Properties

Label 59.19.b.a
Level 5959
Weight 1919
Character orbit 59.b
Self dual yes
Analytic conductor 121.178121.178
Analytic rank 00
Dimension 11
CM discriminant -59
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [59,19,Mod(58,59)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(59, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 19, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("59.58");
 
S:= CuspForms(chi, 19);
 
N := Newforms(S);
 
Level: N N == 59 59
Weight: k k == 19 19
Character orbit: [χ][\chi] == 59.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 121.177821249121.177821249
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+10810q3+262144q41985254q550982910q7270564389q9+2833776640q1221460595740q15+68719476736q16216651752350q1762437037542q19520422424576q20++12 ⁣ ⁣68q95+O(q100) q + 10810 q^{3} + 262144 q^{4} - 1985254 q^{5} - 50982910 q^{7} - 270564389 q^{9} + 2833776640 q^{12} - 21460595740 q^{15} + 68719476736 q^{16} - 216651752350 q^{17} - 62437037542 q^{19} - 520422424576 q^{20}+ \cdots + 12\!\cdots\!68 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/59Z)×\left(\mathbb{Z}/59\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
58.1
0
0 10810.0 262144. −1.98525e6 0 −5.09829e7 0 −2.70564e8 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
59.b odd 2 1 CM by Q(59)\Q(\sqrt{-59})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 59.19.b.a 1
59.b odd 2 1 CM 59.19.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
59.19.b.a 1 1.a even 1 1 trivial
59.19.b.a 1 59.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S19new(59,[χ])S_{19}^{\mathrm{new}}(59, [\chi]):

T2 T_{2} Copy content Toggle raw display
T310810 T_{3} - 10810 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T10810 T - 10810 Copy content Toggle raw display
55 T+1985254 T + 1985254 Copy content Toggle raw display
77 T+50982910 T + 50982910 Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T+216651752350 T + 216651752350 Copy content Toggle raw display
1919 T+62437037542 T + 62437037542 Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T28956785336138 T - 28956785336138 Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T652243002714578 T - 652243002714578 Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T5739806619558650 T - 5739806619558650 Copy content Toggle raw display
5959 T+8662995818654939 T + 8662995818654939 Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T+56 ⁣ ⁣62 T + 56\!\cdots\!62 Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T18 ⁣ ⁣62 T - 18\!\cdots\!62 Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less