gp: [N,k,chi] = [588,4,Mod(361,588)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(588, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 4]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("588.361");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,6,0,11]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 + 49 x 2 + 48 x + 2304 x^{4} - x^{3} + 49x^{2} + 48x + 2304 x 4 − x 3 + 4 9 x 2 + 4 8 x + 2 3 0 4
x^4 - x^3 + 49*x^2 + 48*x + 2304
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( − ν 3 + 49 ν 2 − 49 ν + 2304 ) / 2352 ( -\nu^{3} + 49\nu^{2} - 49\nu + 2304 ) / 2352 ( − ν 3 + 4 9 ν 2 − 4 9 ν + 2 3 0 4 ) / 2 3 5 2
(-v^3 + 49*v^2 - 49*v + 2304) / 2352
β 3 \beta_{3} β 3 = = =
( ν 3 + 97 ) / 49 ( \nu^{3} + 97 ) / 49 ( ν 3 + 9 7 ) / 4 9
(v^3 + 97) / 49
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 + 48 β 2 + β 1 − 49 \beta_{3} + 48\beta_{2} + \beta _1 - 49 β 3 + 4 8 β 2 + β 1 − 4 9
b3 + 48*b2 + b1 - 49
ν 3 \nu^{3} ν 3 = = =
49 β 3 − 97 49\beta_{3} - 97 4 9 β 3 − 9 7
49*b3 - 97
Character values
We give the values of χ \chi χ on generators for ( Z / 588 Z ) × \left(\mathbb{Z}/588\mathbb{Z}\right)^\times ( Z / 5 8 8 Z ) × .
n n n
197 197 1 9 7
295 295 2 9 5
493 493 4 9 3
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− β 2 -\beta_{2} − β 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 4 − 11 T 5 3 + 139 T 5 2 + 198 T 5 + 324 T_{5}^{4} - 11T_{5}^{3} + 139T_{5}^{2} + 198T_{5} + 324 T 5 4 − 1 1 T 5 3 + 1 3 9 T 5 2 + 1 9 8 T 5 + 3 2 4
T5^4 - 11*T5^3 + 139*T5^2 + 198*T5 + 324
acting on S 4 n e w ( 588 , [ χ ] ) S_{4}^{\mathrm{new}}(588, [\chi]) S 4 n e w ( 5 8 8 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
( T 2 − 3 T + 9 ) 2 (T^{2} - 3 T + 9)^{2} ( T 2 − 3 T + 9 ) 2
(T^2 - 3*T + 9)^2
5 5 5
T 4 − 11 T 3 + ⋯ + 324 T^{4} - 11 T^{3} + \cdots + 324 T 4 − 1 1 T 3 + ⋯ + 3 2 4
T^4 - 11*T^3 + 139*T^2 + 198*T + 324
7 7 7
T 4 T^{4} T 4
T^4
11 11 1 1
T 4 − 5 T 3 + ⋯ + 5560164 T^{4} - 5 T^{3} + \cdots + 5560164 T 4 − 5 T 3 + ⋯ + 5 5 6 0 1 6 4
T^4 - 5*T^3 + 2383*T^2 + 11790*T + 5560164
13 13 1 3
( T 2 + 5 T − 1200 ) 2 (T^{2} + 5 T - 1200)^{2} ( T 2 + 5 T − 1 2 0 0 ) 2
(T^2 + 5*T - 1200)^2
17 17 1 7
T 4 − 100 T 3 + ⋯ + 2985984 T^{4} - 100 T^{3} + \cdots + 2985984 T 4 − 1 0 0 T 3 + ⋯ + 2 9 8 5 9 8 4
T^4 - 100*T^3 + 8272*T^2 - 172800*T + 2985984
19 19 1 9
T 4 − 67 T 3 + ⋯ + 473344 T^{4} - 67 T^{3} + \cdots + 473344 T 4 − 6 7 T 3 + ⋯ + 4 7 3 3 4 4
T^4 - 67*T^3 + 3801*T^2 - 46096*T + 473344
23 23 2 3
T 4 + 76 T 3 + ⋯ + 318836736 T^{4} + 76 T^{3} + \cdots + 318836736 T 4 + 7 6 T 3 + ⋯ + 3 1 8 8 3 6 7 3 6
T^4 + 76*T^3 + 23632*T^2 - 1357056*T + 318836736
29 29 2 9
( T 2 − 275 T + 13068 ) 2 (T^{2} - 275 T + 13068)^{2} ( T 2 − 2 7 5 T + 1 3 0 6 8 ) 2
(T^2 - 275*T + 13068)^2
31 31 3 1
T 4 − 362 T 3 + ⋯ + 181198521 T^{4} - 362 T^{3} + \cdots + 181198521 T 4 − 3 6 2 T 3 + ⋯ + 1 8 1 1 9 8 5 2 1
T^4 - 362*T^3 + 117583*T^2 - 4872882*T + 181198521
37 37 3 7
T 4 + ⋯ + 9545290000 T^{4} + \cdots + 9545290000 T 4 + ⋯ + 9 5 4 5 2 9 0 0 0 0
T^4 - 5*T^3 + 97725*T^2 + 488500*T + 9545290000
41 41 4 1
( T 2 − 162 T − 9072 ) 2 (T^{2} - 162 T - 9072)^{2} ( T 2 − 1 6 2 T − 9 0 7 2 ) 2
(T^2 - 162*T - 9072)^2
43 43 4 3
( T 2 − 721 T + 129526 ) 2 (T^{2} - 721 T + 129526)^{2} ( T 2 − 7 2 1 T + 1 2 9 5 2 6 ) 2
(T^2 - 721*T + 129526)^2
47 47 4 7
T 4 + ⋯ + 2587553424 T^{4} + \cdots + 2587553424 T 4 + ⋯ + 2 5 8 7 5 5 3 4 2 4
T^4 + 216*T^3 + 97524*T^2 - 10987488*T + 2587553424
53 53 5 3
T 4 + ⋯ + 3288793104 T^{4} + \cdots + 3288793104 T 4 + ⋯ + 3 2 8 8 7 9 3 1 0 4
T^4 + 495*T^3 + 187677*T^2 + 28387260*T + 3288793104
59 59 5 9
T 4 + ⋯ + 16397314704 T^{4} + \cdots + 16397314704 T 4 + ⋯ + 1 6 3 9 7 3 1 4 7 0 4
T^4 - 173*T^3 + 157981*T^2 + 22152996*T + 16397314704
61 61 6 1
T 4 + 532 T 3 + ⋯ + 41525136 T^{4} + 532 T^{3} + \cdots + 41525136 T 4 + 5 3 2 T 3 + ⋯ + 4 1 5 2 5 1 3 6
T^4 + 532*T^3 + 289468*T^2 - 3428208*T + 41525136
67 67 6 7
T 4 + ⋯ + 80085604036 T^{4} + \cdots + 80085604036 T 4 + ⋯ + 8 0 0 8 5 6 0 4 0 3 6
T^4 + 111*T^3 + 295315*T^2 - 31412334*T + 80085604036
71 71 7 1
( T 2 − 1600 T + 546588 ) 2 (T^{2} - 1600 T + 546588)^{2} ( T 2 − 1 6 0 0 T + 5 4 6 5 8 8 ) 2
(T^2 - 1600*T + 546588)^2
73 73 7 3
T 4 + ⋯ + 54532524484 T^{4} + \cdots + 54532524484 T 4 + ⋯ + 5 4 5 3 2 5 2 4 4 8 4
T^4 - 1215*T^3 + 1242703*T^2 - 283729230*T + 54532524484
79 79 7 9
T 4 + ⋯ + 120705520329 T^{4} + \cdots + 120705520329 T 4 + ⋯ + 1 2 0 7 0 5 5 2 0 3 2 9
T^4 + 1460*T^3 + 1784173*T^2 + 507243420*T + 120705520329
83 83 8 3
( T 2 − 1409 T + 4122 ) 2 (T^{2} - 1409 T + 4122)^{2} ( T 2 − 1 4 0 9 T + 4 1 2 2 ) 2
(T^2 - 1409*T + 4122)^2
89 89 8 9
T 4 + ⋯ + 790420571136 T^{4} + \cdots + 790420571136 T 4 + ⋯ + 7 9 0 4 2 0 5 7 1 1 3 6
T^4 + 1974*T^3 + 3007620*T^2 + 1754996544*T + 790420571136
97 97 9 7
( T 2 + 561 T + 38102 ) 2 (T^{2} + 561 T + 38102)^{2} ( T 2 + 5 6 1 T + 3 8 1 0 2 ) 2
(T^2 + 561*T + 38102)^2
show more
show less