Properties

Label 588.8.f
Level $588$
Weight $8$
Character orbit 588.f
Rep. character $\chi_{588}(293,\cdot)$
Character field $\Q$
Dimension $94$
Newform subspaces $3$
Sturm bound $896$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 588.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(896\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(588, [\chi])\).

Total New Old
Modular forms 808 94 714
Cusp forms 760 94 666
Eisenstein series 48 0 48

Trace form

\( 94 q - 2656 q^{9} + 16206 q^{15} + 1652774 q^{25} - 667970 q^{37} - 1262066 q^{39} - 260702 q^{43} - 234786 q^{51} - 1854628 q^{57} - 790362 q^{67} + 31760182 q^{79} + 3226512 q^{81} + 7216788 q^{85} + 7009824 q^{93}+ \cdots + 21405058 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(588, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
588.8.f.a 588.f 21.c $2$ $183.682$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 84.8.k.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+27\beta q^{3}-2187 q^{9}+5541\beta q^{13}+\cdots\)
588.8.f.b 588.f 21.c $36$ $183.682$ None 84.8.k.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
588.8.f.c 588.f 21.c $56$ $183.682$ None 588.8.f.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{8}^{\mathrm{old}}(588, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 2}\)