Defining parameters
Level: | \( N \) | \(=\) | \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 588.t (of order \(14\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 147 \) |
Character field: | \(\Q(\zeta_{14})\) | ||
Sturm bound: | \(672\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(588, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3396 | 564 | 2832 |
Cusp forms | 3324 | 564 | 2760 |
Eisenstein series | 72 | 0 | 72 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(588, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{6}^{\mathrm{old}}(588, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 2}\)