Properties

Label 588.4.i.c.361.1
Level $588$
Weight $4$
Character 588.361
Analytic conductor $34.693$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,4,Mod(361,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.361");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.6931230834\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 588.361
Dual form 588.4.i.c.373.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 + 2.59808i) q^{3} +(3.00000 + 5.19615i) q^{5} +(-4.50000 - 7.79423i) q^{9} +(-18.0000 + 31.1769i) q^{11} -62.0000 q^{13} -18.0000 q^{15} +(57.0000 - 98.7269i) q^{17} +(-38.0000 - 65.8179i) q^{19} +(12.0000 + 20.7846i) q^{23} +(44.5000 - 77.0763i) q^{25} +27.0000 q^{27} +54.0000 q^{29} +(-56.0000 + 96.9948i) q^{31} +(-54.0000 - 93.5307i) q^{33} +(89.0000 + 154.153i) q^{37} +(93.0000 - 161.081i) q^{39} -378.000 q^{41} -172.000 q^{43} +(27.0000 - 46.7654i) q^{45} +(-96.0000 - 166.277i) q^{47} +(171.000 + 296.181i) q^{51} +(201.000 - 348.142i) q^{53} -216.000 q^{55} +228.000 q^{57} +(198.000 - 342.946i) q^{59} +(127.000 + 219.970i) q^{61} +(-186.000 - 322.161i) q^{65} +(506.000 - 876.418i) q^{67} -72.0000 q^{69} +840.000 q^{71} +(445.000 - 770.763i) q^{73} +(133.500 + 231.229i) q^{75} +(-40.0000 - 69.2820i) q^{79} +(-40.5000 + 70.1481i) q^{81} +108.000 q^{83} +684.000 q^{85} +(-81.0000 + 140.296i) q^{87} +(-819.000 - 1418.55i) q^{89} +(-168.000 - 290.985i) q^{93} +(228.000 - 394.908i) q^{95} -1010.00 q^{97} +324.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{3} + 6 q^{5} - 9 q^{9} - 36 q^{11} - 124 q^{13} - 36 q^{15} + 114 q^{17} - 76 q^{19} + 24 q^{23} + 89 q^{25} + 54 q^{27} + 108 q^{29} - 112 q^{31} - 108 q^{33} + 178 q^{37} + 186 q^{39} - 756 q^{41}+ \cdots + 648 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 + 2.59808i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 3.00000 + 5.19615i 0.268328 + 0.464758i 0.968430 0.249285i \(-0.0801955\pi\)
−0.700102 + 0.714043i \(0.746862\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −4.50000 7.79423i −0.166667 0.288675i
\(10\) 0 0
\(11\) −18.0000 + 31.1769i −0.493382 + 0.854563i −0.999971 0.00762479i \(-0.997573\pi\)
0.506589 + 0.862188i \(0.330906\pi\)
\(12\) 0 0
\(13\) −62.0000 −1.32275 −0.661373 0.750057i \(-0.730026\pi\)
−0.661373 + 0.750057i \(0.730026\pi\)
\(14\) 0 0
\(15\) −18.0000 −0.309839
\(16\) 0 0
\(17\) 57.0000 98.7269i 0.813208 1.40852i −0.0974001 0.995245i \(-0.531053\pi\)
0.910608 0.413272i \(-0.135614\pi\)
\(18\) 0 0
\(19\) −38.0000 65.8179i −0.458831 0.794719i 0.540068 0.841621i \(-0.318398\pi\)
−0.998899 + 0.0469020i \(0.985065\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 12.0000 + 20.7846i 0.108790 + 0.188430i 0.915280 0.402817i \(-0.131969\pi\)
−0.806490 + 0.591247i \(0.798636\pi\)
\(24\) 0 0
\(25\) 44.5000 77.0763i 0.356000 0.616610i
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 54.0000 0.345778 0.172889 0.984941i \(-0.444690\pi\)
0.172889 + 0.984941i \(0.444690\pi\)
\(30\) 0 0
\(31\) −56.0000 + 96.9948i −0.324448 + 0.561961i −0.981401 0.191971i \(-0.938512\pi\)
0.656952 + 0.753932i \(0.271845\pi\)
\(32\) 0 0
\(33\) −54.0000 93.5307i −0.284854 0.493382i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 89.0000 + 154.153i 0.395446 + 0.684933i 0.993158 0.116778i \(-0.0372566\pi\)
−0.597712 + 0.801711i \(0.703923\pi\)
\(38\) 0 0
\(39\) 93.0000 161.081i 0.381844 0.661373i
\(40\) 0 0
\(41\) −378.000 −1.43985 −0.719923 0.694054i \(-0.755823\pi\)
−0.719923 + 0.694054i \(0.755823\pi\)
\(42\) 0 0
\(43\) −172.000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 27.0000 46.7654i 0.0894427 0.154919i
\(46\) 0 0
\(47\) −96.0000 166.277i −0.297937 0.516042i 0.677727 0.735314i \(-0.262965\pi\)
−0.975664 + 0.219272i \(0.929632\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 171.000 + 296.181i 0.469506 + 0.813208i
\(52\) 0 0
\(53\) 201.000 348.142i 0.520933 0.902283i −0.478770 0.877940i \(-0.658917\pi\)
0.999704 0.0243430i \(-0.00774937\pi\)
\(54\) 0 0
\(55\) −216.000 −0.529553
\(56\) 0 0
\(57\) 228.000 0.529813
\(58\) 0 0
\(59\) 198.000 342.946i 0.436905 0.756742i −0.560544 0.828125i \(-0.689408\pi\)
0.997449 + 0.0713828i \(0.0227412\pi\)
\(60\) 0 0
\(61\) 127.000 + 219.970i 0.266569 + 0.461710i 0.967973 0.251053i \(-0.0807768\pi\)
−0.701405 + 0.712763i \(0.747443\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −186.000 322.161i −0.354930 0.614757i
\(66\) 0 0
\(67\) 506.000 876.418i 0.922653 1.59808i 0.127360 0.991857i \(-0.459350\pi\)
0.795293 0.606225i \(-0.207317\pi\)
\(68\) 0 0
\(69\) −72.0000 −0.125620
\(70\) 0 0
\(71\) 840.000 1.40408 0.702040 0.712138i \(-0.252273\pi\)
0.702040 + 0.712138i \(0.252273\pi\)
\(72\) 0 0
\(73\) 445.000 770.763i 0.713470 1.23577i −0.250077 0.968226i \(-0.580456\pi\)
0.963547 0.267540i \(-0.0862108\pi\)
\(74\) 0 0
\(75\) 133.500 + 231.229i 0.205537 + 0.356000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −40.0000 69.2820i −0.0569665 0.0986688i 0.836136 0.548522i \(-0.184809\pi\)
−0.893102 + 0.449854i \(0.851476\pi\)
\(80\) 0 0
\(81\) −40.5000 + 70.1481i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 108.000 0.142826 0.0714129 0.997447i \(-0.477249\pi\)
0.0714129 + 0.997447i \(0.477249\pi\)
\(84\) 0 0
\(85\) 684.000 0.872826
\(86\) 0 0
\(87\) −81.0000 + 140.296i −0.0998174 + 0.172889i
\(88\) 0 0
\(89\) −819.000 1418.55i −0.975436 1.68951i −0.678488 0.734612i \(-0.737364\pi\)
−0.296948 0.954894i \(-0.595969\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −168.000 290.985i −0.187320 0.324448i
\(94\) 0 0
\(95\) 228.000 394.908i 0.246235 0.426491i
\(96\) 0 0
\(97\) −1010.00 −1.05722 −0.528608 0.848866i \(-0.677286\pi\)
−0.528608 + 0.848866i \(0.677286\pi\)
\(98\) 0 0
\(99\) 324.000 0.328921
\(100\) 0 0
\(101\) 3.00000 5.19615i 0.00295556 0.00511917i −0.864544 0.502557i \(-0.832393\pi\)
0.867499 + 0.497438i \(0.165726\pi\)
\(102\) 0 0
\(103\) −236.000 408.764i −0.225765 0.391036i 0.730784 0.682609i \(-0.239155\pi\)
−0.956549 + 0.291573i \(0.905821\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 486.000 + 841.777i 0.439097 + 0.760539i 0.997620 0.0689505i \(-0.0219651\pi\)
−0.558523 + 0.829489i \(0.688632\pi\)
\(108\) 0 0
\(109\) 893.000 1546.72i 0.784715 1.35917i −0.144455 0.989511i \(-0.546143\pi\)
0.929169 0.369654i \(-0.120524\pi\)
\(110\) 0 0
\(111\) −534.000 −0.456622
\(112\) 0 0
\(113\) −2286.00 −1.90309 −0.951543 0.307515i \(-0.900503\pi\)
−0.951543 + 0.307515i \(0.900503\pi\)
\(114\) 0 0
\(115\) −72.0000 + 124.708i −0.0583829 + 0.101122i
\(116\) 0 0
\(117\) 279.000 + 483.242i 0.220458 + 0.381844i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 17.5000 + 30.3109i 0.0131480 + 0.0227730i
\(122\) 0 0
\(123\) 567.000 982.073i 0.415648 0.719923i
\(124\) 0 0
\(125\) 1284.00 0.918756
\(126\) 0 0
\(127\) 1328.00 0.927881 0.463941 0.885866i \(-0.346435\pi\)
0.463941 + 0.885866i \(0.346435\pi\)
\(128\) 0 0
\(129\) 258.000 446.869i 0.176090 0.304997i
\(130\) 0 0
\(131\) −606.000 1049.62i −0.404171 0.700046i 0.590053 0.807364i \(-0.299107\pi\)
−0.994225 + 0.107319i \(0.965773\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 81.0000 + 140.296i 0.0516398 + 0.0894427i
\(136\) 0 0
\(137\) 627.000 1086.00i 0.391009 0.677247i −0.601574 0.798817i \(-0.705459\pi\)
0.992583 + 0.121570i \(0.0387928\pi\)
\(138\) 0 0
\(139\) 340.000 0.207471 0.103735 0.994605i \(-0.466921\pi\)
0.103735 + 0.994605i \(0.466921\pi\)
\(140\) 0 0
\(141\) 576.000 0.344028
\(142\) 0 0
\(143\) 1116.00 1932.97i 0.652620 1.13037i
\(144\) 0 0
\(145\) 162.000 + 280.592i 0.0927818 + 0.160703i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −519.000 898.934i −0.285357 0.494252i 0.687339 0.726337i \(-0.258779\pi\)
−0.972696 + 0.232085i \(0.925445\pi\)
\(150\) 0 0
\(151\) −1468.00 + 2542.65i −0.791153 + 1.37032i 0.134100 + 0.990968i \(0.457186\pi\)
−0.925253 + 0.379350i \(0.876148\pi\)
\(152\) 0 0
\(153\) −1026.00 −0.542138
\(154\) 0 0
\(155\) −672.000 −0.348234
\(156\) 0 0
\(157\) −665.000 + 1151.81i −0.338043 + 0.585508i −0.984065 0.177811i \(-0.943098\pi\)
0.646021 + 0.763319i \(0.276432\pi\)
\(158\) 0 0
\(159\) 603.000 + 1044.43i 0.300761 + 0.520933i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1682.00 + 2913.31i 0.808248 + 1.39993i 0.914076 + 0.405542i \(0.132917\pi\)
−0.105828 + 0.994384i \(0.533749\pi\)
\(164\) 0 0
\(165\) 324.000 561.184i 0.152869 0.264777i
\(166\) 0 0
\(167\) −3048.00 −1.41234 −0.706172 0.708041i \(-0.749579\pi\)
−0.706172 + 0.708041i \(0.749579\pi\)
\(168\) 0 0
\(169\) 1647.00 0.749659
\(170\) 0 0
\(171\) −342.000 + 592.361i −0.152944 + 0.264906i
\(172\) 0 0
\(173\) −1353.00 2343.46i −0.594605 1.02989i −0.993602 0.112934i \(-0.963975\pi\)
0.398997 0.916952i \(-0.369358\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 594.000 + 1028.84i 0.252247 + 0.436905i
\(178\) 0 0
\(179\) −2358.00 + 4084.18i −0.984610 + 1.70539i −0.340953 + 0.940080i \(0.610750\pi\)
−0.643657 + 0.765314i \(0.722584\pi\)
\(180\) 0 0
\(181\) −1910.00 −0.784360 −0.392180 0.919888i \(-0.628279\pi\)
−0.392180 + 0.919888i \(0.628279\pi\)
\(182\) 0 0
\(183\) −762.000 −0.307807
\(184\) 0 0
\(185\) −534.000 + 924.915i −0.212219 + 0.367574i
\(186\) 0 0
\(187\) 2052.00 + 3554.17i 0.802444 + 1.38987i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2040.00 3533.38i −0.772823 1.33857i −0.936010 0.351974i \(-0.885511\pi\)
0.163187 0.986595i \(-0.447823\pi\)
\(192\) 0 0
\(193\) 1343.00 2326.14i 0.500887 0.867562i −0.499112 0.866537i \(-0.666340\pi\)
0.999999 0.00102491i \(-0.000326238\pi\)
\(194\) 0 0
\(195\) 1116.00 0.409838
\(196\) 0 0
\(197\) 510.000 0.184447 0.0922233 0.995738i \(-0.470603\pi\)
0.0922233 + 0.995738i \(0.470603\pi\)
\(198\) 0 0
\(199\) 676.000 1170.87i 0.240806 0.417088i −0.720138 0.693831i \(-0.755922\pi\)
0.960944 + 0.276743i \(0.0892550\pi\)
\(200\) 0 0
\(201\) 1518.00 + 2629.25i 0.532694 + 0.922653i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1134.00 1964.15i −0.386351 0.669180i
\(206\) 0 0
\(207\) 108.000 187.061i 0.0362634 0.0628100i
\(208\) 0 0
\(209\) 2736.00 0.905517
\(210\) 0 0
\(211\) −3364.00 −1.09757 −0.548785 0.835963i \(-0.684909\pi\)
−0.548785 + 0.835963i \(0.684909\pi\)
\(212\) 0 0
\(213\) −1260.00 + 2182.38i −0.405323 + 0.702040i
\(214\) 0 0
\(215\) −516.000 893.738i −0.163679 0.283500i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 1335.00 + 2312.29i 0.411922 + 0.713470i
\(220\) 0 0
\(221\) −3534.00 + 6121.07i −1.07567 + 1.86311i
\(222\) 0 0
\(223\) 4768.00 1.43179 0.715894 0.698209i \(-0.246019\pi\)
0.715894 + 0.698209i \(0.246019\pi\)
\(224\) 0 0
\(225\) −801.000 −0.237333
\(226\) 0 0
\(227\) 210.000 363.731i 0.0614017 0.106351i −0.833690 0.552232i \(-0.813776\pi\)
0.895092 + 0.445881i \(0.147110\pi\)
\(228\) 0 0
\(229\) −941.000 1629.86i −0.271542 0.470324i 0.697715 0.716375i \(-0.254200\pi\)
−0.969257 + 0.246051i \(0.920867\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2541.00 4401.14i −0.714448 1.23746i −0.963172 0.268886i \(-0.913344\pi\)
0.248724 0.968574i \(-0.419989\pi\)
\(234\) 0 0
\(235\) 576.000 997.661i 0.159890 0.276937i
\(236\) 0 0
\(237\) 240.000 0.0657792
\(238\) 0 0
\(239\) −5424.00 −1.46799 −0.733995 0.679155i \(-0.762346\pi\)
−0.733995 + 0.679155i \(0.762346\pi\)
\(240\) 0 0
\(241\) −1295.00 + 2243.01i −0.346134 + 0.599522i −0.985559 0.169332i \(-0.945839\pi\)
0.639425 + 0.768853i \(0.279172\pi\)
\(242\) 0 0
\(243\) −121.500 210.444i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2356.00 + 4080.71i 0.606918 + 1.05121i
\(248\) 0 0
\(249\) −162.000 + 280.592i −0.0412303 + 0.0714129i
\(250\) 0 0
\(251\) 4932.00 1.24026 0.620130 0.784499i \(-0.287080\pi\)
0.620130 + 0.784499i \(0.287080\pi\)
\(252\) 0 0
\(253\) −864.000 −0.214700
\(254\) 0 0
\(255\) −1026.00 + 1777.08i −0.251963 + 0.436413i
\(256\) 0 0
\(257\) −1719.00 2977.40i −0.417231 0.722665i 0.578429 0.815733i \(-0.303666\pi\)
−0.995660 + 0.0930680i \(0.970333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −243.000 420.888i −0.0576296 0.0998174i
\(262\) 0 0
\(263\) −3060.00 + 5300.08i −0.717444 + 1.24265i 0.244566 + 0.969633i \(0.421355\pi\)
−0.962009 + 0.273016i \(0.911979\pi\)
\(264\) 0 0
\(265\) 2412.00 0.559124
\(266\) 0 0
\(267\) 4914.00 1.12634
\(268\) 0 0
\(269\) −9.00000 + 15.5885i −0.00203992 + 0.00353325i −0.867044 0.498232i \(-0.833983\pi\)
0.865004 + 0.501766i \(0.167316\pi\)
\(270\) 0 0
\(271\) 3448.00 + 5972.11i 0.772882 + 1.33867i 0.935977 + 0.352061i \(0.114519\pi\)
−0.163095 + 0.986610i \(0.552148\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1602.00 + 2774.75i 0.351288 + 0.608449i
\(276\) 0 0
\(277\) −3127.00 + 5416.12i −0.678279 + 1.17481i 0.297220 + 0.954809i \(0.403940\pi\)
−0.975499 + 0.220004i \(0.929393\pi\)
\(278\) 0 0
\(279\) 1008.00 0.216299
\(280\) 0 0
\(281\) 1194.00 0.253481 0.126740 0.991936i \(-0.459549\pi\)
0.126740 + 0.991936i \(0.459549\pi\)
\(282\) 0 0
\(283\) −3578.00 + 6197.28i −0.751555 + 1.30173i 0.195514 + 0.980701i \(0.437362\pi\)
−0.947069 + 0.321030i \(0.895971\pi\)
\(284\) 0 0
\(285\) 684.000 + 1184.72i 0.142164 + 0.246235i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4041.50 7000.08i −0.822613 1.42481i
\(290\) 0 0
\(291\) 1515.00 2624.06i 0.305192 0.528608i
\(292\) 0 0
\(293\) 3738.00 0.745312 0.372656 0.927970i \(-0.378447\pi\)
0.372656 + 0.927970i \(0.378447\pi\)
\(294\) 0 0
\(295\) 2376.00 0.468936
\(296\) 0 0
\(297\) −486.000 + 841.777i −0.0949514 + 0.164461i
\(298\) 0 0
\(299\) −744.000 1288.65i −0.143902 0.249245i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 9.00000 + 15.5885i 0.00170639 + 0.00295556i
\(304\) 0 0
\(305\) −762.000 + 1319.82i −0.143056 + 0.247780i
\(306\) 0 0
\(307\) 844.000 0.156904 0.0784522 0.996918i \(-0.475002\pi\)
0.0784522 + 0.996918i \(0.475002\pi\)
\(308\) 0 0
\(309\) 1416.00 0.260691
\(310\) 0 0
\(311\) 3156.00 5466.35i 0.575435 0.996683i −0.420559 0.907265i \(-0.638166\pi\)
0.995994 0.0894178i \(-0.0285006\pi\)
\(312\) 0 0
\(313\) 4141.00 + 7172.42i 0.747806 + 1.29524i 0.948872 + 0.315660i \(0.102226\pi\)
−0.201067 + 0.979578i \(0.564441\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4659.00 8069.62i −0.825475 1.42976i −0.901556 0.432663i \(-0.857574\pi\)
0.0760811 0.997102i \(-0.475759\pi\)
\(318\) 0 0
\(319\) −972.000 + 1683.55i −0.170600 + 0.295489i
\(320\) 0 0
\(321\) −2916.00 −0.507026
\(322\) 0 0
\(323\) −8664.00 −1.49250
\(324\) 0 0
\(325\) −2759.00 + 4778.73i −0.470898 + 0.815619i
\(326\) 0 0
\(327\) 2679.00 + 4640.16i 0.453055 + 0.784715i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −826.000 1430.67i −0.137163 0.237574i 0.789258 0.614061i \(-0.210465\pi\)
−0.926422 + 0.376487i \(0.877132\pi\)
\(332\) 0 0
\(333\) 801.000 1387.37i 0.131815 0.228311i
\(334\) 0 0
\(335\) 6072.00 0.990295
\(336\) 0 0
\(337\) −1294.00 −0.209165 −0.104583 0.994516i \(-0.533351\pi\)
−0.104583 + 0.994516i \(0.533351\pi\)
\(338\) 0 0
\(339\) 3429.00 5939.20i 0.549374 0.951543i
\(340\) 0 0
\(341\) −2016.00 3491.81i −0.320154 0.554523i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −216.000 374.123i −0.0337074 0.0583829i
\(346\) 0 0
\(347\) −1818.00 + 3148.87i −0.281255 + 0.487147i −0.971694 0.236243i \(-0.924084\pi\)
0.690439 + 0.723390i \(0.257417\pi\)
\(348\) 0 0
\(349\) −10478.0 −1.60709 −0.803545 0.595244i \(-0.797055\pi\)
−0.803545 + 0.595244i \(0.797055\pi\)
\(350\) 0 0
\(351\) −1674.00 −0.254563
\(352\) 0 0
\(353\) −3783.00 + 6552.35i −0.570393 + 0.987950i 0.426132 + 0.904661i \(0.359876\pi\)
−0.996525 + 0.0832890i \(0.973458\pi\)
\(354\) 0 0
\(355\) 2520.00 + 4364.77i 0.376754 + 0.652557i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4020.00 + 6962.84i 0.590996 + 1.02363i 0.994099 + 0.108480i \(0.0345984\pi\)
−0.403103 + 0.915155i \(0.632068\pi\)
\(360\) 0 0
\(361\) 541.500 937.906i 0.0789474 0.136741i
\(362\) 0 0
\(363\) −105.000 −0.0151820
\(364\) 0 0
\(365\) 5340.00 0.765776
\(366\) 0 0
\(367\) 3784.00 6554.08i 0.538210 0.932208i −0.460790 0.887509i \(-0.652434\pi\)
0.999001 0.0446985i \(-0.0142327\pi\)
\(368\) 0 0
\(369\) 1701.00 + 2946.22i 0.239974 + 0.415648i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 6761.00 + 11710.4i 0.938529 + 1.62558i 0.768217 + 0.640190i \(0.221144\pi\)
0.170312 + 0.985390i \(0.445522\pi\)
\(374\) 0 0
\(375\) −1926.00 + 3335.93i −0.265222 + 0.459378i
\(376\) 0 0
\(377\) −3348.00 −0.457376
\(378\) 0 0
\(379\) 2468.00 0.334492 0.167246 0.985915i \(-0.446513\pi\)
0.167246 + 0.985915i \(0.446513\pi\)
\(380\) 0 0
\(381\) −1992.00 + 3450.25i −0.267856 + 0.463941i
\(382\) 0 0
\(383\) −6168.00 10683.3i −0.822898 1.42530i −0.903515 0.428557i \(-0.859022\pi\)
0.0806166 0.996745i \(-0.474311\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 774.000 + 1340.61i 0.101666 + 0.176090i
\(388\) 0 0
\(389\) 1881.00 3257.99i 0.245168 0.424644i −0.717011 0.697062i \(-0.754490\pi\)
0.962179 + 0.272418i \(0.0878234\pi\)
\(390\) 0 0
\(391\) 2736.00 0.353876
\(392\) 0 0
\(393\) 3636.00 0.466697
\(394\) 0 0
\(395\) 240.000 415.692i 0.0305714 0.0529513i
\(396\) 0 0
\(397\) −4385.00 7595.04i −0.554350 0.960162i −0.997954 0.0639390i \(-0.979634\pi\)
0.443604 0.896223i \(-0.353700\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3321.00 5752.14i −0.413573 0.716330i 0.581704 0.813400i \(-0.302386\pi\)
−0.995277 + 0.0970706i \(0.969053\pi\)
\(402\) 0 0
\(403\) 3472.00 6013.68i 0.429163 0.743332i
\(404\) 0 0
\(405\) −486.000 −0.0596285
\(406\) 0 0
\(407\) −6408.00 −0.780424
\(408\) 0 0
\(409\) −755.000 + 1307.70i −0.0912771 + 0.158097i −0.908049 0.418864i \(-0.862428\pi\)
0.816772 + 0.576961i \(0.195762\pi\)
\(410\) 0 0
\(411\) 1881.00 + 3257.99i 0.225749 + 0.391009i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 324.000 + 561.184i 0.0383242 + 0.0663794i
\(416\) 0 0
\(417\) −510.000 + 883.346i −0.0598916 + 0.103735i
\(418\) 0 0
\(419\) 1260.00 0.146909 0.0734547 0.997299i \(-0.476598\pi\)
0.0734547 + 0.997299i \(0.476598\pi\)
\(420\) 0 0
\(421\) 3998.00 0.462828 0.231414 0.972855i \(-0.425665\pi\)
0.231414 + 0.972855i \(0.425665\pi\)
\(422\) 0 0
\(423\) −864.000 + 1496.49i −0.0993123 + 0.172014i
\(424\) 0 0
\(425\) −5073.00 8786.69i −0.579004 1.00286i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 3348.00 + 5798.91i 0.376790 + 0.652620i
\(430\) 0 0
\(431\) 1368.00 2369.45i 0.152887 0.264808i −0.779401 0.626526i \(-0.784476\pi\)
0.932288 + 0.361718i \(0.117810\pi\)
\(432\) 0 0
\(433\) −2690.00 −0.298552 −0.149276 0.988796i \(-0.547694\pi\)
−0.149276 + 0.988796i \(0.547694\pi\)
\(434\) 0 0
\(435\) −972.000 −0.107135
\(436\) 0 0
\(437\) 912.000 1579.63i 0.0998327 0.172915i
\(438\) 0 0
\(439\) −620.000 1073.87i −0.0674054 0.116750i 0.830353 0.557238i \(-0.188139\pi\)
−0.897758 + 0.440488i \(0.854805\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1950.00 + 3377.50i 0.209136 + 0.362234i 0.951443 0.307826i \(-0.0996015\pi\)
−0.742307 + 0.670060i \(0.766268\pi\)
\(444\) 0 0
\(445\) 4914.00 8511.30i 0.523474 0.906684i
\(446\) 0 0
\(447\) 3114.00 0.329501
\(448\) 0 0
\(449\) −10878.0 −1.14335 −0.571675 0.820480i \(-0.693706\pi\)
−0.571675 + 0.820480i \(0.693706\pi\)
\(450\) 0 0
\(451\) 6804.00 11784.9i 0.710394 1.23044i
\(452\) 0 0
\(453\) −4404.00 7627.95i −0.456773 0.791153i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1165.00 2017.84i −0.119248 0.206544i 0.800222 0.599704i \(-0.204715\pi\)
−0.919470 + 0.393160i \(0.871382\pi\)
\(458\) 0 0
\(459\) 1539.00 2665.63i 0.156502 0.271069i
\(460\) 0 0
\(461\) −15150.0 −1.53060 −0.765299 0.643675i \(-0.777409\pi\)
−0.765299 + 0.643675i \(0.777409\pi\)
\(462\) 0 0
\(463\) −2992.00 −0.300324 −0.150162 0.988661i \(-0.547980\pi\)
−0.150162 + 0.988661i \(0.547980\pi\)
\(464\) 0 0
\(465\) 1008.00 1745.91i 0.100527 0.174117i
\(466\) 0 0
\(467\) 4362.00 + 7555.21i 0.432225 + 0.748636i 0.997065 0.0765646i \(-0.0243951\pi\)
−0.564839 + 0.825201i \(0.691062\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1995.00 3455.44i −0.195169 0.338043i
\(472\) 0 0
\(473\) 3096.00 5362.43i 0.300960 0.521279i
\(474\) 0 0
\(475\) −6764.00 −0.653376
\(476\) 0 0
\(477\) −3618.00 −0.347289
\(478\) 0 0
\(479\) 4872.00 8438.55i 0.464734 0.804942i −0.534456 0.845196i \(-0.679483\pi\)
0.999189 + 0.0402542i \(0.0128168\pi\)
\(480\) 0 0
\(481\) −5518.00 9557.46i −0.523075 0.905993i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3030.00 5248.11i −0.283681 0.491350i
\(486\) 0 0
\(487\) −2068.00 + 3581.88i −0.192423 + 0.333286i −0.946053 0.324013i \(-0.894968\pi\)
0.753630 + 0.657299i \(0.228301\pi\)
\(488\) 0 0
\(489\) −10092.0 −0.933284
\(490\) 0 0
\(491\) 16212.0 1.49010 0.745048 0.667011i \(-0.232426\pi\)
0.745048 + 0.667011i \(0.232426\pi\)
\(492\) 0 0
\(493\) 3078.00 5331.25i 0.281189 0.487034i
\(494\) 0 0
\(495\) 972.000 + 1683.55i 0.0882589 + 0.152869i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1198.00 2075.00i −0.107475 0.186152i 0.807272 0.590180i \(-0.200943\pi\)
−0.914747 + 0.404028i \(0.867610\pi\)
\(500\) 0 0
\(501\) 4572.00 7918.94i 0.407708 0.706172i
\(502\) 0 0
\(503\) −13128.0 −1.16371 −0.581857 0.813291i \(-0.697674\pi\)
−0.581857 + 0.813291i \(0.697674\pi\)
\(504\) 0 0
\(505\) 36.0000 0.00317224
\(506\) 0 0
\(507\) −2470.50 + 4279.03i −0.216408 + 0.374829i
\(508\) 0 0
\(509\) 6399.00 + 11083.4i 0.557231 + 0.965153i 0.997726 + 0.0673977i \(0.0214696\pi\)
−0.440495 + 0.897755i \(0.645197\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −1026.00 1777.08i −0.0883022 0.152944i
\(514\) 0 0
\(515\) 1416.00 2452.58i 0.121158 0.209852i
\(516\) 0 0
\(517\) 6912.00 0.587987
\(518\) 0 0
\(519\) 8118.00 0.686591
\(520\) 0 0
\(521\) 3693.00 6396.46i 0.310544 0.537877i −0.667936 0.744218i \(-0.732822\pi\)
0.978480 + 0.206341i \(0.0661556\pi\)
\(522\) 0 0
\(523\) 2590.00 + 4486.01i 0.216545 + 0.375066i 0.953749 0.300603i \(-0.0971880\pi\)
−0.737205 + 0.675669i \(0.763855\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6384.00 + 11057.4i 0.527688 + 0.913982i
\(528\) 0 0
\(529\) 5795.50 10038.1i 0.476329 0.825027i
\(530\) 0 0
\(531\) −3564.00 −0.291270
\(532\) 0 0
\(533\) 23436.0 1.90455
\(534\) 0 0
\(535\) −2916.00 + 5050.66i −0.235644 + 0.408148i
\(536\) 0 0
\(537\) −7074.00 12252.5i −0.568465 0.984610i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2035.00 3524.72i −0.161722 0.280110i 0.773764 0.633473i \(-0.218371\pi\)
−0.935486 + 0.353363i \(0.885038\pi\)
\(542\) 0 0
\(543\) 2865.00 4962.33i 0.226425 0.392180i
\(544\) 0 0
\(545\) 10716.0 0.842244
\(546\) 0 0
\(547\) 14780.0 1.15530 0.577648 0.816286i \(-0.303971\pi\)
0.577648 + 0.816286i \(0.303971\pi\)
\(548\) 0 0
\(549\) 1143.00 1979.73i 0.0888562 0.153903i
\(550\) 0 0
\(551\) −2052.00 3554.17i −0.158654 0.274796i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −1602.00 2774.75i −0.122525 0.212219i
\(556\) 0 0
\(557\) 3429.00 5939.20i 0.260846 0.451799i −0.705621 0.708590i \(-0.749332\pi\)
0.966467 + 0.256791i \(0.0826651\pi\)
\(558\) 0 0
\(559\) 10664.0 0.806868
\(560\) 0 0
\(561\) −12312.0 −0.926583
\(562\) 0 0
\(563\) 3330.00 5767.73i 0.249277 0.431760i −0.714049 0.700096i \(-0.753140\pi\)
0.963325 + 0.268336i \(0.0864738\pi\)
\(564\) 0 0
\(565\) −6858.00 11878.4i −0.510652 0.884475i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 75.0000 + 129.904i 0.00552577 + 0.00957092i 0.868775 0.495207i \(-0.164908\pi\)
−0.863249 + 0.504778i \(0.831574\pi\)
\(570\) 0 0
\(571\) 4094.00 7091.02i 0.300050 0.519702i −0.676097 0.736813i \(-0.736330\pi\)
0.976147 + 0.217111i \(0.0696633\pi\)
\(572\) 0 0
\(573\) 12240.0 0.892379
\(574\) 0 0
\(575\) 2136.00 0.154917
\(576\) 0 0
\(577\) −2927.00 + 5069.71i −0.211183 + 0.365780i −0.952085 0.305833i \(-0.901065\pi\)
0.740902 + 0.671613i \(0.234398\pi\)
\(578\) 0 0
\(579\) 4029.00 + 6978.43i 0.289187 + 0.500887i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 7236.00 + 12533.1i 0.514039 + 0.890341i
\(584\) 0 0
\(585\) −1674.00 + 2899.45i −0.118310 + 0.204919i
\(586\) 0 0
\(587\) −17580.0 −1.23612 −0.618062 0.786130i \(-0.712082\pi\)
−0.618062 + 0.786130i \(0.712082\pi\)
\(588\) 0 0
\(589\) 8512.00 0.595468
\(590\) 0 0
\(591\) −765.000 + 1325.02i −0.0532452 + 0.0922233i
\(592\) 0 0
\(593\) 8577.00 + 14855.8i 0.593955 + 1.02876i 0.993693 + 0.112131i \(0.0357675\pi\)
−0.399739 + 0.916629i \(0.630899\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2028.00 + 3512.60i 0.139029 + 0.240806i
\(598\) 0 0
\(599\) 9060.00 15692.4i 0.617999 1.07041i −0.371851 0.928292i \(-0.621277\pi\)
0.989850 0.142114i \(-0.0453899\pi\)
\(600\) 0 0
\(601\) −17546.0 −1.19088 −0.595438 0.803401i \(-0.703021\pi\)
−0.595438 + 0.803401i \(0.703021\pi\)
\(602\) 0 0
\(603\) −9108.00 −0.615102
\(604\) 0 0
\(605\) −105.000 + 181.865i −0.00705596 + 0.0122213i
\(606\) 0 0
\(607\) −7280.00 12609.3i −0.486798 0.843158i 0.513087 0.858336i \(-0.328502\pi\)
−0.999885 + 0.0151784i \(0.995168\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5952.00 + 10309.2i 0.394095 + 0.682593i
\(612\) 0 0
\(613\) 2249.00 3895.38i 0.148183 0.256661i −0.782373 0.622810i \(-0.785991\pi\)
0.930556 + 0.366150i \(0.119324\pi\)
\(614\) 0 0
\(615\) 6804.00 0.446120
\(616\) 0 0
\(617\) −5478.00 −0.357433 −0.178716 0.983901i \(-0.557194\pi\)
−0.178716 + 0.983901i \(0.557194\pi\)
\(618\) 0 0
\(619\) 3022.00 5234.26i 0.196227 0.339875i −0.751075 0.660217i \(-0.770464\pi\)
0.947302 + 0.320342i \(0.103798\pi\)
\(620\) 0 0
\(621\) 324.000 + 561.184i 0.0209367 + 0.0362634i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1710.50 2962.67i −0.109472 0.189611i
\(626\) 0 0
\(627\) −4104.00 + 7108.34i −0.261400 + 0.452759i
\(628\) 0 0
\(629\) 20292.0 1.28632
\(630\) 0 0
\(631\) −15352.0 −0.968547 −0.484274 0.874917i \(-0.660916\pi\)
−0.484274 + 0.874917i \(0.660916\pi\)
\(632\) 0 0
\(633\) 5046.00 8739.93i 0.316841 0.548785i
\(634\) 0 0
\(635\) 3984.00 + 6900.49i 0.248977 + 0.431240i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −3780.00 6547.15i −0.234013 0.405323i
\(640\) 0 0
\(641\) 11199.0 19397.2i 0.690068 1.19523i −0.281746 0.959489i \(-0.590914\pi\)
0.971815 0.235745i \(-0.0757530\pi\)
\(642\) 0 0
\(643\) −3764.00 −0.230852 −0.115426 0.993316i \(-0.536823\pi\)
−0.115426 + 0.993316i \(0.536823\pi\)
\(644\) 0 0
\(645\) 3096.00 0.189000
\(646\) 0 0
\(647\) −8844.00 + 15318.3i −0.537393 + 0.930793i 0.461650 + 0.887062i \(0.347258\pi\)
−0.999043 + 0.0437305i \(0.986076\pi\)
\(648\) 0 0
\(649\) 7128.00 + 12346.1i 0.431122 + 0.746726i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9939.00 17214.9i −0.595625 1.03165i −0.993458 0.114195i \(-0.963571\pi\)
0.397833 0.917458i \(-0.369762\pi\)
\(654\) 0 0
\(655\) 3636.00 6297.74i 0.216901 0.375684i
\(656\) 0 0
\(657\) −8010.00 −0.475647
\(658\) 0 0
\(659\) −20004.0 −1.18247 −0.591233 0.806501i \(-0.701359\pi\)
−0.591233 + 0.806501i \(0.701359\pi\)
\(660\) 0 0
\(661\) −653.000 + 1131.03i −0.0384247 + 0.0665536i −0.884598 0.466354i \(-0.845567\pi\)
0.846173 + 0.532908i \(0.178901\pi\)
\(662\) 0 0
\(663\) −10602.0 18363.2i −0.621037 1.07567i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 648.000 + 1122.37i 0.0376172 + 0.0651549i
\(668\) 0 0
\(669\) −7152.00 + 12387.6i −0.413322 + 0.715894i
\(670\) 0 0
\(671\) −9144.00 −0.526081
\(672\) 0 0
\(673\) −13054.0 −0.747689 −0.373845 0.927491i \(-0.621961\pi\)
−0.373845 + 0.927491i \(0.621961\pi\)
\(674\) 0 0
\(675\) 1201.50 2081.06i 0.0685122 0.118667i
\(676\) 0 0
\(677\) 2523.00 + 4369.96i 0.143230 + 0.248082i 0.928711 0.370804i \(-0.120918\pi\)
−0.785481 + 0.618886i \(0.787584\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 630.000 + 1091.19i 0.0354503 + 0.0614017i
\(682\) 0 0
\(683\) −6234.00 + 10797.6i −0.349249 + 0.604918i −0.986116 0.166056i \(-0.946897\pi\)
0.636867 + 0.770974i \(0.280230\pi\)
\(684\) 0 0
\(685\) 7524.00 0.419675
\(686\) 0 0
\(687\) 5646.00 0.313549
\(688\) 0 0
\(689\) −12462.0 + 21584.8i −0.689063 + 1.19349i
\(690\) 0 0
\(691\) −11606.0 20102.2i −0.638948 1.10669i −0.985664 0.168720i \(-0.946037\pi\)
0.346716 0.937970i \(-0.387297\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1020.00 + 1766.69i 0.0556702 + 0.0964237i
\(696\) 0 0
\(697\) −21546.0 + 37318.8i −1.17089 + 2.02805i
\(698\) 0 0
\(699\) 15246.0 0.824974
\(700\) 0 0
\(701\) 35958.0 1.93740 0.968698 0.248241i \(-0.0798526\pi\)
0.968698 + 0.248241i \(0.0798526\pi\)
\(702\) 0 0
\(703\) 6764.00 11715.6i 0.362886 0.628538i
\(704\) 0 0
\(705\) 1728.00 + 2992.98i 0.0923124 + 0.159890i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −3223.00 5582.40i −0.170723 0.295700i 0.767950 0.640510i \(-0.221277\pi\)
−0.938673 + 0.344809i \(0.887944\pi\)
\(710\) 0 0
\(711\) −360.000 + 623.538i −0.0189888 + 0.0328896i
\(712\) 0 0
\(713\) −2688.00 −0.141187
\(714\) 0 0
\(715\) 13392.0 0.700465
\(716\) 0 0
\(717\) 8136.00 14092.0i 0.423772 0.733995i
\(718\) 0 0
\(719\) −2352.00 4073.78i −0.121996 0.211302i 0.798559 0.601917i \(-0.205596\pi\)
−0.920555 + 0.390614i \(0.872263\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −3885.00 6729.02i −0.199841 0.346134i
\(724\) 0 0
\(725\) 2403.00 4162.12i 0.123097 0.213210i
\(726\) 0 0
\(727\) 10600.0 0.540760 0.270380 0.962754i \(-0.412851\pi\)
0.270380 + 0.962754i \(0.412851\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −9804.00 + 16981.0i −0.496052 + 0.859187i
\(732\) 0 0
\(733\) 6271.00 + 10861.7i 0.315995 + 0.547320i 0.979649 0.200720i \(-0.0643282\pi\)
−0.663653 + 0.748040i \(0.730995\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 18216.0 + 31551.0i 0.910441 + 1.57693i
\(738\) 0 0
\(739\) −11662.0 + 20199.2i −0.580506 + 1.00547i 0.414914 + 0.909861i \(0.363812\pi\)
−0.995419 + 0.0956044i \(0.969522\pi\)
\(740\) 0 0
\(741\) −14136.0 −0.700808
\(742\) 0 0
\(743\) −6312.00 −0.311662 −0.155831 0.987784i \(-0.549806\pi\)
−0.155831 + 0.987784i \(0.549806\pi\)
\(744\) 0 0
\(745\) 3114.00 5393.61i 0.153138 0.265244i
\(746\) 0 0
\(747\) −486.000 841.777i −0.0238043 0.0412303i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −17920.0 31038.4i −0.870719 1.50813i −0.861254 0.508175i \(-0.830320\pi\)
−0.00946509 0.999955i \(-0.503013\pi\)
\(752\) 0 0
\(753\) −7398.00 + 12813.7i −0.358032 + 0.620130i
\(754\) 0 0
\(755\) −17616.0 −0.849155
\(756\) 0 0
\(757\) −34594.0 −1.66095 −0.830476 0.557055i \(-0.811931\pi\)
−0.830476 + 0.557055i \(0.811931\pi\)
\(758\) 0 0
\(759\) 1296.00 2244.74i 0.0619787 0.107350i
\(760\) 0 0
\(761\) 11973.0 + 20737.8i 0.570330 + 0.987840i 0.996532 + 0.0832121i \(0.0265179\pi\)
−0.426202 + 0.904628i \(0.640149\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −3078.00 5331.25i −0.145471 0.251963i
\(766\) 0 0
\(767\) −12276.0 + 21262.7i −0.577915 + 1.00098i
\(768\) 0 0
\(769\) −18770.0 −0.880187 −0.440093 0.897952i \(-0.645055\pi\)
−0.440093 + 0.897952i \(0.645055\pi\)
\(770\) 0 0
\(771\) 10314.0 0.481776
\(772\) 0 0
\(773\) 15171.0 26276.9i 0.705903 1.22266i −0.260462 0.965484i \(-0.583875\pi\)
0.966365 0.257176i \(-0.0827919\pi\)
\(774\) 0 0
\(775\) 4984.00 + 8632.54i 0.231007 + 0.400116i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14364.0 + 24879.2i 0.660647 + 1.14427i
\(780\) 0 0
\(781\) −15120.0 + 26188.6i −0.692748 + 1.19987i
\(782\) 0 0
\(783\) 1458.00 0.0665449
\(784\) 0 0
\(785\) −7980.00 −0.362826
\(786\) 0 0
\(787\) −13094.0 + 22679.5i −0.593076 + 1.02724i 0.400739 + 0.916192i \(0.368753\pi\)
−0.993815 + 0.111045i \(0.964580\pi\)
\(788\) 0 0
\(789\) −9180.00 15900.2i −0.414216 0.717444i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −7874.00 13638.2i −0.352603 0.610726i
\(794\) 0 0
\(795\) −3618.00 + 6266.56i −0.161405 + 0.279562i
\(796\) 0 0
\(797\) 34818.0 1.54745 0.773724 0.633522i \(-0.218391\pi\)
0.773724 + 0.633522i \(0.218391\pi\)
\(798\) 0 0
\(799\) −21888.0 −0.969139
\(800\) 0 0
\(801\) −7371.00 + 12766.9i −0.325145 + 0.563168i
\(802\) 0 0
\(803\) 16020.0 + 27747.5i 0.704027 + 1.21941i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −27.0000 46.7654i −0.00117775 0.00203992i
\(808\) 0 0
\(809\) 10851.0 18794.5i 0.471571 0.816785i −0.527900 0.849306i \(-0.677020\pi\)
0.999471 + 0.0325217i \(0.0103538\pi\)
\(810\) 0 0
\(811\) 20356.0 0.881376 0.440688 0.897660i \(-0.354735\pi\)
0.440688 + 0.897660i \(0.354735\pi\)
\(812\) 0 0
\(813\) −20688.0 −0.892448
\(814\) 0 0
\(815\) −10092.0 + 17479.9i −0.433751 + 0.751279i
\(816\) 0 0
\(817\) 6536.00 + 11320.7i 0.279885 + 0.484774i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 9945.00 + 17225.2i 0.422756 + 0.732235i 0.996208 0.0870040i \(-0.0277293\pi\)
−0.573452 + 0.819239i \(0.694396\pi\)
\(822\) 0 0
\(823\) −2116.00 + 3665.02i −0.0896223 + 0.155230i −0.907352 0.420373i \(-0.861899\pi\)
0.817729 + 0.575603i \(0.195233\pi\)
\(824\) 0 0
\(825\) −9612.00 −0.405633
\(826\) 0 0
\(827\) 9636.00 0.405171 0.202586 0.979265i \(-0.435066\pi\)
0.202586 + 0.979265i \(0.435066\pi\)
\(828\) 0 0
\(829\) 17647.0 30565.5i 0.739331 1.28056i −0.213465 0.976951i \(-0.568475\pi\)
0.952797 0.303609i \(-0.0981916\pi\)
\(830\) 0 0
\(831\) −9381.00 16248.4i −0.391604 0.678279i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −9144.00 15837.9i −0.378971 0.656398i
\(836\) 0 0
\(837\) −1512.00 + 2618.86i −0.0624401 + 0.108149i
\(838\) 0 0
\(839\) 3768.00 0.155049 0.0775243 0.996990i \(-0.475298\pi\)
0.0775243 + 0.996990i \(0.475298\pi\)
\(840\) 0 0
\(841\) −21473.0 −0.880438
\(842\) 0 0
\(843\) −1791.00 + 3102.10i −0.0731736 + 0.126740i
\(844\) 0 0
\(845\) 4941.00 + 8558.06i 0.201155 + 0.348410i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −10734.0 18591.8i −0.433910 0.751555i
\(850\) 0 0
\(851\) −2136.00 + 3699.66i −0.0860413 + 0.149028i
\(852\) 0 0
\(853\) 39466.0 1.58416 0.792081 0.610416i \(-0.208998\pi\)
0.792081 + 0.610416i \(0.208998\pi\)
\(854\) 0 0
\(855\) −4104.00 −0.164157
\(856\) 0 0
\(857\) −17019.0 + 29477.8i −0.678364 + 1.17496i 0.297109 + 0.954843i \(0.403977\pi\)
−0.975473 + 0.220117i \(0.929356\pi\)
\(858\) 0 0
\(859\) −1682.00 2913.31i −0.0668092 0.115717i 0.830686 0.556741i \(-0.187949\pi\)
−0.897495 + 0.441024i \(0.854615\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −6552.00 11348.4i −0.258439 0.447629i 0.707385 0.706828i \(-0.249875\pi\)
−0.965824 + 0.259199i \(0.916541\pi\)
\(864\) 0 0
\(865\) 8118.00 14060.8i 0.319099 0.552695i
\(866\) 0 0
\(867\) 24249.0 0.949872
\(868\) 0 0
\(869\) 2880.00 0.112425
\(870\) 0 0
\(871\) −31372.0 + 54337.9i −1.22044 + 2.11386i
\(872\) 0 0
\(873\) 4545.00 + 7872.17i 0.176203 + 0.305192i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 20429.0 + 35384.1i 0.786589 + 1.36241i 0.928045 + 0.372467i \(0.121488\pi\)
−0.141457 + 0.989944i \(0.545179\pi\)
\(878\) 0 0
\(879\) −5607.00 + 9711.61i −0.215153 + 0.372656i
\(880\) 0 0
\(881\) 37374.0 1.42924 0.714621 0.699512i \(-0.246599\pi\)
0.714621 + 0.699512i \(0.246599\pi\)
\(882\) 0 0
\(883\) 9788.00 0.373038 0.186519 0.982451i \(-0.440279\pi\)
0.186519 + 0.982451i \(0.440279\pi\)
\(884\) 0 0
\(885\) −3564.00 + 6173.03i −0.135370 + 0.234468i
\(886\) 0 0
\(887\) 25212.0 + 43668.5i 0.954381 + 1.65304i 0.735778 + 0.677223i \(0.236817\pi\)
0.218603 + 0.975814i \(0.429850\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1458.00 2525.33i −0.0548202 0.0949514i
\(892\) 0 0
\(893\) −7296.00 + 12637.0i −0.273406 + 0.473553i
\(894\) 0 0
\(895\) −28296.0 −1.05679
\(896\) 0 0
\(897\) 4464.00 0.166163
\(898\) 0 0
\(899\) −3024.00 + 5237.72i −0.112187 + 0.194313i
\(900\) 0 0
\(901\) −22914.0 39688.2i −0.847254 1.46749i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5730.00 9924.65i −0.210466 0.364538i
\(906\) 0 0
\(907\) 6206.00 10749.1i 0.227196 0.393515i −0.729780 0.683682i \(-0.760378\pi\)
0.956976 + 0.290167i \(0.0937108\pi\)
\(908\) 0 0
\(909\) −54.0000 −0.00197037
\(910\) 0 0
\(911\) 6576.00 0.239158 0.119579 0.992825i \(-0.461846\pi\)
0.119579 + 0.992825i \(0.461846\pi\)
\(912\) 0 0
\(913\) −1944.00 + 3367.11i −0.0704677 + 0.122054i
\(914\) 0 0
\(915\) −2286.00 3959.47i −0.0825933 0.143056i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −4132.00 7156.83i −0.148316 0.256890i 0.782289 0.622915i \(-0.214052\pi\)
−0.930605 + 0.366025i \(0.880718\pi\)
\(920\) 0 0
\(921\) −1266.00 + 2192.78i −0.0452944 + 0.0784522i
\(922\) 0 0
\(923\) −52080.0 −1.85724
\(924\) 0 0
\(925\) 15842.0 0.563115
\(926\) 0 0
\(927\) −2124.00 + 3678.88i −0.0752549 + 0.130345i
\(928\) 0 0
\(929\) 19713.0 + 34143.9i 0.696192 + 1.20584i 0.969777 + 0.243992i \(0.0784572\pi\)
−0.273585 + 0.961848i \(0.588209\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 9468.00 + 16399.1i 0.332228 + 0.575435i
\(934\) 0 0
\(935\) −12312.0 + 21325.0i −0.430637 + 0.745885i
\(936\) 0 0
\(937\) 4678.00 0.163099 0.0815494 0.996669i \(-0.474013\pi\)
0.0815494 + 0.996669i \(0.474013\pi\)
\(938\) 0 0
\(939\) −24846.0 −0.863492
\(940\) 0 0
\(941\) −8673.00 + 15022.1i −0.300459 + 0.520410i −0.976240 0.216692i \(-0.930473\pi\)
0.675781 + 0.737102i \(0.263806\pi\)
\(942\) 0 0
\(943\) −4536.00 7856.58i −0.156641 0.271310i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −9726.00 16845.9i −0.333741 0.578056i 0.649501 0.760360i \(-0.274978\pi\)
−0.983242 + 0.182304i \(0.941644\pi\)
\(948\) 0 0
\(949\) −27590.0 + 47787.3i −0.943740 + 1.63461i
\(950\) 0 0
\(951\) 27954.0 0.953176
\(952\) 0 0
\(953\) 4458.00 0.151531 0.0757654 0.997126i \(-0.475860\pi\)
0.0757654 + 0.997126i \(0.475860\pi\)
\(954\) 0 0
\(955\) 12240.0 21200.3i 0.414740 0.718351i
\(956\) 0 0
\(957\) −2916.00 5050.66i −0.0984962 0.170600i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 8623.50 + 14936.3i 0.289467 + 0.501371i
\(962\) 0 0
\(963\) 4374.00 7575.99i 0.146366 0.253513i
\(964\) 0 0
\(965\) 16116.0 0.537609
\(966\) 0 0
\(967\) 52520.0 1.74657 0.873283 0.487213i \(-0.161987\pi\)
0.873283 + 0.487213i \(0.161987\pi\)
\(968\) 0 0
\(969\) 12996.0 22509.7i 0.430848 0.746251i
\(970\) 0 0
\(971\) −5202.00 9010.13i −0.171926 0.297785i 0.767167 0.641447i \(-0.221666\pi\)
−0.939093 + 0.343663i \(0.888332\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −8277.00 14336.2i −0.271873 0.470898i
\(976\) 0 0
\(977\) 3783.00 6552.35i 0.123878 0.214563i −0.797416 0.603430i \(-0.793800\pi\)
0.921294 + 0.388867i \(0.127133\pi\)
\(978\) 0 0
\(979\) 58968.0 1.92505
\(980\) 0 0
\(981\) −16074.0 −0.523143
\(982\) 0 0
\(983\) 22188.0 38430.7i 0.719926 1.24695i −0.241103 0.970500i \(-0.577509\pi\)
0.961029 0.276449i \(-0.0891576\pi\)
\(984\) 0 0
\(985\) 1530.00 + 2650.04i 0.0494922 + 0.0857231i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2064.00 3574.95i −0.0663614 0.114941i
\(990\) 0 0
\(991\) 13664.0 23666.7i 0.437993 0.758626i −0.559541 0.828802i \(-0.689023\pi\)
0.997535 + 0.0701759i \(0.0223561\pi\)
\(992\) 0 0
\(993\) 4956.00 0.158383
\(994\) 0 0
\(995\) 8112.00 0.258460
\(996\) 0 0
\(997\) 1387.00 2402.35i 0.0440589 0.0763123i −0.843155 0.537671i \(-0.819304\pi\)
0.887214 + 0.461358i \(0.152638\pi\)
\(998\) 0 0
\(999\) 2403.00 + 4162.12i 0.0761037 + 0.131815i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.4.i.c.361.1 2
3.2 odd 2 1764.4.k.f.361.1 2
7.2 even 3 inner 588.4.i.c.373.1 2
7.3 odd 6 84.4.a.a.1.1 1
7.4 even 3 588.4.a.d.1.1 1
7.5 odd 6 588.4.i.f.373.1 2
7.6 odd 2 588.4.i.f.361.1 2
21.2 odd 6 1764.4.k.f.1549.1 2
21.5 even 6 1764.4.k.l.1549.1 2
21.11 odd 6 1764.4.a.j.1.1 1
21.17 even 6 252.4.a.b.1.1 1
21.20 even 2 1764.4.k.l.361.1 2
28.3 even 6 336.4.a.k.1.1 1
28.11 odd 6 2352.4.a.d.1.1 1
35.3 even 12 2100.4.k.j.1849.1 2
35.17 even 12 2100.4.k.j.1849.2 2
35.24 odd 6 2100.4.a.l.1.1 1
56.3 even 6 1344.4.a.d.1.1 1
56.45 odd 6 1344.4.a.q.1.1 1
84.59 odd 6 1008.4.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.4.a.a.1.1 1 7.3 odd 6
252.4.a.b.1.1 1 21.17 even 6
336.4.a.k.1.1 1 28.3 even 6
588.4.a.d.1.1 1 7.4 even 3
588.4.i.c.361.1 2 1.1 even 1 trivial
588.4.i.c.373.1 2 7.2 even 3 inner
588.4.i.f.361.1 2 7.6 odd 2
588.4.i.f.373.1 2 7.5 odd 6
1008.4.a.h.1.1 1 84.59 odd 6
1344.4.a.d.1.1 1 56.3 even 6
1344.4.a.q.1.1 1 56.45 odd 6
1764.4.a.j.1.1 1 21.11 odd 6
1764.4.k.f.361.1 2 3.2 odd 2
1764.4.k.f.1549.1 2 21.2 odd 6
1764.4.k.l.361.1 2 21.20 even 2
1764.4.k.l.1549.1 2 21.5 even 6
2100.4.a.l.1.1 1 35.24 odd 6
2100.4.k.j.1849.1 2 35.3 even 12
2100.4.k.j.1849.2 2 35.17 even 12
2352.4.a.d.1.1 1 28.11 odd 6