0.726848i
\(714\) 0 0
\(715\) 11.1633i 0.417483i
\(716\) −26.6134 28.1774i −0.994589 1.05304i
\(717\) 14.8395 6.04895i 0.554193 0.225902i
\(718\) −43.6981 18.8352i −1.63080 0.702925i
\(719\) −20.1779 −0.752510 −0.376255 0.926516i \(-0.622788\pi\)
−0.376255 + 0.926516i \(0.622788\pi\)
\(720\) −35.9342 + 31.3295i −1.33919 + 1.16758i
\(721\) 0 0
\(722\) 7.92462 + 3.41576i 0.294924 + 0.127121i
\(723\) 25.1179 10.2387i 0.934146 0.380780i
\(724\) −14.9324 15.8100i −0.554959 0.587574i
\(725\) 36.4400i 1.35335i
\(726\) 0.213735 + 0.00425529i 0.00793245 + 0.000157929i
\(727\) 1.62103i 0.0601206i −0.999548 0.0300603i \(-0.990430\pi\)
0.999548 0.0300603i \(-0.00956993\pi\)
\(728\) 0 0
\(729\) −18.4353 19.7266i −0.682789 0.730615i
\(730\) −3.14510 + 7.29669i −0.116405 + 0.270063i
\(731\) 4.41873 0.163433
\(732\) −30.7325 13.9785i −1.13591 0.516659i
\(733\) −27.8053 −1.02701 −0.513505 0.858086i \(-0.671653\pi\)
−0.513505 + 0.858086i \(0.671653\pi\)
\(734\) 4.39181 10.1891i 0.162105 0.376086i
\(735\) 0 0
\(736\) −10.0304 + 20.0409i −0.369725 + 0.738716i
\(737\) 29.8821i 1.10072i
\(738\) 8.15614 + 21.2071i 0.300232 + 0.780646i
\(739\) 28.9864i 1.06628i 0.846026 + 0.533142i \(0.178989\pi\)
−0.846026 + 0.533142i \(0.821011\pi\)
\(740\) −24.7822 + 23.4066i −0.911011 + 0.860443i
\(741\) 1.99724 + 4.89971i 0.0733704 + 0.179995i
\(742\) 0 0
\(743\) 10.4018 0.381604 0.190802 0.981629i \(-0.438891\pi\)
0.190802 + 0.981629i \(0.438891\pi\)
\(744\) −17.7725 + 16.1288i −0.651570 + 0.591312i
\(745\) 26.6871 0.977739
\(746\) 1.28088 + 0.552100i 0.0468964 + 0.0202138i
\(747\) 8.87808 8.68010i 0.324832 0.317588i
\(748\) −2.76888 + 2.61518i −0.101240 + 0.0956205i
\(749\) 0 0
\(750\) −1.12027 + 56.2688i −0.0409063 + 2.05465i
\(751\) 16.9792i 0.619581i −0.950805 0.309791i \(-0.899741\pi\)
0.950805 0.309791i \(-0.100259\pi\)
\(752\) 2.07428 36.3028i 0.0756413 1.32383i
\(753\) −4.95590 + 2.02014i −0.180603 + 0.0736181i
\(754\) −1.60906 + 3.73304i −0.0585984 + 0.135949i
\(755\) −52.4922 −1.91039
\(756\) 0 0
\(757\) −10.9716 −0.398770 −0.199385 0.979921i \(-0.563894\pi\)
−0.199385 + 0.979921i \(0.563894\pi\)
\(758\) 10.5399 24.4527i 0.382825 0.888161i
\(759\) 20.9909 8.55640i 0.761922 0.310578i
\(760\) 13.8338 + 37.9107i 0.501806 + 1.37517i
\(761\) 11.6305i 0.421606i −0.977529 0.210803i \(-0.932392\pi\)
0.977529 0.210803i \(-0.0676078\pi\)
\(762\) −0.801702 + 40.2680i −0.0290426 + 1.45876i
\(763\) 0 0
\(764\) 1.69343 + 1.79295i 0.0612660 + 0.0648666i
\(765\) 4.91273 4.80318i 0.177620 0.173659i
\(766\) −4.70506 2.02803i −0.170001 0.0732756i
\(767\) 6.70240 0.242010
\(768\) 26.6872 7.46954i 0.962991 0.269534i
\(769\) −0.123424 −0.00445080 −0.00222540 0.999998i \(-0.500708\pi\)
−0.00222540 + 0.999998i \(0.500708\pi\)
\(770\) 0 0
\(771\) 4.81794 + 11.8196i 0.173514 + 0.425671i
\(772\) 21.6750 + 22.9488i 0.780101 + 0.825947i
\(773\) 15.5446i 0.559100i 0.960131 + 0.279550i \(0.0901852\pi\)
−0.960131 + 0.279550i \(0.909815\pi\)
\(774\) 11.6736 + 30.3532i 0.419601 + 1.09102i
\(775\) 52.8274i 1.89762i
\(776\) 13.1365 + 35.9997i 0.471573 + 1.29231i
\(777\) 0 0
\(778\) 8.18188 18.9821i 0.293334 0.680541i
\(779\) 19.2337 0.689118
\(780\) 4.84669 10.6557i 0.173539 0.381536i
\(781\) −30.2481 −1.08236
\(782\) 1.27843 2.96599i 0.0457167 0.106063i
\(783\) −16.1067 6.99304i −0.575607 0.249911i
\(784\) 0 0
\(785\) 9.48806i 0.338643i
\(786\) −5.57615 0.111016i −0.198895 0.00395983i
\(787\) 41.9211i 1.49433i 0.664640 + 0.747164i \(0.268585\pi\)
−0.664640 + 0.747164i \(0.731415\pi\)
\(788\) −25.2802 + 23.8770i −0.900571 + 0.850583i
\(789\) −35.6126 + 14.5165i −1.26784 + 0.516802i
\(790\) 35.7463 + 15.4078i 1.27180 + 0.548185i
\(791\) 0 0
\(792\) −25.2792 12.1111i −0.898258 0.430348i
\(793\) 8.29021 0.294394
\(794\) 7.91828 + 3.41303i 0.281009 + 0.121124i
\(795\) −3.87830 + 1.58089i −0.137549 + 0.0560683i
\(796\) −6.64124 + 6.27260i −0.235393 + 0.222327i
\(797\) 20.7831i 0.736175i 0.929791 + 0.368088i \(0.119987\pi\)
−0.929791 + 0.368088i \(0.880013\pi\)
\(798\) 0 0
\(799\) 5.24038i 0.185391i
\(800\) 27.3016 54.5490i 0.965257 1.92860i
\(801\) 12.0735 + 12.3488i 0.426595 + 0.436325i
\(802\) −4.08088 + 9.46770i −0.144101 + 0.334316i
\(803\) −4.67177 −0.164863
\(804\) 12.9737 28.5235i 0.457548 1.00595i
\(805\) 0 0
\(806\) 2.33266 5.41181i 0.0821645 0.190623i
\(807\) 6.54702 + 16.0614i 0.230466 + 0.565389i
\(808\) 18.9699 6.92222i 0.667358 0.243523i
\(809\) 1.91423i 0.0673008i 0.999434 + 0.0336504i \(0.0107133\pi\)
−0.999434 + 0.0336504i \(0.989287\pi\)
\(810\) 45.9727 + 21.0573i 1.61532 + 0.739876i
\(811\) 4.68171i 0.164397i −0.996616 0.0821986i \(-0.973806\pi\)
0.996616 0.0821986i \(-0.0261942\pi\)
\(812\) 0 0
\(813\) 15.4196 + 37.8280i 0.540789 + 1.32668i
\(814\) −18.4059 7.93350i −0.645125 0.278069i
\(815\) −72.6702 −2.54552
\(816\) −3.77840 + 1.29414i −0.132271 + 0.0453038i
\(817\) 27.5286 0.963105
\(818\) 26.2209 + 11.3020i 0.916792 + 0.395166i
\(819\) 0 0
\(820\) −29.2186 30.9358i −1.02036 1.08033i
\(821\) 1.67167i 0.0583416i −0.999574 0.0291708i \(-0.990713\pi\)
0.999574 0.0291708i \(-0.00928667\pi\)
\(822\) −0.448781 + 22.5414i −0.0156530 + 0.786222i
\(823\) 27.4309i 0.956182i 0.878310 + 0.478091i \(0.158671\pi\)
−0.878310 + 0.478091i \(0.841329\pi\)
\(824\) −27.9225 + 10.1891i −0.972725 + 0.354953i
\(825\) −57.1350 + 23.2896i −1.98918 + 0.810840i
\(826\) 0 0
\(827\) −25.9621 −0.902789 −0.451395 0.892324i \(-0.649073\pi\)
−0.451395 + 0.892324i \(0.649073\pi\)
\(828\) 23.7514 + 0.946117i 0.825419 + 0.0328798i
\(829\) −29.1349 −1.01190 −0.505948 0.862564i \(-0.668857\pi\)
−0.505948 + 0.862564i \(0.668857\pi\)
\(830\) −9.20430 + 21.3541i −0.319486 + 0.741213i
\(831\) −46.6096 + 18.9992i −1.61687 + 0.659074i
\(832\) −5.20555 + 4.38265i −0.180470 + 0.151941i
\(833\) 0 0
\(834\) 0.541480 27.1975i 0.0187499 0.941774i
\(835\) 76.9337i 2.66240i
\(836\) −17.2501 + 16.2926i −0.596606 + 0.563490i
\(837\) 23.3500 + 10.1379i 0.807095 + 0.350416i
\(838\) 1.72580 + 0.743872i 0.0596166 + 0.0256966i
\(839\) −14.3863 −0.496671 −0.248336 0.968674i \(-0.579884\pi\)
−0.248336 + 0.968674i \(0.579884\pi\)
\(840\) 0 0
\(841\) 17.5804 0.606221
\(842\) −9.50471 4.09683i −0.327554 0.141186i
\(843\) 15.2262 + 37.3535i 0.524418 + 1.28652i
\(844\) −1.61718 + 1.52742i −0.0556658 + 0.0525759i
\(845\) 48.7723i 1.67782i
\(846\) −35.9973 + 13.8443i −1.23761 + 0.475978i
\(847\) 0 0
\(848\) 2.43059 + 0.138880i 0.0834668 + 0.00476916i
\(849\) 11.3932 + 27.9503i 0.391014 + 0.959250i
\(850\) −3.47976 + 8.07309i −0.119355 + 0.276905i
\(851\) 16.9965 0.582634
\(852\) −28.8728 13.1326i −0.989167 0.449917i
\(853\) −49.4483 −1.69308 −0.846539 0.532327i \(-0.821318\pi\)
−0.846539 + 0.532327i \(0.821318\pi\)
\(854\) 0 0
\(855\) 30.6062 29.9237i 1.04671 1.02337i
\(856\) 1.19560 + 3.27647i 0.0408649 + 0.111987i
\(857\) 11.5797i 0.395554i 0.980247 + 0.197777i \(0.0633722\pi\)
−0.980247 + 0.197777i \(0.936628\pi\)
\(858\) 6.88148 + 0.137005i 0.234930 + 0.00467726i
\(859\) 7.24881i 0.247326i 0.992324 + 0.123663i \(0.0394642\pi\)
−0.992324 + 0.123663i \(0.960536\pi\)
\(860\) −41.8198 44.2775i −1.42604 1.50985i
\(861\) 0 0
\(862\) −0.232377 0.100162i −0.00791479 0.00341152i
\(863\) 20.8869 0.711000 0.355500 0.934676i \(-0.384311\pi\)
0.355500 + 0.934676i \(0.384311\pi\)
\(864\) −18.8717 22.5357i −0.642028 0.766681i
\(865\) 22.1892 0.754456
\(866\) −19.8052 8.53667i −0.673009 0.290088i
\(867\) −26.7336 + 10.8973i −0.907920 + 0.370090i
\(868\) 0 0
\(869\) 22.8869i 0.776385i
\(870\) 32.8787 + 0.654587i 1.11469 + 0.0221926i
\(871\) 7.69432i 0.260712i
\(872\) −3.10548 8.51036i −0.105165 0.288197i
\(873\) 29.0635 28.4154i 0.983649 0.961714i
\(874\) 7.96462 18.4781i 0.269407 0.625030i
\(875\) 0 0
\(876\) −4.45937 2.02831i −0.150668 0.0685304i
\(877\) −57.1755 −1.93068 −0.965339 0.260998i \(-0.915948\pi\)
−0.965339 + 0.260998i \(0.915948\pi\)
\(878\) 16.7406 38.8384i 0.564967 1.31073i
\(879\) 0.789439 + 1.93668i 0.0266271 + 0.0653227i
\(880\) 52.4105 + 2.99465i 1.76676 + 0.100950i
\(881\) 26.8284i 0.903870i 0.892051 + 0.451935i \(0.149266\pi\)
−0.892051 + 0.451935i \(0.850734\pi\)
\(882\) 0 0
\(883\) 27.6059i 0.929012i 0.885570 + 0.464506i \(0.153768\pi\)
−0.885570 + 0.464506i \(0.846232\pi\)
\(884\) 0.712956 0.673381i 0.0239793 0.0226483i
\(885\) −20.4666 50.2095i −0.687978 1.68777i
\(886\) −6.51419 2.80782i −0.218849 0.0943306i
\(887\) 26.3406 0.884430 0.442215 0.896909i \(-0.354193\pi\)
0.442215 + 0.896909i \(0.354193\pi\)
\(888\) −14.1246 15.5640i −0.473990 0.522292i
\(889\) 0 0
\(890\) −29.7022 12.8026i −0.995622 0.429144i
\(891\) −0.670371 + 29.7234i −0.0224583 + 0.995772i
\(892\) −34.3619 + 32.4546i −1.15052 + 1.08666i
\(893\) 32.6475i 1.09251i
\(894\) −0.327525 + 16.4510i −0.0109541 + 0.550202i
\(895\) 76.9909i 2.57352i
\(896\) 0 0
\(897\) −5.40493 + 2.20318i −0.180465 + 0.0735621i
\(898\) −8.11566 + 18.8285i −0.270823 + 0.628314i
\(899\) 16.5551 0.552142
\(900\) −64.6488 2.57523i −2.15496 0.0858409i
\(901\) −0.350860 −0.0116889
\(902\) 9.90347 22.9762i 0.329749 0.765024i
\(903\) 0 0
\(904\) 52.9010 19.3039i 1.75946 0.642038i
\(905\) 43.1986i 1.43597i
\(906\) 0.644226 32.3582i 0.0214030 1.07503i
\(907\) 10.9883i 0.364862i 0.983219 + 0.182431i \(0.0583966\pi\)
−0.983219 + 0.182431i \(0.941603\pi\)
\(908\) 16.8891 + 17.8817i 0.560485 + 0.593424i
\(909\) −14.9733 15.3148i −0.496634 0.507961i
\(910\) 0 0
\(911\) 6.42795 0.212968 0.106484 0.994314i \(-0.466041\pi\)
0.106484 + 0.994314i \(0.466041\pi\)
\(912\) −23.5394 + 8.06245i −0.779468 + 0.266974i
\(913\) −13.6722 −0.452483
\(914\) −25.7883 11.1156i −0.853001 0.367670i
\(915\) −25.3152 62.1042i −0.836894 2.05310i
\(916\) −12.4000 13.1288i −0.409709 0.433787i
\(917\) 0 0
\(918\) 2.90057 + 3.08734i 0.0957331 + 0.101898i
\(919\) 55.1437i 1.81902i −0.415677 0.909512i \(-0.636455\pi\)
0.415677 0.909512i \(-0.363545\pi\)
\(920\) −41.8198 + 15.2603i −1.37876 + 0.503117i
\(921\) 22.2470 + 54.5773i 0.733065 + 1.79838i
\(922\) −9.73518 + 22.5858i −0.320611 + 0.743823i
\(923\) 7.78856 0.256364
\(924\) 0 0
\(925\) −46.2628 −1.52111
\(926\) 8.58169 19.9097i 0.282012 0.654272i
\(927\) 22.0398 + 22.5425i 0.723882 + 0.740392i
\(928\) −17.0946 8.55578i −0.561158 0.280857i
\(929\) 47.9582i 1.57346i −0.617299 0.786728i \(-0.711773\pi\)
0.617299 0.786728i \(-0.288227\pi\)
\(930\) −47.6645 0.948960i −1.56298 0.0311176i
\(931\) 0 0
\(932\) 11.0123 10.4010i 0.360719 0.340697i
\(933\) 42.8432 17.4639i 1.40262 0.571743i
\(934\) 27.3793 + 11.8013i 0.895878 + 0.386152i
\(935\) −7.56556 −0.247420
\(936\) 6.50913 + 3.11847i 0.212757 + 0.101930i
\(937\) 36.7501 1.20057 0.600287 0.799784i \(-0.295053\pi\)
0.600287 + 0.799784i \(0.295053\pi\)
\(938\) 0 0
\(939\) 14.9574 6.09698i 0.488115 0.198968i
\(940\) 52.5108 49.5961i 1.71271 1.61765i
\(941\) 39.6155i 1.29143i 0.763579 + 0.645714i \(0.223440\pi\)
−0.763579 + 0.645714i \(0.776560\pi\)
\(942\) −5.84881 0.116445i −0.190564 0.00379398i
\(943\) 21.2169i 0.690919i
\(944\) −1.79798 + 31.4671i −0.0585193 + 1.02417i
\(945\) 0 0
\(946\) 14.1745 32.8852i 0.460854 1.06919i
\(947\) 11.8519 0.385134 0.192567 0.981284i \(-0.438319\pi\)
0.192567 + 0.981284i \(0.438319\pi\)
\(948\) −9.93667 + 21.8463i −0.322728 + 0.709536i
\(949\) 1.20293 0.0390488
\(950\) −21.6788 + 50.2953i −0.703355 + 1.63179i
\(951\) 17.6480 + 43.2948i 0.572275 + 1.40393i
\(952\) 0 0
\(953\) 39.8193i 1.28987i 0.764236 + 0.644937i \(0.223116\pi\)
−0.764236 + 0.644937i \(0.776884\pi\)
\(954\) −0.926923 2.41013i −0.0300102 0.0780310i
\(955\) 4.89898i 0.158527i
\(956\) −12.7057 13.4524i −0.410932 0.435082i
\(957\) 7.29850 + 17.9050i 0.235927 + 0.578786i
\(958\) 9.86972 + 4.25416i 0.318876 + 0.137446i
\(959\) 0 0
\(960\) 48.7274 + 25.6132i 1.57267 + 0.826664i
\(961\) 7.00000 0.225806
\(962\) 4.73931 + 2.04279i 0.152802 + 0.0658623i
\(963\) 2.64517 2.58619i 0.0852395 0.0833388i
\(964\) −21.5061 22.7700i −0.692666 0.733373i
\(965\) 62.7045i 2.01853i
\(966\) 0 0
\(967\) 23.4388i 0.753741i −0.926266 0.376871i \(-0.877000\pi\)
0.926266 0.376871i \(-0.123000\pi\)
\(968\) −0.0846189 0.231892i −0.00271975 0.00745330i
\(969\) 3.32062 1.35357i 0.106674 0.0434828i
\(970\) −30.1314 + 69.9053i −0.967460 + 2.24452i
\(971\) 11.1144 0.356677 0.178338 0.983969i \(-0.442928\pi\)
0.178338 + 0.983969i \(0.442928\pi\)
\(972\) −13.5447 + 28.0810i −0.434447 + 0.900697i
\(973\) 0 0
\(974\) −8.64155 + 20.0485i −0.276893 + 0.642396i
\(975\) 14.7116 5.99682i 0.471150 0.192052i
\(976\) −2.22392 + 38.9217i −0.0711861 + 1.24585i
\(977\) 11.0714i 0.354206i 0.984192 + 0.177103i \(0.0566725\pi\)
−0.984192 + 0.177103i \(0.943327\pi\)
\(978\) 0.891865 44.7967i 0.0285187 1.43244i
\(979\) 19.0171i 0.607790i
\(980\) 0 0
\(981\) −6.87062 + 6.71741i −0.219362 + 0.214470i
\(982\) 52.6192 + 22.6805i 1.67915 + 0.723764i
\(983\) 31.9433 1.01883 0.509416 0.860520i \(-0.329861\pi\)
0.509416 + 0.860520i \(0.329861\pi\)
\(984\) 19.4286 17.6318i 0.619362 0.562083i
\(985\) −69.0747 −2.20090
\(986\) 2.52995 + 1.09049i 0.0805700 + 0.0347282i
\(987\) 0 0
\(988\) 4.44171 4.19516i 0.141310 0.133466i
\(989\) 30.3672i 0.965621i
\(990\) −19.9871 51.9694i −0.635233 1.65170i
\(991\) 20.7846i 0.660245i −0.943938 0.330122i \(-0.892910\pi\)
0.943938 0.330122i \(-0.107090\pi\)
\(992\) 24.7822 + 12.4034i 0.786835 + 0.393808i
\(993\) 9.54109 + 23.4066i 0.302777 + 0.742785i
\(994\) 0 0
\(995\) −18.1463 −0.575275
\(996\) −13.0506 5.93596i −0.413523 0.188088i
\(997\) −41.5370 −1.31549 −0.657745 0.753241i \(-0.728489\pi\)
−0.657745 + 0.753241i \(0.728489\pi\)
\(998\) 16.9990 39.4379i 0.538093 1.24838i
\(999\) −8.87808 + 20.4484i −0.280890 + 0.646959i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.e.f.491.23 yes 24
3.2 odd 2 inner 588.2.e.f.491.2 yes 24
4.3 odd 2 inner 588.2.e.f.491.4 yes 24
7.2 even 3 588.2.n.h.263.6 24
7.3 odd 6 588.2.n.d.275.1 24
7.4 even 3 588.2.n.d.275.2 24
7.5 odd 6 588.2.n.h.263.5 24
7.6 odd 2 inner 588.2.e.f.491.24 yes 24
12.11 even 2 inner 588.2.e.f.491.21 yes 24
21.2 odd 6 588.2.n.h.263.7 24
21.5 even 6 588.2.n.h.263.8 24
21.11 odd 6 588.2.n.d.275.11 24
21.17 even 6 588.2.n.d.275.12 24
21.20 even 2 inner 588.2.e.f.491.1 24
28.3 even 6 588.2.n.h.275.8 24
28.11 odd 6 588.2.n.h.275.7 24
28.19 even 6 588.2.n.d.263.12 24
28.23 odd 6 588.2.n.d.263.11 24
28.27 even 2 inner 588.2.e.f.491.3 yes 24
84.11 even 6 588.2.n.h.275.6 24
84.23 even 6 588.2.n.d.263.2 24
84.47 odd 6 588.2.n.d.263.1 24
84.59 odd 6 588.2.n.h.275.5 24
84.83 odd 2 inner 588.2.e.f.491.22 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.e.f.491.1 24 21.20 even 2 inner
588.2.e.f.491.2 yes 24 3.2 odd 2 inner
588.2.e.f.491.3 yes 24 28.27 even 2 inner
588.2.e.f.491.4 yes 24 4.3 odd 2 inner
588.2.e.f.491.21 yes 24 12.11 even 2 inner
588.2.e.f.491.22 yes 24 84.83 odd 2 inner
588.2.e.f.491.23 yes 24 1.1 even 1 trivial
588.2.e.f.491.24 yes 24 7.6 odd 2 inner
588.2.n.d.263.1 24 84.47 odd 6
588.2.n.d.263.2 24 84.23 even 6
588.2.n.d.263.11 24 28.23 odd 6
588.2.n.d.263.12 24 28.19 even 6
588.2.n.d.275.1 24 7.3 odd 6
588.2.n.d.275.2 24 7.4 even 3
588.2.n.d.275.11 24 21.11 odd 6
588.2.n.d.275.12 24 21.17 even 6
588.2.n.h.263.5 24 7.5 odd 6
588.2.n.h.263.6 24 7.2 even 3
588.2.n.h.263.7 24 21.2 odd 6
588.2.n.h.263.8 24 21.5 even 6
588.2.n.h.275.5 24 84.59 odd 6
588.2.n.h.275.6 24 84.11 even 6
588.2.n.h.275.7 24 28.11 odd 6
588.2.n.h.275.8 24 28.3 even 6