Properties

Label 588.4.i.j
Level $588$
Weight $4$
Character orbit 588.i
Analytic conductor $34.693$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,4,Mod(361,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.361");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.6931230834\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{193})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 49x^{2} + 48x + 2304 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 3 \beta_{2} + 3) q^{3} + (6 \beta_{2} - \beta_1) q^{5} - 9 \beta_{2} q^{9} + (7 \beta_{3} - 6 \beta_{2} + 7 \beta_1 - 1) q^{11} - 5 \beta_{3} q^{13} + (3 \beta_{3} + 15) q^{15} + ( - 4 \beta_{3} - 48 \beta_{2} + \cdots + 52) q^{17}+ \cdots + ( - 63 \beta_{3} + 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} + 11 q^{5} - 18 q^{9} + 5 q^{11} - 10 q^{13} + 66 q^{15} + 100 q^{17} + 67 q^{19} - 76 q^{23} + 93 q^{25} - 108 q^{27} + 550 q^{29} + 362 q^{31} - 15 q^{33} + 5 q^{37} - 15 q^{39} + 324 q^{41}+ \cdots - 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 49x^{2} + 48x + 2304 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 49\nu^{2} - 49\nu + 2304 ) / 2352 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 97 ) / 49 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 48\beta_{2} + \beta _1 - 49 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 49\beta_{3} - 97 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
3.72311 + 6.44862i
−3.22311 5.58259i
3.72311 6.44862i
−3.22311 + 5.58259i
0 1.50000 2.59808i 0 −0.723111 1.25246i 0 0 0 −4.50000 7.79423i 0
361.2 0 1.50000 2.59808i 0 6.22311 + 10.7787i 0 0 0 −4.50000 7.79423i 0
373.1 0 1.50000 + 2.59808i 0 −0.723111 + 1.25246i 0 0 0 −4.50000 + 7.79423i 0
373.2 0 1.50000 + 2.59808i 0 6.22311 10.7787i 0 0 0 −4.50000 + 7.79423i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 588.4.i.j 4
3.b odd 2 1 1764.4.k.q 4
7.b odd 2 1 84.4.i.a 4
7.c even 3 1 588.4.a.f 2
7.c even 3 1 inner 588.4.i.j 4
7.d odd 6 1 84.4.i.a 4
7.d odd 6 1 588.4.a.i 2
21.c even 2 1 252.4.k.f 4
21.g even 6 1 252.4.k.f 4
21.g even 6 1 1764.4.a.o 2
21.h odd 6 1 1764.4.a.y 2
21.h odd 6 1 1764.4.k.q 4
28.d even 2 1 336.4.q.i 4
28.f even 6 1 336.4.q.i 4
28.f even 6 1 2352.4.a.bt 2
28.g odd 6 1 2352.4.a.bx 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.4.i.a 4 7.b odd 2 1
84.4.i.a 4 7.d odd 6 1
252.4.k.f 4 21.c even 2 1
252.4.k.f 4 21.g even 6 1
336.4.q.i 4 28.d even 2 1
336.4.q.i 4 28.f even 6 1
588.4.a.f 2 7.c even 3 1
588.4.a.i 2 7.d odd 6 1
588.4.i.j 4 1.a even 1 1 trivial
588.4.i.j 4 7.c even 3 1 inner
1764.4.a.o 2 21.g even 6 1
1764.4.a.y 2 21.h odd 6 1
1764.4.k.q 4 3.b odd 2 1
1764.4.k.q 4 21.h odd 6 1
2352.4.a.bt 2 28.f even 6 1
2352.4.a.bx 2 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 11T_{5}^{3} + 139T_{5}^{2} + 198T_{5} + 324 \) acting on \(S_{4}^{\mathrm{new}}(588, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 11 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 5 T^{3} + \cdots + 5560164 \) Copy content Toggle raw display
$13$ \( (T^{2} + 5 T - 1200)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 100 T^{3} + \cdots + 2985984 \) Copy content Toggle raw display
$19$ \( T^{4} - 67 T^{3} + \cdots + 473344 \) Copy content Toggle raw display
$23$ \( T^{4} + 76 T^{3} + \cdots + 318836736 \) Copy content Toggle raw display
$29$ \( (T^{2} - 275 T + 13068)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 362 T^{3} + \cdots + 181198521 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 9545290000 \) Copy content Toggle raw display
$41$ \( (T^{2} - 162 T - 9072)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 721 T + 129526)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 2587553424 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 3288793104 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 16397314704 \) Copy content Toggle raw display
$61$ \( T^{4} + 532 T^{3} + \cdots + 41525136 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 80085604036 \) Copy content Toggle raw display
$71$ \( (T^{2} - 1600 T + 546588)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 54532524484 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 120705520329 \) Copy content Toggle raw display
$83$ \( (T^{2} - 1409 T + 4122)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 790420571136 \) Copy content Toggle raw display
$97$ \( (T^{2} + 561 T + 38102)^{2} \) Copy content Toggle raw display
show more
show less