Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [588,2,Mod(263,588)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(588, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("588.263");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 588.n (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.69520363885\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
263.1 | −1.13414 | − | 0.844822i | −1.36816 | + | 1.06214i | 0.572551 | + | 1.91629i | 3.44057 | − | 1.98641i | 2.44900 | − | 0.0487576i | 0 | 0.969574 | − | 2.65705i | 0.743736 | − | 2.90635i | −5.58025 | − | 0.653796i | ||
263.2 | −1.13414 | − | 0.844822i | 1.36816 | − | 1.06214i | 0.572551 | + | 1.91629i | −3.44057 | + | 1.98641i | −2.44900 | + | 0.0487576i | 0 | 0.969574 | − | 2.65705i | 0.743736 | − | 2.90635i | 5.58025 | + | 0.653796i | ||
263.3 | −0.938613 | + | 1.05783i | −0.299892 | − | 1.70589i | −0.238012 | − | 1.98579i | −0.695526 | + | 0.401562i | 2.08603 | + | 1.28394i | 0 | 2.32403 | + | 1.61211i | −2.82013 | + | 1.02317i | 0.228045 | − | 1.11266i | ||
263.4 | −0.938613 | + | 1.05783i | 0.299892 | + | 1.70589i | −0.238012 | − | 1.98579i | 0.695526 | − | 0.401562i | −2.08603 | − | 1.28394i | 0 | 2.32403 | + | 1.61211i | −2.82013 | + | 1.02317i | −0.228045 | + | 1.11266i | ||
263.5 | −0.287629 | + | 1.38466i | −1.66143 | − | 0.489533i | −1.83454 | − | 0.796533i | −1.08570 | + | 0.626827i | 1.15571 | − | 2.15971i | 0 | 1.63059 | − | 2.31110i | 2.52072 | + | 1.62665i | −0.555662 | − | 1.68361i | ||
263.6 | −0.287629 | + | 1.38466i | 1.66143 | + | 0.489533i | −1.83454 | − | 0.796533i | 1.08570 | − | 0.626827i | −1.15571 | + | 2.15971i | 0 | 1.63059 | − | 2.31110i | 2.52072 | + | 1.62665i | 0.555662 | + | 1.68361i | ||
263.7 | 0.287629 | − | 1.38466i | −1.25466 | − | 1.19408i | −1.83454 | − | 0.796533i | 1.08570 | − | 0.626827i | −2.01426 | + | 1.39383i | 0 | −1.63059 | + | 2.31110i | 0.148364 | + | 2.99633i | −0.555662 | − | 1.68361i | ||
263.8 | 0.287629 | − | 1.38466i | 1.25466 | + | 1.19408i | −1.83454 | − | 0.796533i | −1.08570 | + | 0.626827i | 2.01426 | − | 1.39383i | 0 | −1.63059 | + | 2.31110i | 0.148364 | + | 2.99633i | 0.555662 | + | 1.68361i | ||
263.9 | 0.938613 | − | 1.05783i | −1.62729 | + | 0.593231i | −0.238012 | − | 1.98579i | 0.695526 | − | 0.401562i | −0.899858 | + | 2.27821i | 0 | −2.32403 | − | 1.61211i | 2.29615 | − | 1.93072i | 0.228045 | − | 1.11266i | ||
263.10 | 0.938613 | − | 1.05783i | 1.62729 | − | 0.593231i | −0.238012 | − | 1.98579i | −0.695526 | + | 0.401562i | 0.899858 | − | 2.27821i | 0 | −2.32403 | − | 1.61211i | 2.29615 | − | 1.93072i | −0.228045 | + | 1.11266i | ||
263.11 | 1.13414 | + | 0.844822i | −0.235755 | + | 1.71593i | 0.572551 | + | 1.91629i | 3.44057 | − | 1.98641i | −1.71704 | + | 1.74694i | 0 | −0.969574 | + | 2.65705i | −2.88884 | − | 0.809079i | 5.58025 | + | 0.653796i | ||
263.12 | 1.13414 | + | 0.844822i | 0.235755 | − | 1.71593i | 0.572551 | + | 1.91629i | −3.44057 | + | 1.98641i | 1.71704 | − | 1.74694i | 0 | −0.969574 | + | 2.65705i | −2.88884 | − | 0.809079i | −5.58025 | − | 0.653796i | ||
275.1 | −1.13414 | + | 0.844822i | −1.36816 | − | 1.06214i | 0.572551 | − | 1.91629i | 3.44057 | + | 1.98641i | 2.44900 | + | 0.0487576i | 0 | 0.969574 | + | 2.65705i | 0.743736 | + | 2.90635i | −5.58025 | + | 0.653796i | ||
275.2 | −1.13414 | + | 0.844822i | 1.36816 | + | 1.06214i | 0.572551 | − | 1.91629i | −3.44057 | − | 1.98641i | −2.44900 | − | 0.0487576i | 0 | 0.969574 | + | 2.65705i | 0.743736 | + | 2.90635i | 5.58025 | − | 0.653796i | ||
275.3 | −0.938613 | − | 1.05783i | −0.299892 | + | 1.70589i | −0.238012 | + | 1.98579i | −0.695526 | − | 0.401562i | 2.08603 | − | 1.28394i | 0 | 2.32403 | − | 1.61211i | −2.82013 | − | 1.02317i | 0.228045 | + | 1.11266i | ||
275.4 | −0.938613 | − | 1.05783i | 0.299892 | − | 1.70589i | −0.238012 | + | 1.98579i | 0.695526 | + | 0.401562i | −2.08603 | + | 1.28394i | 0 | 2.32403 | − | 1.61211i | −2.82013 | − | 1.02317i | −0.228045 | − | 1.11266i | ||
275.5 | −0.287629 | − | 1.38466i | −1.66143 | + | 0.489533i | −1.83454 | + | 0.796533i | −1.08570 | − | 0.626827i | 1.15571 | + | 2.15971i | 0 | 1.63059 | + | 2.31110i | 2.52072 | − | 1.62665i | −0.555662 | + | 1.68361i | ||
275.6 | −0.287629 | − | 1.38466i | 1.66143 | − | 0.489533i | −1.83454 | + | 0.796533i | 1.08570 | + | 0.626827i | −1.15571 | − | 2.15971i | 0 | 1.63059 | + | 2.31110i | 2.52072 | − | 1.62665i | 0.555662 | − | 1.68361i | ||
275.7 | 0.287629 | + | 1.38466i | −1.25466 | + | 1.19408i | −1.83454 | + | 0.796533i | 1.08570 | + | 0.626827i | −2.01426 | − | 1.39383i | 0 | −1.63059 | − | 2.31110i | 0.148364 | − | 2.99633i | −0.555662 | + | 1.68361i | ||
275.8 | 0.287629 | + | 1.38466i | 1.25466 | − | 1.19408i | −1.83454 | + | 0.796533i | −1.08570 | − | 0.626827i | 2.01426 | + | 1.39383i | 0 | −1.63059 | − | 2.31110i | 0.148364 | − | 2.99633i | 0.555662 | − | 1.68361i | ||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
28.f | even | 6 | 1 | inner |
28.g | odd | 6 | 1 | inner |
84.j | odd | 6 | 1 | inner |
84.n | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 588.2.n.d | 24 | |
3.b | odd | 2 | 1 | inner | 588.2.n.d | 24 | |
4.b | odd | 2 | 1 | 588.2.n.h | 24 | ||
7.b | odd | 2 | 1 | inner | 588.2.n.d | 24 | |
7.c | even | 3 | 1 | 588.2.e.f | ✓ | 24 | |
7.c | even | 3 | 1 | 588.2.n.h | 24 | ||
7.d | odd | 6 | 1 | 588.2.e.f | ✓ | 24 | |
7.d | odd | 6 | 1 | 588.2.n.h | 24 | ||
12.b | even | 2 | 1 | 588.2.n.h | 24 | ||
21.c | even | 2 | 1 | inner | 588.2.n.d | 24 | |
21.g | even | 6 | 1 | 588.2.e.f | ✓ | 24 | |
21.g | even | 6 | 1 | 588.2.n.h | 24 | ||
21.h | odd | 6 | 1 | 588.2.e.f | ✓ | 24 | |
21.h | odd | 6 | 1 | 588.2.n.h | 24 | ||
28.d | even | 2 | 1 | 588.2.n.h | 24 | ||
28.f | even | 6 | 1 | 588.2.e.f | ✓ | 24 | |
28.f | even | 6 | 1 | inner | 588.2.n.d | 24 | |
28.g | odd | 6 | 1 | 588.2.e.f | ✓ | 24 | |
28.g | odd | 6 | 1 | inner | 588.2.n.d | 24 | |
84.h | odd | 2 | 1 | 588.2.n.h | 24 | ||
84.j | odd | 6 | 1 | 588.2.e.f | ✓ | 24 | |
84.j | odd | 6 | 1 | inner | 588.2.n.d | 24 | |
84.n | even | 6 | 1 | 588.2.e.f | ✓ | 24 | |
84.n | even | 6 | 1 | inner | 588.2.n.d | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
588.2.e.f | ✓ | 24 | 7.c | even | 3 | 1 | |
588.2.e.f | ✓ | 24 | 7.d | odd | 6 | 1 | |
588.2.e.f | ✓ | 24 | 21.g | even | 6 | 1 | |
588.2.e.f | ✓ | 24 | 21.h | odd | 6 | 1 | |
588.2.e.f | ✓ | 24 | 28.f | even | 6 | 1 | |
588.2.e.f | ✓ | 24 | 28.g | odd | 6 | 1 | |
588.2.e.f | ✓ | 24 | 84.j | odd | 6 | 1 | |
588.2.e.f | ✓ | 24 | 84.n | even | 6 | 1 | |
588.2.n.d | 24 | 1.a | even | 1 | 1 | trivial | |
588.2.n.d | 24 | 3.b | odd | 2 | 1 | inner | |
588.2.n.d | 24 | 7.b | odd | 2 | 1 | inner | |
588.2.n.d | 24 | 21.c | even | 2 | 1 | inner | |
588.2.n.d | 24 | 28.f | even | 6 | 1 | inner | |
588.2.n.d | 24 | 28.g | odd | 6 | 1 | inner | |
588.2.n.d | 24 | 84.j | odd | 6 | 1 | inner | |
588.2.n.d | 24 | 84.n | even | 6 | 1 | inner | |
588.2.n.h | 24 | 4.b | odd | 2 | 1 | ||
588.2.n.h | 24 | 7.c | even | 3 | 1 | ||
588.2.n.h | 24 | 7.d | odd | 6 | 1 | ||
588.2.n.h | 24 | 12.b | even | 2 | 1 | ||
588.2.n.h | 24 | 21.g | even | 6 | 1 | ||
588.2.n.h | 24 | 21.h | odd | 6 | 1 | ||
588.2.n.h | 24 | 28.d | even | 2 | 1 | ||
588.2.n.h | 24 | 84.h | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(588, [\chi])\):
\( T_{5}^{12} - 18T_{5}^{10} + 288T_{5}^{8} - 616T_{5}^{6} + 1008T_{5}^{4} - 576T_{5}^{2} + 256 \) |
\( T_{11}^{12} + 42T_{11}^{10} + 1284T_{11}^{8} + 17088T_{11}^{6} + 165888T_{11}^{4} + 737280T_{11}^{2} + 2359296 \) |
\( T_{13}^{6} - 48T_{13}^{4} + 576T_{13}^{2} - 392 \) |
\( T_{19}^{12} - 66T_{19}^{10} + 3552T_{19}^{8} - 49992T_{19}^{6} + 545040T_{19}^{4} - 1234944T_{19}^{2} + 2359296 \) |
\( T_{67}^{6} - 12T_{67}^{5} - 60T_{67}^{4} + 1296T_{67}^{3} + 6096T_{67}^{2} - 150336T_{67} + 645888 \) |