Properties

Label 588.8.f
Level 588588
Weight 88
Character orbit 588.f
Rep. character χ588(293,)\chi_{588}(293,\cdot)
Character field Q\Q
Dimension 9494
Newform subspaces 33
Sturm bound 896896
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 588=22372 588 = 2^{2} \cdot 3 \cdot 7^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 588.f (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 21 21
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 896896
Trace bound: 11
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M8(588,[χ])M_{8}(588, [\chi]).

Total New Old
Modular forms 808 94 714
Cusp forms 760 94 666
Eisenstein series 48 0 48

Trace form

94q2656q9+16206q15+1652774q25667970q371262066q39260702q43234786q511854628q57790362q67+31760182q79+3226512q81+7216788q85+7009824q93++21405058q99+O(q100) 94 q - 2656 q^{9} + 16206 q^{15} + 1652774 q^{25} - 667970 q^{37} - 1262066 q^{39} - 260702 q^{43} - 234786 q^{51} - 1854628 q^{57} - 790362 q^{67} + 31760182 q^{79} + 3226512 q^{81} + 7216788 q^{85} + 7009824 q^{93}+ \cdots + 21405058 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S8new(588,[χ])S_{8}^{\mathrm{new}}(588, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
588.8.f.a 588.f 21.c 22 183.682183.682 Q(3)\Q(\sqrt{-3}) Q(3)\Q(\sqrt{-3}) 84.8.k.a 00 00 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q+27βq32187q9+5541βq13+q+27\beta q^{3}-2187 q^{9}+5541\beta q^{13}+\cdots
588.8.f.b 588.f 21.c 3636 183.682183.682 None 84.8.k.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]
588.8.f.c 588.f 21.c 5656 183.682183.682 None 588.8.f.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Decomposition of S8old(588,[χ])S_{8}^{\mathrm{old}}(588, [\chi]) into lower level spaces

S8old(588,[χ]) S_{8}^{\mathrm{old}}(588, [\chi]) \simeq S8new(21,[χ])S_{8}^{\mathrm{new}}(21, [\chi])6^{\oplus 6}\oplusS8new(42,[χ])S_{8}^{\mathrm{new}}(42, [\chi])4^{\oplus 4}\oplusS8new(84,[χ])S_{8}^{\mathrm{new}}(84, [\chi])2^{\oplus 2}\oplusS8new(147,[χ])S_{8}^{\mathrm{new}}(147, [\chi])3^{\oplus 3}\oplusS8new(294,[χ])S_{8}^{\mathrm{new}}(294, [\chi])2^{\oplus 2}