Properties

Label 588.6.k
Level $588$
Weight $6$
Character orbit 588.k
Rep. character $\chi_{588}(509,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $134$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.k (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(588, [\chi])\).

Total New Old
Modular forms 1168 134 1034
Cusp forms 1072 134 938
Eisenstein series 96 0 96

Trace form

\( 134 q - 410 q^{9} - 138 q^{15} + 3753 q^{19} - 39891 q^{25} - 9411 q^{31} - 1053 q^{33} - 30097 q^{37} + 6173 q^{39} - 35830 q^{43} - 14733 q^{45} + 38769 q^{51} - 9380 q^{57} - 61230 q^{61} - 75367 q^{67}+ \cdots - 361222 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(588, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(588, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 2}\)