Properties

Label 588.6.t
Level $588$
Weight $6$
Character orbit 588.t
Rep. character $\chi_{588}(41,\cdot)$
Character field $\Q(\zeta_{14})$
Dimension $564$
Sturm bound $672$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.t (of order \(14\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 147 \)
Character field: \(\Q(\zeta_{14})\)
Sturm bound: \(672\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(588, [\chi])\).

Total New Old
Modular forms 3396 564 2832
Cusp forms 3324 564 2760
Eisenstein series 72 0 72

Trace form

\( 564 q - 100 q^{7} + 950 q^{9} - 1086 q^{15} + 2274 q^{21} - 59886 q^{25} + 14091 q^{27} + 45088 q^{37} - 5038 q^{39} + 3732 q^{43} + 69839 q^{45} + 90534 q^{49} + 24762 q^{51} + 84434 q^{55} - 16871 q^{57}+ \cdots + 855502 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(588, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(588, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 2}\)