Properties

Label 588.4.a.e
Level $588$
Weight $4$
Character orbit 588.a
Self dual yes
Analytic conductor $34.693$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,4,Mod(1,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 588.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.6931230834\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} - 4 q^{5} + 9 q^{9} - 20 q^{11} + 4 q^{13} - 12 q^{15} - 24 q^{17} - 44 q^{19} + 72 q^{23} - 109 q^{25} + 27 q^{27} - 38 q^{29} - 184 q^{31} - 60 q^{33} - 30 q^{37} + 12 q^{39} + 216 q^{41}+ \cdots - 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 −4.00000 0 0 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 588.4.a.e yes 1
3.b odd 2 1 1764.4.a.i 1
4.b odd 2 1 2352.4.a.g 1
7.b odd 2 1 588.4.a.b 1
7.c even 3 2 588.4.i.b 2
7.d odd 6 2 588.4.i.g 2
21.c even 2 1 1764.4.a.d 1
21.g even 6 2 1764.4.k.j 2
21.h odd 6 2 1764.4.k.g 2
28.d even 2 1 2352.4.a.be 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
588.4.a.b 1 7.b odd 2 1
588.4.a.e yes 1 1.a even 1 1 trivial
588.4.i.b 2 7.c even 3 2
588.4.i.g 2 7.d odd 6 2
1764.4.a.d 1 21.c even 2 1
1764.4.a.i 1 3.b odd 2 1
1764.4.k.g 2 21.h odd 6 2
1764.4.k.j 2 21.g even 6 2
2352.4.a.g 1 4.b odd 2 1
2352.4.a.be 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 4 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(588))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T + 4 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 20 \) Copy content Toggle raw display
$13$ \( T - 4 \) Copy content Toggle raw display
$17$ \( T + 24 \) Copy content Toggle raw display
$19$ \( T + 44 \) Copy content Toggle raw display
$23$ \( T - 72 \) Copy content Toggle raw display
$29$ \( T + 38 \) Copy content Toggle raw display
$31$ \( T + 184 \) Copy content Toggle raw display
$37$ \( T + 30 \) Copy content Toggle raw display
$41$ \( T - 216 \) Copy content Toggle raw display
$43$ \( T + 164 \) Copy content Toggle raw display
$47$ \( T + 520 \) Copy content Toggle raw display
$53$ \( T + 146 \) Copy content Toggle raw display
$59$ \( T + 460 \) Copy content Toggle raw display
$61$ \( T + 628 \) Copy content Toggle raw display
$67$ \( T - 556 \) Copy content Toggle raw display
$71$ \( T - 592 \) Copy content Toggle raw display
$73$ \( T + 1024 \) Copy content Toggle raw display
$79$ \( T + 104 \) Copy content Toggle raw display
$83$ \( T - 324 \) Copy content Toggle raw display
$89$ \( T + 896 \) Copy content Toggle raw display
$97$ \( T - 920 \) Copy content Toggle raw display
show more
show less