Properties

Label 588.4.f.a
Level $588$
Weight $4$
Character orbit 588.f
Analytic conductor $34.693$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,4,Mod(293,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.293");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 588.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.6931230834\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 \beta q^{3} - 27 q^{9} - 53 \beta q^{13} + 73 \beta q^{19} - 125 q^{25} + 81 \beta q^{27} - 109 \beta q^{31} - 323 q^{37} - 477 q^{39} - 71 q^{43} + 657 q^{57} + 540 \beta q^{61} - 127 q^{67} + 703 \beta q^{73} + \cdots + 792 \beta q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 54 q^{9} - 250 q^{25} - 646 q^{37} - 954 q^{39} - 142 q^{43} + 1314 q^{57} - 254 q^{67} - 2774 q^{79} + 1458 q^{81} - 1962 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
293.1
0.500000 + 0.866025i
0.500000 0.866025i
0 5.19615i 0 0 0 0 0 −27.0000 0
293.2 0 5.19615i 0 0 0 0 0 −27.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 588.4.f.a 2
3.b odd 2 1 CM 588.4.f.a 2
7.b odd 2 1 inner 588.4.f.a 2
7.c even 3 1 84.4.k.a 2
7.c even 3 1 588.4.k.b 2
7.d odd 6 1 84.4.k.a 2
7.d odd 6 1 588.4.k.b 2
21.c even 2 1 inner 588.4.f.a 2
21.g even 6 1 84.4.k.a 2
21.g even 6 1 588.4.k.b 2
21.h odd 6 1 84.4.k.a 2
21.h odd 6 1 588.4.k.b 2
28.f even 6 1 336.4.bc.b 2
28.g odd 6 1 336.4.bc.b 2
84.j odd 6 1 336.4.bc.b 2
84.n even 6 1 336.4.bc.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.4.k.a 2 7.c even 3 1
84.4.k.a 2 7.d odd 6 1
84.4.k.a 2 21.g even 6 1
84.4.k.a 2 21.h odd 6 1
336.4.bc.b 2 28.f even 6 1
336.4.bc.b 2 28.g odd 6 1
336.4.bc.b 2 84.j odd 6 1
336.4.bc.b 2 84.n even 6 1
588.4.f.a 2 1.a even 1 1 trivial
588.4.f.a 2 3.b odd 2 1 CM
588.4.f.a 2 7.b odd 2 1 inner
588.4.f.a 2 21.c even 2 1 inner
588.4.k.b 2 7.c even 3 1
588.4.k.b 2 7.d odd 6 1
588.4.k.b 2 21.g even 6 1
588.4.k.b 2 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(588, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{13}^{2} + 8427 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 27 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 8427 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 15987 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 35643 \) Copy content Toggle raw display
$37$ \( (T + 323)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T + 71)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 874800 \) Copy content Toggle raw display
$67$ \( (T + 127)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 1482627 \) Copy content Toggle raw display
$79$ \( (T + 1387)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 1881792 \) Copy content Toggle raw display
show more
show less