Defining parameters
Level: | \( N \) | \(=\) | \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 588.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(896\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(588, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 808 | 94 | 714 |
Cusp forms | 760 | 94 | 666 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(588, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
588.8.f.a | $2$ | $183.682$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+27\beta q^{3}-2187 q^{9}+5541\beta q^{13}+\cdots\) |
588.8.f.b | $36$ | $183.682$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
588.8.f.c | $56$ | $183.682$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{8}^{\mathrm{old}}(588, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 2}\)