Properties

Label 588.6.q
Level $588$
Weight $6$
Character orbit 588.q
Rep. character $\chi_{588}(85,\cdot)$
Character field $\Q(\zeta_{7})$
Dimension $276$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.q (of order \(7\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{7})\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(588, [\chi])\).

Total New Old
Modular forms 3396 276 3120
Cusp forms 3324 276 3048
Eisenstein series 72 0 72

Trace form

\( 276 q - 44 q^{5} - 3726 q^{9} - 750 q^{11} + 396 q^{13} + 990 q^{15} - 258 q^{17} - 12148 q^{19} - 882 q^{21} - 2552 q^{23} - 29330 q^{25} - 11088 q^{29} + 7320 q^{31} - 360 q^{33} - 26376 q^{35} + 11470 q^{37}+ \cdots + 28836 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(588, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(588, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 2}\)