Properties

Label 59.7.b.c.58.12
Level $59$
Weight $7$
Character 59.58
Analytic conductor $13.573$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [59,7,Mod(58,59)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(59, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("59.58");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 59 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 59.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.5731909336\)
Analytic rank: \(0\)
Dimension: \(26\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 58.12
Character \(\chi\) \(=\) 59.58
Dual form 59.7.b.c.58.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.66346i q^{2} -37.4041 q^{3} +42.2521 q^{4} +9.17391 q^{5} +174.432i q^{6} +221.670 q^{7} -495.503i q^{8} +670.066 q^{9} -42.7822i q^{10} -1876.98i q^{11} -1580.40 q^{12} +2425.96i q^{13} -1033.75i q^{14} -343.142 q^{15} +393.381 q^{16} -4122.75 q^{17} -3124.83i q^{18} -12156.4 q^{19} +387.617 q^{20} -8291.37 q^{21} -8753.20 q^{22} -15276.1i q^{23} +18533.8i q^{24} -15540.8 q^{25} +11313.4 q^{26} +2204.38 q^{27} +9366.03 q^{28} -10510.9 q^{29} +1600.23i q^{30} +14698.9i q^{31} -33546.7i q^{32} +70206.6i q^{33} +19226.3i q^{34} +2033.58 q^{35} +28311.7 q^{36} -75441.9i q^{37} +56691.1i q^{38} -90740.7i q^{39} -4545.70i q^{40} -30830.6 q^{41} +38666.4i q^{42} -79362.5i q^{43} -79306.2i q^{44} +6147.12 q^{45} -71239.7 q^{46} +94557.7i q^{47} -14714.0 q^{48} -68511.4 q^{49} +72474.1i q^{50} +154208. q^{51} +102502. i q^{52} +63543.3 q^{53} -10280.0i q^{54} -17219.2i q^{55} -109838. i q^{56} +454700. q^{57} +49017.3i q^{58} +(203347. - 28817.0i) q^{59} -14498.5 q^{60} -182254. i q^{61} +68547.8 q^{62} +148534. q^{63} -131267. q^{64} +22255.5i q^{65} +327405. q^{66} +541123. i q^{67} -174195. q^{68} +571390. i q^{69} -9483.52i q^{70} -344464. q^{71} -332019. i q^{72} -230675. i q^{73} -351820. q^{74} +581291. q^{75} -513635. q^{76} -416069. i q^{77} -423166. q^{78} +94875.3 q^{79} +3608.84 q^{80} -570931. q^{81} +143777. i q^{82} -19783.7i q^{83} -350328. q^{84} -37821.7 q^{85} -370104. q^{86} +393152. q^{87} -930046. q^{88} -453016. i q^{89} -28666.9i q^{90} +537762. i q^{91} -645450. i q^{92} -549800. i q^{93} +440966. q^{94} -111522. q^{95} +1.25478e6i q^{96} -1.04599e6i q^{97} +319500. i q^{98} -1.25770e6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 10 q^{3} - 1090 q^{4} + 142 q^{5} + 406 q^{7} + 5432 q^{9} - 1124 q^{12} + 14982 q^{15} + 12734 q^{16} - 9108 q^{17} + 3850 q^{19} - 46896 q^{20} - 49034 q^{21} + 11238 q^{22} + 18792 q^{25} - 64590 q^{26}+ \cdots - 2396490 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/59\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.66346i 0.582932i −0.956581 0.291466i \(-0.905857\pi\)
0.956581 0.291466i \(-0.0941431\pi\)
\(3\) −37.4041 −1.38534 −0.692668 0.721256i \(-0.743565\pi\)
−0.692668 + 0.721256i \(0.743565\pi\)
\(4\) 42.2521 0.660190
\(5\) 9.17391 0.0733913 0.0366956 0.999326i \(-0.488317\pi\)
0.0366956 + 0.999326i \(0.488317\pi\)
\(6\) 174.432i 0.807558i
\(7\) 221.670 0.646268 0.323134 0.946353i \(-0.395263\pi\)
0.323134 + 0.946353i \(0.395263\pi\)
\(8\) 495.503i 0.967779i
\(9\) 670.066 0.919158
\(10\) 42.7822i 0.0427822i
\(11\) 1876.98i 1.41020i −0.709108 0.705100i \(-0.750902\pi\)
0.709108 0.705100i \(-0.249098\pi\)
\(12\) −1580.40 −0.914585
\(13\) 2425.96i 1.10421i 0.833773 + 0.552107i \(0.186176\pi\)
−0.833773 + 0.552107i \(0.813824\pi\)
\(14\) 1033.75i 0.376731i
\(15\) −343.142 −0.101672
\(16\) 393.381 0.0960402
\(17\) −4122.75 −0.839151 −0.419575 0.907721i \(-0.637821\pi\)
−0.419575 + 0.907721i \(0.637821\pi\)
\(18\) 3124.83i 0.535807i
\(19\) −12156.4 −1.77233 −0.886167 0.463366i \(-0.846641\pi\)
−0.886167 + 0.463366i \(0.846641\pi\)
\(20\) 387.617 0.0484522
\(21\) −8291.37 −0.895299
\(22\) −8753.20 −0.822051
\(23\) 15276.1i 1.25554i −0.778399 0.627770i \(-0.783968\pi\)
0.778399 0.627770i \(-0.216032\pi\)
\(24\) 18533.8i 1.34070i
\(25\) −15540.8 −0.994614
\(26\) 11313.4 0.643682
\(27\) 2204.38 0.111994
\(28\) 9366.03 0.426660
\(29\) −10510.9 −0.430971 −0.215485 0.976507i \(-0.569133\pi\)
−0.215485 + 0.976507i \(0.569133\pi\)
\(30\) 1600.23i 0.0592677i
\(31\) 14698.9i 0.493401i 0.969092 + 0.246701i \(0.0793464\pi\)
−0.969092 + 0.246701i \(0.920654\pi\)
\(32\) 33546.7i 1.02376i
\(33\) 70206.6i 1.95360i
\(34\) 19226.3i 0.489168i
\(35\) 2033.58 0.0474305
\(36\) 28311.7 0.606818
\(37\) 75441.9i 1.48939i −0.667407 0.744693i \(-0.732596\pi\)
0.667407 0.744693i \(-0.267404\pi\)
\(38\) 56691.1i 1.03315i
\(39\) 90740.7i 1.52971i
\(40\) 4545.70i 0.0710265i
\(41\) −30830.6 −0.447332 −0.223666 0.974666i \(-0.571803\pi\)
−0.223666 + 0.974666i \(0.571803\pi\)
\(42\) 38666.4i 0.521899i
\(43\) 79362.5i 0.998183i −0.866549 0.499092i \(-0.833667\pi\)
0.866549 0.499092i \(-0.166333\pi\)
\(44\) 79306.2i 0.930999i
\(45\) 6147.12 0.0674581
\(46\) −71239.7 −0.731895
\(47\) 94557.7i 0.910758i 0.890298 + 0.455379i \(0.150496\pi\)
−0.890298 + 0.455379i \(0.849504\pi\)
\(48\) −14714.0 −0.133048
\(49\) −68511.4 −0.582337
\(50\) 72474.1i 0.579793i
\(51\) 154208. 1.16251
\(52\) 102502.i 0.728990i
\(53\) 63543.3 0.426817 0.213409 0.976963i \(-0.431543\pi\)
0.213409 + 0.976963i \(0.431543\pi\)
\(54\) 10280.0i 0.0652849i
\(55\) 17219.2i 0.103496i
\(56\) 109838.i 0.625445i
\(57\) 454700. 2.45528
\(58\) 49017.3i 0.251227i
\(59\) 203347. 28817.0i 0.990107 0.140311i
\(60\) −14498.5 −0.0671226
\(61\) 182254.i 0.802947i −0.915871 0.401474i \(-0.868498\pi\)
0.915871 0.401474i \(-0.131502\pi\)
\(62\) 68547.8 0.287620
\(63\) 148534. 0.594022
\(64\) −131267. −0.500745
\(65\) 22255.5i 0.0810396i
\(66\) 327405. 1.13882
\(67\) 541123.i 1.79917i 0.436750 + 0.899583i \(0.356130\pi\)
−0.436750 + 0.899583i \(0.643870\pi\)
\(68\) −174195. −0.553999
\(69\) 571390.i 1.73934i
\(70\) 9483.52i 0.0276488i
\(71\) −344464. −0.962429 −0.481215 0.876603i \(-0.659804\pi\)
−0.481215 + 0.876603i \(0.659804\pi\)
\(72\) 332019.i 0.889541i
\(73\) 230675.i 0.592970i −0.955038 0.296485i \(-0.904186\pi\)
0.955038 0.296485i \(-0.0958144\pi\)
\(74\) −351820. −0.868212
\(75\) 581291. 1.37787
\(76\) −513635. −1.17008
\(77\) 416069.i 0.911367i
\(78\) −423166. −0.891716
\(79\) 94875.3 0.192430 0.0962148 0.995361i \(-0.469326\pi\)
0.0962148 + 0.995361i \(0.469326\pi\)
\(80\) 3608.84 0.00704851
\(81\) −570931. −1.07431
\(82\) 143777.i 0.260764i
\(83\) 19783.7i 0.0345998i −0.999850 0.0172999i \(-0.994493\pi\)
0.999850 0.0172999i \(-0.00550700\pi\)
\(84\) −350328. −0.591067
\(85\) −37821.7 −0.0615863
\(86\) −370104. −0.581873
\(87\) 393152. 0.597039
\(88\) −930046. −1.36476
\(89\) 453016.i 0.642605i −0.946977 0.321302i \(-0.895879\pi\)
0.946977 0.321302i \(-0.104121\pi\)
\(90\) 28666.9i 0.0393235i
\(91\) 537762.i 0.713618i
\(92\) 645450.i 0.828894i
\(93\) 549800.i 0.683527i
\(94\) 440966. 0.530911
\(95\) −111522. −0.130074
\(96\) 1.25478e6i 1.41826i
\(97\) 1.04599e6i 1.14607i −0.819531 0.573035i \(-0.805766\pi\)
0.819531 0.573035i \(-0.194234\pi\)
\(98\) 319500.i 0.339463i
\(99\) 1.25770e6i 1.29620i
\(100\) −656634. −0.656634
\(101\) 1.27564e6i 1.23813i 0.785341 + 0.619063i \(0.212487\pi\)
−0.785341 + 0.619063i \(0.787513\pi\)
\(102\) 719141.i 0.677663i
\(103\) 446388.i 0.408508i −0.978918 0.204254i \(-0.934523\pi\)
0.978918 0.204254i \(-0.0654768\pi\)
\(104\) 1.20207e6 1.06863
\(105\) −76064.2 −0.0657071
\(106\) 296331.i 0.248806i
\(107\) 1.42306e6 1.16164 0.580819 0.814033i \(-0.302732\pi\)
0.580819 + 0.814033i \(0.302732\pi\)
\(108\) 93139.7 0.0739373
\(109\) 2.08585e6i 1.61066i 0.592829 + 0.805329i \(0.298011\pi\)
−0.592829 + 0.805329i \(0.701989\pi\)
\(110\) −80301.1 −0.0603314
\(111\) 2.82183e6i 2.06330i
\(112\) 87200.7 0.0620677
\(113\) 1.20039e6i 0.831934i −0.909380 0.415967i \(-0.863443\pi\)
0.909380 0.415967i \(-0.136557\pi\)
\(114\) 2.12048e6i 1.43126i
\(115\) 140142.i 0.0921456i
\(116\) −444110. −0.284522
\(117\) 1.62555e6i 1.01495i
\(118\) −134387. 948302.i −0.0817921 0.577166i
\(119\) −913890. −0.542316
\(120\) 170028.i 0.0983956i
\(121\) −1.75148e6 −0.988662
\(122\) −849933. −0.468064
\(123\) 1.15319e6 0.619706
\(124\) 621061.i 0.325738i
\(125\) −285913. −0.146387
\(126\) 692680.i 0.346275i
\(127\) 1.23925e6 0.604988 0.302494 0.953151i \(-0.402181\pi\)
0.302494 + 0.953151i \(0.402181\pi\)
\(128\) 1.53483e6i 0.731863i
\(129\) 2.96848e6i 1.38282i
\(130\) 103788. 0.0472406
\(131\) 3.50861e6i 1.56071i −0.625339 0.780353i \(-0.715039\pi\)
0.625339 0.780353i \(-0.284961\pi\)
\(132\) 2.96638e6i 1.28975i
\(133\) −2.69472e6 −1.14540
\(134\) 2.52350e6 1.04879
\(135\) 20222.8 0.00821938
\(136\) 2.04283e6i 0.812112i
\(137\) 572795. 0.222760 0.111380 0.993778i \(-0.464473\pi\)
0.111380 + 0.993778i \(0.464473\pi\)
\(138\) 2.66466e6 1.01392
\(139\) 3.78973e6 1.41112 0.705560 0.708650i \(-0.250696\pi\)
0.705560 + 0.708650i \(0.250696\pi\)
\(140\) 85923.1 0.0313131
\(141\) 3.53684e6i 1.26171i
\(142\) 1.60639e6i 0.561031i
\(143\) 4.55346e6 1.55716
\(144\) 263591. 0.0882761
\(145\) −96426.4 −0.0316295
\(146\) −1.07574e6 −0.345661
\(147\) 2.56261e6 0.806733
\(148\) 3.18758e6i 0.983277i
\(149\) 3.00613e6i 0.908758i 0.890808 + 0.454379i \(0.150139\pi\)
−0.890808 + 0.454379i \(0.849861\pi\)
\(150\) 2.71083e6i 0.803208i
\(151\) 2.46182e6i 0.715031i 0.933907 + 0.357515i \(0.116376\pi\)
−0.933907 + 0.357515i \(0.883624\pi\)
\(152\) 6.02355e6i 1.71523i
\(153\) −2.76251e6 −0.771312
\(154\) −1.94032e6 −0.531265
\(155\) 134847.i 0.0362113i
\(156\) 3.83399e6i 1.00990i
\(157\) 5.78708e6i 1.49541i −0.664030 0.747706i \(-0.731155\pi\)
0.664030 0.747706i \(-0.268845\pi\)
\(158\) 442447.i 0.112173i
\(159\) −2.37678e6 −0.591285
\(160\) 307754.i 0.0751353i
\(161\) 3.38626e6i 0.811415i
\(162\) 2.66251e6i 0.626248i
\(163\) 6.06682e6 1.40087 0.700436 0.713715i \(-0.252989\pi\)
0.700436 + 0.713715i \(0.252989\pi\)
\(164\) −1.30266e6 −0.295324
\(165\) 644069.i 0.143377i
\(166\) −92260.6 −0.0201693
\(167\) 6.59870e6 1.41680 0.708400 0.705811i \(-0.249417\pi\)
0.708400 + 0.705811i \(0.249417\pi\)
\(168\) 4.10839e6i 0.866451i
\(169\) −1.05846e6 −0.219288
\(170\) 176380.i 0.0359007i
\(171\) −8.14561e6 −1.62905
\(172\) 3.35324e6i 0.658990i
\(173\) 1.61170e6i 0.311277i −0.987814 0.155639i \(-0.950256\pi\)
0.987814 0.155639i \(-0.0497435\pi\)
\(174\) 1.83345e6i 0.348034i
\(175\) −3.44494e6 −0.642787
\(176\) 738366.i 0.135436i
\(177\) −7.60602e6 + 1.07787e6i −1.37163 + 0.194379i
\(178\) −2.11262e6 −0.374595
\(179\) 4.44788e6i 0.775522i −0.921760 0.387761i \(-0.873249\pi\)
0.921760 0.387761i \(-0.126751\pi\)
\(180\) 259729. 0.0445352
\(181\) −5.59004e6 −0.942712 −0.471356 0.881943i \(-0.656235\pi\)
−0.471356 + 0.881943i \(0.656235\pi\)
\(182\) 2.50783e6 0.415991
\(183\) 6.81704e6i 1.11235i
\(184\) −7.56937e6 −1.21508
\(185\) 692097.i 0.109308i
\(186\) −2.56397e6 −0.398450
\(187\) 7.73830e6i 1.18337i
\(188\) 3.99526e6i 0.601273i
\(189\) 488644. 0.0723782
\(190\) 520079.i 0.0758243i
\(191\) 1.53218e6i 0.219892i 0.993938 + 0.109946i \(0.0350679\pi\)
−0.993938 + 0.109946i \(0.964932\pi\)
\(192\) 4.90993e6 0.693700
\(193\) −6.01175e6 −0.836236 −0.418118 0.908393i \(-0.637310\pi\)
−0.418118 + 0.908393i \(0.637310\pi\)
\(194\) −4.87792e6 −0.668081
\(195\) 832447.i 0.112267i
\(196\) −2.89475e6 −0.384453
\(197\) 7.88993e6 1.03199 0.515994 0.856592i \(-0.327423\pi\)
0.515994 + 0.856592i \(0.327423\pi\)
\(198\) −5.86522e6 −0.755594
\(199\) −5.83390e6 −0.740286 −0.370143 0.928975i \(-0.620691\pi\)
−0.370143 + 0.928975i \(0.620691\pi\)
\(200\) 7.70053e6i 0.962566i
\(201\) 2.02402e7i 2.49245i
\(202\) 5.94891e6 0.721744
\(203\) −2.32996e6 −0.278523
\(204\) 6.51560e6 0.767475
\(205\) −282837. −0.0328303
\(206\) −2.08171e6 −0.238133
\(207\) 1.02360e7i 1.15404i
\(208\) 954325.i 0.106049i
\(209\) 2.28173e7i 2.49934i
\(210\) 354722.i 0.0383028i
\(211\) 6.86056e6i 0.730319i −0.930945 0.365159i \(-0.881015\pi\)
0.930945 0.365159i \(-0.118985\pi\)
\(212\) 2.68484e6 0.281780
\(213\) 1.28844e7 1.33329
\(214\) 6.63637e6i 0.677157i
\(215\) 728065.i 0.0732579i
\(216\) 1.09227e6i 0.108385i
\(217\) 3.25831e6i 0.318870i
\(218\) 9.72727e6 0.938904
\(219\) 8.62820e6i 0.821463i
\(220\) 727548.i 0.0683272i
\(221\) 1.00016e7i 0.926602i
\(222\) 1.31595e7 1.20277
\(223\) −1.30935e7 −1.18071 −0.590353 0.807145i \(-0.701011\pi\)
−0.590353 + 0.807145i \(0.701011\pi\)
\(224\) 7.43629e6i 0.661626i
\(225\) −1.04134e7 −0.914207
\(226\) −5.59799e6 −0.484961
\(227\) 1.12823e7i 0.964543i −0.876022 0.482272i \(-0.839812\pi\)
0.876022 0.482272i \(-0.160188\pi\)
\(228\) 1.92121e7 1.62095
\(229\) 1.07738e7i 0.897144i 0.893747 + 0.448572i \(0.148067\pi\)
−0.893747 + 0.448572i \(0.851933\pi\)
\(230\) −653547. −0.0537147
\(231\) 1.55627e7i 1.26255i
\(232\) 5.20820e6i 0.417084i
\(233\) 776578.i 0.0613928i 0.999529 + 0.0306964i \(0.00977250\pi\)
−0.999529 + 0.0306964i \(0.990228\pi\)
\(234\) 7.58069e6 0.591645
\(235\) 867463.i 0.0668417i
\(236\) 8.59186e6 1.21758e6i 0.653659 0.0926322i
\(237\) −3.54872e6 −0.266580
\(238\) 4.26189e6i 0.316134i
\(239\) 896008. 0.0656324 0.0328162 0.999461i \(-0.489552\pi\)
0.0328162 + 0.999461i \(0.489552\pi\)
\(240\) −134985. −0.00976456
\(241\) −3.30996e6 −0.236468 −0.118234 0.992986i \(-0.537723\pi\)
−0.118234 + 0.992986i \(0.537723\pi\)
\(242\) 8.16794e6i 0.576323i
\(243\) 1.97482e7 1.37628
\(244\) 7.70061e6i 0.530098i
\(245\) −628517. −0.0427385
\(246\) 5.37785e6i 0.361247i
\(247\) 2.94910e7i 1.95703i
\(248\) 7.28335e6 0.477503
\(249\) 739992.i 0.0479324i
\(250\) 1.33334e6i 0.0853339i
\(251\) −3.95442e6 −0.250070 −0.125035 0.992152i \(-0.539904\pi\)
−0.125035 + 0.992152i \(0.539904\pi\)
\(252\) 6.27586e6 0.392167
\(253\) −2.86730e7 −1.77056
\(254\) 5.77918e6i 0.352667i
\(255\) 1.41469e6 0.0853178
\(256\) −1.55587e7 −0.927372
\(257\) 2.02159e7 1.19095 0.595477 0.803373i \(-0.296963\pi\)
0.595477 + 0.803373i \(0.296963\pi\)
\(258\) 1.38434e7 0.806090
\(259\) 1.67232e7i 0.962543i
\(260\) 940343.i 0.0535015i
\(261\) −7.04302e6 −0.396130
\(262\) −1.63623e7 −0.909786
\(263\) −1.29640e7 −0.712643 −0.356321 0.934363i \(-0.615969\pi\)
−0.356321 + 0.934363i \(0.615969\pi\)
\(264\) 3.47875e7 1.89065
\(265\) 582940. 0.0313247
\(266\) 1.25667e7i 0.667693i
\(267\) 1.69447e7i 0.890224i
\(268\) 2.28636e7i 1.18779i
\(269\) 2.08133e7i 1.06926i 0.845086 + 0.534630i \(0.179549\pi\)
−0.845086 + 0.534630i \(0.820451\pi\)
\(270\) 94308.0i 0.00479134i
\(271\) −3.45377e6 −0.173534 −0.0867671 0.996229i \(-0.527654\pi\)
−0.0867671 + 0.996229i \(0.527654\pi\)
\(272\) −1.62181e6 −0.0805922
\(273\) 2.01145e7i 0.988601i
\(274\) 2.67121e6i 0.129854i
\(275\) 2.91698e7i 1.40260i
\(276\) 2.41425e7i 1.14830i
\(277\) 1.75486e7 0.825663 0.412832 0.910807i \(-0.364540\pi\)
0.412832 + 0.910807i \(0.364540\pi\)
\(278\) 1.76733e7i 0.822588i
\(279\) 9.84924e6i 0.453513i
\(280\) 1.00764e6i 0.0459022i
\(281\) 3.94952e6 0.178002 0.0890010 0.996032i \(-0.471633\pi\)
0.0890010 + 0.996032i \(0.471633\pi\)
\(282\) −1.64939e7 −0.735490
\(283\) 3.57712e6i 0.157824i −0.996882 0.0789122i \(-0.974855\pi\)
0.996882 0.0789122i \(-0.0251447\pi\)
\(284\) −1.45543e7 −0.635386
\(285\) 4.17138e6 0.180196
\(286\) 2.12349e7i 0.907720i
\(287\) −6.83422e6 −0.289097
\(288\) 2.24785e7i 0.941000i
\(289\) −7.14052e6 −0.295826
\(290\) 449681.i 0.0184378i
\(291\) 3.91242e7i 1.58769i
\(292\) 9.74652e6i 0.391472i
\(293\) −4.27637e6 −0.170009 −0.0850045 0.996381i \(-0.527090\pi\)
−0.0850045 + 0.996381i \(0.527090\pi\)
\(294\) 1.19506e7i 0.470271i
\(295\) 1.86549e6 264365.i 0.0726652 0.0102976i
\(296\) −3.73816e7 −1.44140
\(297\) 4.13756e6i 0.157934i
\(298\) 1.40189e7 0.529745
\(299\) 3.70593e7 1.38638
\(300\) 2.45608e7 0.909659
\(301\) 1.75923e7i 0.645094i
\(302\) 1.14806e7 0.416815
\(303\) 4.77142e7i 1.71522i
\(304\) −4.78211e6 −0.170215
\(305\) 1.67198e6i 0.0589293i
\(306\) 1.28829e7i 0.449623i
\(307\) 1.94010e7 0.670514 0.335257 0.942127i \(-0.391177\pi\)
0.335257 + 0.942127i \(0.391177\pi\)
\(308\) 1.75798e7i 0.601675i
\(309\) 1.66967e7i 0.565921i
\(310\) 628851. 0.0211088
\(311\) −5.54099e7 −1.84207 −0.921035 0.389481i \(-0.872655\pi\)
−0.921035 + 0.389481i \(0.872655\pi\)
\(312\) −4.49623e7 −1.48042
\(313\) 5.12927e7i 1.67272i 0.548182 + 0.836359i \(0.315320\pi\)
−0.548182 + 0.836359i \(0.684680\pi\)
\(314\) −2.69878e7 −0.871724
\(315\) 1.36263e6 0.0435961
\(316\) 4.00868e6 0.127040
\(317\) −2.88628e7 −0.906069 −0.453034 0.891493i \(-0.649659\pi\)
−0.453034 + 0.891493i \(0.649659\pi\)
\(318\) 1.10840e7i 0.344679i
\(319\) 1.97288e7i 0.607754i
\(320\) −1.20423e6 −0.0367503
\(321\) −5.32282e7 −1.60926
\(322\) −1.57917e7 −0.473000
\(323\) 5.01179e7 1.48726
\(324\) −2.41230e7 −0.709246
\(325\) 3.77014e7i 1.09827i
\(326\) 2.82924e7i 0.816614i
\(327\) 7.80192e7i 2.23130i
\(328\) 1.52766e7i 0.432919i
\(329\) 2.09606e7i 0.588594i
\(330\) 3.00359e6 0.0835793
\(331\) 8.65891e6 0.238770 0.119385 0.992848i \(-0.461908\pi\)
0.119385 + 0.992848i \(0.461908\pi\)
\(332\) 835904.i 0.0228424i
\(333\) 5.05510e7i 1.36898i
\(334\) 3.07728e7i 0.825899i
\(335\) 4.96421e6i 0.132043i
\(336\) −3.26166e6 −0.0859847
\(337\) 3.33853e7i 0.872299i 0.899874 + 0.436149i \(0.143658\pi\)
−0.899874 + 0.436149i \(0.856342\pi\)
\(338\) 4.93608e6i 0.127830i
\(339\) 4.48997e7i 1.15251i
\(340\) −1.59805e6 −0.0406587
\(341\) 2.75895e7 0.695794
\(342\) 3.79867e7i 0.949628i
\(343\) −4.12662e7 −1.02261
\(344\) −3.93243e7 −0.966020
\(345\) 5.24188e6i 0.127653i
\(346\) −7.51612e6 −0.181454
\(347\) 2.72488e6i 0.0652168i 0.999468 + 0.0326084i \(0.0103814\pi\)
−0.999468 + 0.0326084i \(0.989619\pi\)
\(348\) 1.66115e7 0.394159
\(349\) 1.91349e7i 0.450143i −0.974342 0.225071i \(-0.927738\pi\)
0.974342 0.225071i \(-0.0722615\pi\)
\(350\) 1.60653e7i 0.374702i
\(351\) 5.34773e6i 0.123665i
\(352\) −6.29663e7 −1.44371
\(353\) 6.99509e7i 1.59026i −0.606437 0.795132i \(-0.707402\pi\)
0.606437 0.795132i \(-0.292598\pi\)
\(354\) 5.02662e6 + 3.54704e7i 0.113310 + 0.799569i
\(355\) −3.16008e6 −0.0706339
\(356\) 1.91409e7i 0.424241i
\(357\) 3.41832e7 0.751291
\(358\) −2.07425e7 −0.452077
\(359\) 8.97797e7 1.94042 0.970208 0.242272i \(-0.0778927\pi\)
0.970208 + 0.242272i \(0.0778927\pi\)
\(360\) 3.04592e6i 0.0652845i
\(361\) 1.00733e8 2.14117
\(362\) 2.60689e7i 0.549538i
\(363\) 6.55123e7 1.36963
\(364\) 2.27216e7i 0.471123i
\(365\) 2.11619e6i 0.0435188i
\(366\) 3.17910e7 0.648426
\(367\) 8.22941e7i 1.66483i 0.554152 + 0.832416i \(0.313043\pi\)
−0.554152 + 0.832416i \(0.686957\pi\)
\(368\) 6.00934e6i 0.120582i
\(369\) −2.06585e7 −0.411169
\(370\) −3.22757e6 −0.0637192
\(371\) 1.40856e7 0.275838
\(372\) 2.32302e7i 0.451257i
\(373\) −3.31563e6 −0.0638911 −0.0319455 0.999490i \(-0.510170\pi\)
−0.0319455 + 0.999490i \(0.510170\pi\)
\(374\) 3.60872e7 0.689825
\(375\) 1.06943e7 0.202796
\(376\) 4.68536e7 0.881412
\(377\) 2.54991e7i 0.475883i
\(378\) 2.27877e6i 0.0421916i
\(379\) 1.02107e8 1.87559 0.937796 0.347186i \(-0.112863\pi\)
0.937796 + 0.347186i \(0.112863\pi\)
\(380\) −4.71205e6 −0.0858734
\(381\) −4.63529e7 −0.838112
\(382\) 7.14527e6 0.128182
\(383\) 7.60449e7 1.35355 0.676774 0.736190i \(-0.263377\pi\)
0.676774 + 0.736190i \(0.263377\pi\)
\(384\) 5.74088e7i 1.01388i
\(385\) 3.81698e6i 0.0668864i
\(386\) 2.80355e7i 0.487469i
\(387\) 5.31781e7i 0.917487i
\(388\) 4.41952e7i 0.756623i
\(389\) −8.93799e7 −1.51842 −0.759208 0.650848i \(-0.774414\pi\)
−0.759208 + 0.650848i \(0.774414\pi\)
\(390\) −3.88208e6 −0.0654442
\(391\) 6.29797e7i 1.05359i
\(392\) 3.39476e7i 0.563574i
\(393\) 1.31236e8i 2.16210i
\(394\) 3.67944e7i 0.601579i
\(395\) 870377. 0.0141226
\(396\) 5.31404e7i 0.855735i
\(397\) 4.00879e7i 0.640682i 0.947302 + 0.320341i \(0.103797\pi\)
−0.947302 + 0.320341i \(0.896203\pi\)
\(398\) 2.72061e7i 0.431537i
\(399\) 1.00793e8 1.58677
\(400\) −6.11347e6 −0.0955229
\(401\) 9.20120e7i 1.42696i −0.700676 0.713480i \(-0.747118\pi\)
0.700676 0.713480i \(-0.252882\pi\)
\(402\) −9.43894e7 −1.45293
\(403\) −3.56589e7 −0.544820
\(404\) 5.38986e7i 0.817398i
\(405\) −5.23767e6 −0.0788448
\(406\) 1.08657e7i 0.162360i
\(407\) −1.41603e8 −2.10033
\(408\) 7.64103e7i 1.12505i
\(409\) 5.81927e7i 0.850547i −0.905065 0.425274i \(-0.860178\pi\)
0.905065 0.425274i \(-0.139822\pi\)
\(410\) 1.31900e6i 0.0191378i
\(411\) −2.14249e7 −0.308598
\(412\) 1.88608e7i 0.269693i
\(413\) 4.50760e7 6.38787e6i 0.639875 0.0906788i
\(414\) −4.77353e7 −0.672727
\(415\) 181494.i 0.00253932i
\(416\) 8.13828e7 1.13045
\(417\) −1.41751e8 −1.95488
\(418\) 1.06408e8 1.45695
\(419\) 9.39093e7i 1.27663i −0.769773 0.638317i \(-0.779631\pi\)
0.769773 0.638317i \(-0.220369\pi\)
\(420\) −3.21388e6 −0.0433792
\(421\) 3.33313e7i 0.446690i 0.974739 + 0.223345i \(0.0716976\pi\)
−0.974739 + 0.223345i \(0.928302\pi\)
\(422\) −3.19940e7 −0.425726
\(423\) 6.33599e7i 0.837130i
\(424\) 3.14859e7i 0.413064i
\(425\) 6.40710e7 0.834631
\(426\) 6.00857e7i 0.777217i
\(427\) 4.04002e7i 0.518919i
\(428\) 6.01272e7 0.766902
\(429\) −1.70318e8 −2.15719
\(430\) −3.39530e6 −0.0427044
\(431\) 1.58784e8i 1.98324i −0.129187 0.991620i \(-0.541237\pi\)
0.129187 0.991620i \(-0.458763\pi\)
\(432\) 867160. 0.0107559
\(433\) 1.22323e8 1.50676 0.753380 0.657586i \(-0.228422\pi\)
0.753380 + 0.657586i \(0.228422\pi\)
\(434\) 1.51950e7 0.185879
\(435\) 3.60674e6 0.0438175
\(436\) 8.81315e7i 1.06334i
\(437\) 1.85704e8i 2.22523i
\(438\) 4.02373e7 0.478857
\(439\) −4.30639e7 −0.509002 −0.254501 0.967072i \(-0.581911\pi\)
−0.254501 + 0.967072i \(0.581911\pi\)
\(440\) −8.53216e6 −0.100162
\(441\) −4.59072e7 −0.535260
\(442\) −4.66421e7 −0.540146
\(443\) 8.97610e6i 0.103247i 0.998667 + 0.0516234i \(0.0164395\pi\)
−0.998667 + 0.0516234i \(0.983560\pi\)
\(444\) 1.19229e8i 1.36217i
\(445\) 4.15593e6i 0.0471616i
\(446\) 6.10611e7i 0.688271i
\(447\) 1.12441e8i 1.25894i
\(448\) −2.90980e7 −0.323615
\(449\) 3.54564e7 0.391702 0.195851 0.980634i \(-0.437253\pi\)
0.195851 + 0.980634i \(0.437253\pi\)
\(450\) 4.85624e7i 0.532921i
\(451\) 5.78682e7i 0.630828i
\(452\) 5.07193e7i 0.549234i
\(453\) 9.20820e7i 0.990559i
\(454\) −5.26147e7 −0.562264
\(455\) 4.93338e6i 0.0523733i
\(456\) 2.25305e8i 2.37617i
\(457\) 1.41739e8i 1.48505i −0.669820 0.742524i \(-0.733629\pi\)
0.669820 0.742524i \(-0.266371\pi\)
\(458\) 5.02431e7 0.522974
\(459\) −9.08809e6 −0.0939798
\(460\) 5.92130e6i 0.0608336i
\(461\) −1.49779e8 −1.52880 −0.764398 0.644745i \(-0.776964\pi\)
−0.764398 + 0.644745i \(0.776964\pi\)
\(462\) 7.25760e7 0.735982
\(463\) 6.59283e7i 0.664246i 0.943236 + 0.332123i \(0.107765\pi\)
−0.943236 + 0.332123i \(0.892235\pi\)
\(464\) −4.13480e6 −0.0413905
\(465\) 5.04381e6i 0.0501649i
\(466\) 3.62154e6 0.0357878
\(467\) 1.05945e7i 0.104023i 0.998646 + 0.0520116i \(0.0165633\pi\)
−0.998646 + 0.0520116i \(0.983437\pi\)
\(468\) 6.86830e7i 0.670057i
\(469\) 1.19951e8i 1.16274i
\(470\) 4.04538e6 0.0389642
\(471\) 2.16461e8i 2.07165i
\(472\) −1.42789e7 1.00759e8i −0.135790 0.958205i
\(473\) −1.48962e8 −1.40764
\(474\) 1.65493e7i 0.155398i
\(475\) 1.88921e8 1.76279
\(476\) −3.86138e7 −0.358032
\(477\) 4.25782e7 0.392312
\(478\) 4.17850e6i 0.0382592i
\(479\) 6.65723e7 0.605741 0.302871 0.953032i \(-0.402055\pi\)
0.302871 + 0.953032i \(0.402055\pi\)
\(480\) 1.15113e7i 0.104088i
\(481\) 1.83019e8 1.64460
\(482\) 1.54359e7i 0.137845i
\(483\) 1.26660e8i 1.12408i
\(484\) −7.40036e7 −0.652705
\(485\) 9.59579e6i 0.0841115i
\(486\) 9.20947e7i 0.802280i
\(487\) −6.66154e7 −0.576750 −0.288375 0.957518i \(-0.593115\pi\)
−0.288375 + 0.957518i \(0.593115\pi\)
\(488\) −9.03072e7 −0.777075
\(489\) −2.26924e8 −1.94068
\(490\) 2.93107e6i 0.0249136i
\(491\) 5.93051e7 0.501012 0.250506 0.968115i \(-0.419403\pi\)
0.250506 + 0.968115i \(0.419403\pi\)
\(492\) 4.87247e7 0.409123
\(493\) 4.33340e7 0.361649
\(494\) −1.37530e8 −1.14082
\(495\) 1.15380e7i 0.0951294i
\(496\) 5.78227e6i 0.0473864i
\(497\) −7.63574e7 −0.621988
\(498\) 3.45092e6 0.0279413
\(499\) −8.45854e7 −0.680759 −0.340380 0.940288i \(-0.610556\pi\)
−0.340380 + 0.940288i \(0.610556\pi\)
\(500\) −1.20804e7 −0.0966434
\(501\) −2.46818e8 −1.96275
\(502\) 1.84413e7i 0.145774i
\(503\) 6.05751e7i 0.475981i −0.971267 0.237991i \(-0.923511\pi\)
0.971267 0.237991i \(-0.0764888\pi\)
\(504\) 7.35987e7i 0.574882i
\(505\) 1.17026e7i 0.0908676i
\(506\) 1.33715e8i 1.03212i
\(507\) 3.95907e7 0.303787
\(508\) 5.23609e7 0.399407
\(509\) 1.72063e8i 1.30477i −0.757889 0.652384i \(-0.773769\pi\)
0.757889 0.652384i \(-0.226231\pi\)
\(510\) 6.59733e6i 0.0497345i
\(511\) 5.11338e7i 0.383217i
\(512\) 2.56716e7i 0.191268i
\(513\) −2.67974e7 −0.198491
\(514\) 9.42763e7i 0.694245i
\(515\) 4.09512e6i 0.0299809i
\(516\) 1.25425e8i 0.912923i
\(517\) 1.77482e8 1.28435
\(518\) −7.79880e7 −0.561098
\(519\) 6.02843e7i 0.431223i
\(520\) 1.10277e7 0.0784284
\(521\) −2.57761e8 −1.82265 −0.911327 0.411683i \(-0.864941\pi\)
−0.911327 + 0.411683i \(0.864941\pi\)
\(522\) 3.28449e7i 0.230917i
\(523\) 1.99694e8 1.39592 0.697958 0.716139i \(-0.254092\pi\)
0.697958 + 0.716139i \(0.254092\pi\)
\(524\) 1.48246e8i 1.03036i
\(525\) 1.28855e8 0.890477
\(526\) 6.04571e7i 0.415423i
\(527\) 6.05999e7i 0.414038i
\(528\) 2.76179e7i 0.187624i
\(529\) −8.53248e7 −0.576379
\(530\) 2.71852e6i 0.0182602i
\(531\) 1.36256e8 1.93093e7i 0.910065 0.128968i
\(532\) −1.13858e8 −0.756183
\(533\) 7.47937e7i 0.493950i
\(534\) 7.90208e7 0.518940
\(535\) 1.30550e7 0.0852541
\(536\) 2.68128e8 1.74119
\(537\) 1.66369e8i 1.07436i
\(538\) 9.70618e7 0.623306
\(539\) 1.28594e8i 0.821212i
\(540\) 854455. 0.00542635
\(541\) 1.88027e8i 1.18749i 0.804655 + 0.593743i \(0.202351\pi\)
−0.804655 + 0.593743i \(0.797649\pi\)
\(542\) 1.61065e7i 0.101159i
\(543\) 2.09090e8 1.30597
\(544\) 1.38304e8i 0.859092i
\(545\) 1.91354e7i 0.118208i
\(546\) −9.38031e7 −0.576288
\(547\) 7.42370e7 0.453585 0.226792 0.973943i \(-0.427176\pi\)
0.226792 + 0.973943i \(0.427176\pi\)
\(548\) 2.42018e7 0.147064
\(549\) 1.22122e8i 0.738035i
\(550\) 1.36032e8 0.817623
\(551\) 1.27776e8 0.763824
\(552\) 2.83125e8 1.68330
\(553\) 2.10310e7 0.124361
\(554\) 8.18372e7i 0.481306i
\(555\) 2.58873e7i 0.151428i
\(556\) 1.60124e8 0.931607
\(557\) −1.71354e8 −0.991583 −0.495792 0.868442i \(-0.665122\pi\)
−0.495792 + 0.868442i \(0.665122\pi\)
\(558\) 4.59315e7 0.264368
\(559\) 1.92530e8 1.10221
\(560\) 799971. 0.00455523
\(561\) 2.89444e8i 1.63937i
\(562\) 1.84184e7i 0.103763i
\(563\) 2.01929e8i 1.13155i −0.824560 0.565774i \(-0.808578\pi\)
0.824560 0.565774i \(-0.191422\pi\)
\(564\) 1.49439e8i 0.832966i
\(565\) 1.10123e7i 0.0610567i
\(566\) −1.66818e7 −0.0920010
\(567\) −1.26558e8 −0.694290
\(568\) 1.70683e8i 0.931419i
\(569\) 4.48510e7i 0.243464i 0.992563 + 0.121732i \(0.0388449\pi\)
−0.992563 + 0.121732i \(0.961155\pi\)
\(570\) 1.94531e7i 0.105042i
\(571\) 2.52904e8i 1.35846i −0.733925 0.679231i \(-0.762314\pi\)
0.733925 0.679231i \(-0.237686\pi\)
\(572\) 1.92394e8 1.02802
\(573\) 5.73099e7i 0.304625i
\(574\) 3.18711e7i 0.168524i
\(575\) 2.37404e8i 1.24878i
\(576\) −8.79577e7 −0.460263
\(577\) −3.42868e8 −1.78484 −0.892420 0.451206i \(-0.850994\pi\)
−0.892420 + 0.451206i \(0.850994\pi\)
\(578\) 3.32995e7i 0.172447i
\(579\) 2.24864e8 1.15847
\(580\) −4.07422e6 −0.0208815
\(581\) 4.38546e6i 0.0223608i
\(582\) 1.82454e8 0.925517
\(583\) 1.19269e8i 0.601897i
\(584\) −1.14300e8 −0.573863
\(585\) 1.49127e7i 0.0744882i
\(586\) 1.99427e7i 0.0991038i
\(587\) 3.81349e8i 1.88542i 0.333612 + 0.942711i \(0.391733\pi\)
−0.333612 + 0.942711i \(0.608267\pi\)
\(588\) 1.08276e8 0.532597
\(589\) 1.78686e8i 0.874472i
\(590\) −1.23285e6 8.69963e6i −0.00600283 0.0423589i
\(591\) −2.95116e8 −1.42965
\(592\) 2.96774e7i 0.143041i
\(593\) −2.00104e8 −0.959601 −0.479801 0.877378i \(-0.659291\pi\)
−0.479801 + 0.877378i \(0.659291\pi\)
\(594\) −1.92954e7 −0.0920648
\(595\) −8.38394e6 −0.0398013
\(596\) 1.27015e8i 0.599953i
\(597\) 2.18212e8 1.02555
\(598\) 1.72824e8i 0.808168i
\(599\) −6.89658e7 −0.320888 −0.160444 0.987045i \(-0.551293\pi\)
−0.160444 + 0.987045i \(0.551293\pi\)
\(600\) 2.88031e8i 1.33348i
\(601\) 1.70435e8i 0.785119i 0.919727 + 0.392559i \(0.128410\pi\)
−0.919727 + 0.392559i \(0.871590\pi\)
\(602\) −8.20410e7 −0.376046
\(603\) 3.62588e8i 1.65372i
\(604\) 1.04017e8i 0.472056i
\(605\) −1.60679e7 −0.0725592
\(606\) −2.22513e8 −0.999858
\(607\) −4.17835e8 −1.86827 −0.934133 0.356926i \(-0.883825\pi\)
−0.934133 + 0.356926i \(0.883825\pi\)
\(608\) 4.07808e8i 1.81445i
\(609\) 8.71500e7 0.385848
\(610\) −7.79721e6 −0.0343518
\(611\) −2.29393e8 −1.00567
\(612\) −1.16722e8 −0.509212
\(613\) 9.16975e7i 0.398085i 0.979991 + 0.199043i \(0.0637832\pi\)
−0.979991 + 0.199043i \(0.936217\pi\)
\(614\) 9.04756e7i 0.390864i
\(615\) 1.05793e7 0.0454810
\(616\) −2.06163e8 −0.882002
\(617\) −1.15089e8 −0.489979 −0.244989 0.969526i \(-0.578784\pi\)
−0.244989 + 0.969526i \(0.578784\pi\)
\(618\) 7.78645e7 0.329894
\(619\) 1.33788e8 0.564087 0.282044 0.959402i \(-0.408988\pi\)
0.282044 + 0.959402i \(0.408988\pi\)
\(620\) 5.69755e6i 0.0239064i
\(621\) 3.36744e7i 0.140613i
\(622\) 2.58402e8i 1.07380i
\(623\) 1.00420e8i 0.415295i
\(624\) 3.56956e7i 0.146913i
\(625\) 2.40203e8 0.983870
\(626\) 2.39202e8 0.975082
\(627\) 8.53462e8i 3.46243i
\(628\) 2.44517e8i 0.987255i
\(629\) 3.11028e8i 1.24982i
\(630\) 6.35458e6i 0.0254136i
\(631\) −3.82563e8 −1.52270 −0.761352 0.648339i \(-0.775464\pi\)
−0.761352 + 0.648339i \(0.775464\pi\)
\(632\) 4.70109e7i 0.186229i
\(633\) 2.56613e8i 1.01174i
\(634\) 1.34601e8i 0.528177i
\(635\) 1.13687e7 0.0444009
\(636\) −1.00424e8 −0.390361
\(637\) 1.66206e8i 0.643025i
\(638\) 9.20044e7 0.354280
\(639\) −2.30814e8 −0.884624
\(640\) 1.40804e7i 0.0537124i
\(641\) 3.54583e7 0.134631 0.0673153 0.997732i \(-0.478557\pi\)
0.0673153 + 0.997732i \(0.478557\pi\)
\(642\) 2.48227e8i 0.938090i
\(643\) 1.77018e8 0.665864 0.332932 0.942951i \(-0.391962\pi\)
0.332932 + 0.942951i \(0.391962\pi\)
\(644\) 1.43077e8i 0.535688i
\(645\) 2.72326e7i 0.101487i
\(646\) 2.33723e8i 0.866969i
\(647\) −3.64728e8 −1.34665 −0.673327 0.739344i \(-0.735136\pi\)
−0.673327 + 0.739344i \(0.735136\pi\)
\(648\) 2.82898e8i 1.03969i
\(649\) −5.40888e7 3.81678e8i −0.197867 1.39625i
\(650\) −1.75819e8 −0.640215
\(651\) 1.21874e8i 0.441742i
\(652\) 2.56336e8 0.924841
\(653\) 3.63990e8 1.30722 0.653612 0.756830i \(-0.273253\pi\)
0.653612 + 0.756830i \(0.273253\pi\)
\(654\) −3.63840e8 −1.30070
\(655\) 3.21877e7i 0.114542i
\(656\) −1.21282e7 −0.0429619
\(657\) 1.54568e8i 0.545033i
\(658\) 9.77489e7 0.343111
\(659\) 2.72225e6i 0.00951201i −0.999989 0.00475601i \(-0.998486\pi\)
0.999989 0.00475601i \(-0.00151389\pi\)
\(660\) 2.72133e7i 0.0946562i
\(661\) −1.39910e8 −0.484444 −0.242222 0.970221i \(-0.577876\pi\)
−0.242222 + 0.970221i \(0.577876\pi\)
\(662\) 4.03805e7i 0.139187i
\(663\) 3.74101e8i 1.28366i
\(664\) −9.80288e6 −0.0334849
\(665\) −2.47211e7 −0.0840626
\(666\) −2.35743e8 −0.798023
\(667\) 1.60567e8i 0.541100i
\(668\) 2.78809e8 0.935357
\(669\) 4.89751e8 1.63567
\(670\) 2.31504e7 0.0769722
\(671\) −3.42086e8 −1.13232
\(672\) 2.78148e8i 0.916575i
\(673\) 8.72886e7i 0.286360i 0.989697 + 0.143180i \(0.0457328\pi\)
−0.989697 + 0.143180i \(0.954267\pi\)
\(674\) 1.55691e8 0.508491
\(675\) −3.42579e7 −0.111391
\(676\) −4.47222e7 −0.144771
\(677\) 2.35187e8 0.757962 0.378981 0.925405i \(-0.376275\pi\)
0.378981 + 0.925405i \(0.376275\pi\)
\(678\) 2.09388e8 0.671835
\(679\) 2.31864e8i 0.740668i
\(680\) 1.87408e7i 0.0596019i
\(681\) 4.22006e8i 1.33622i
\(682\) 1.28663e8i 0.405601i
\(683\) 5.31641e8i 1.66862i −0.551299 0.834308i \(-0.685867\pi\)
0.551299 0.834308i \(-0.314133\pi\)
\(684\) −3.44170e8 −1.07548
\(685\) 5.25477e6 0.0163487
\(686\) 1.92443e8i 0.596115i
\(687\) 4.02984e8i 1.24285i
\(688\) 3.12197e7i 0.0958657i
\(689\) 1.54153e8i 0.471297i
\(690\) 2.44453e7 0.0744129
\(691\) 1.93656e7i 0.0586945i −0.999569 0.0293473i \(-0.990657\pi\)
0.999569 0.0293473i \(-0.00934287\pi\)
\(692\) 6.80980e7i 0.205502i
\(693\) 2.78794e8i 0.837690i
\(694\) 1.27074e7 0.0380170
\(695\) 3.47666e7 0.103564
\(696\) 1.94808e8i 0.577802i
\(697\) 1.27107e8 0.375379
\(698\) −8.92349e7 −0.262403
\(699\) 2.90472e7i 0.0850497i
\(700\) −1.45556e8 −0.424362
\(701\) 3.45490e8i 1.00296i −0.865171 0.501478i \(-0.832790\pi\)
0.865171 0.501478i \(-0.167210\pi\)
\(702\) 2.49389e7 0.0720885
\(703\) 9.17104e8i 2.63969i
\(704\) 2.46385e8i 0.706150i
\(705\) 3.24467e7i 0.0925983i
\(706\) −3.26213e8 −0.927016
\(707\) 2.82772e8i 0.800162i
\(708\) −3.21371e8 + 4.55425e7i −0.905537 + 0.128327i
\(709\) 3.59368e8 1.00833 0.504163 0.863608i \(-0.331801\pi\)
0.504163 + 0.863608i \(0.331801\pi\)
\(710\) 1.47369e7i 0.0411748i
\(711\) 6.35727e7 0.176873
\(712\) −2.24471e8 −0.621899
\(713\) 2.24543e8 0.619485
\(714\) 1.59412e8i 0.437952i
\(715\) 4.17730e7 0.114282
\(716\) 1.87932e8i 0.511992i
\(717\) −3.35143e7 −0.0909229
\(718\) 4.18684e8i 1.13113i
\(719\) 4.23162e8i 1.13846i −0.822177 0.569232i \(-0.807241\pi\)
0.822177 0.569232i \(-0.192759\pi\)
\(720\) 2.41816e6 0.00647869
\(721\) 9.89507e7i 0.264006i
\(722\) 4.69765e8i 1.24816i
\(723\) 1.23806e8 0.327587
\(724\) −2.36191e8 −0.622369
\(725\) 1.63349e8 0.428649
\(726\) 3.05514e8i 0.798402i
\(727\) −3.00784e7 −0.0782801 −0.0391400 0.999234i \(-0.512462\pi\)
−0.0391400 + 0.999234i \(0.512462\pi\)
\(728\) 2.66462e8 0.690624
\(729\) −3.22453e8 −0.832308
\(730\) −9.86879e6 −0.0253685
\(731\) 3.27192e8i 0.837626i
\(732\) 2.88034e8i 0.734363i
\(733\) 1.31344e8 0.333502 0.166751 0.985999i \(-0.446672\pi\)
0.166751 + 0.985999i \(0.446672\pi\)
\(734\) 3.83775e8 0.970484
\(735\) 2.35091e7 0.0592072
\(736\) −5.12464e8 −1.28538
\(737\) 1.01567e9 2.53718
\(738\) 9.63402e7i 0.239684i
\(739\) 5.36073e8i 1.32828i 0.747607 + 0.664142i \(0.231203\pi\)
−0.747607 + 0.664142i \(0.768797\pi\)
\(740\) 2.92426e7i 0.0721640i
\(741\) 1.10308e9i 2.71115i
\(742\) 6.56878e7i 0.160795i
\(743\) −5.09948e8 −1.24325 −0.621626 0.783314i \(-0.713528\pi\)
−0.621626 + 0.783314i \(0.713528\pi\)
\(744\) −2.72427e8 −0.661503
\(745\) 2.75779e7i 0.0666949i
\(746\) 1.54623e7i 0.0372442i
\(747\) 1.32564e7i 0.0318027i
\(748\) 3.26960e8i 0.781249i
\(749\) 3.15449e8 0.750730
\(750\) 4.98724e7i 0.118216i
\(751\) 5.16995e8i 1.22058i −0.792178 0.610290i \(-0.791053\pi\)
0.792178 0.610290i \(-0.208947\pi\)
\(752\) 3.71972e7i 0.0874694i
\(753\) 1.47911e8 0.346431
\(754\) −1.18914e8 −0.277408
\(755\) 2.25845e7i 0.0524770i
\(756\) 2.06463e7 0.0477833
\(757\) 4.35762e8 1.00453 0.502263 0.864715i \(-0.332501\pi\)
0.502263 + 0.864715i \(0.332501\pi\)
\(758\) 4.76173e8i 1.09334i
\(759\) 1.07249e9 2.45282
\(760\) 5.52595e7i 0.125883i
\(761\) 2.10781e8 0.478275 0.239138 0.970986i \(-0.423135\pi\)
0.239138 + 0.970986i \(0.423135\pi\)
\(762\) 2.16165e8i 0.488563i
\(763\) 4.62370e8i 1.04092i
\(764\) 6.47380e7i 0.145171i
\(765\) −2.53430e7 −0.0566075
\(766\) 3.54632e8i 0.789028i
\(767\) 6.99089e7 + 4.93312e8i 0.154934 + 1.09329i
\(768\) 5.81959e8 1.28472
\(769\) 6.80893e8i 1.49727i −0.662983 0.748635i \(-0.730710\pi\)
0.662983 0.748635i \(-0.269290\pi\)
\(770\) −1.78003e7 −0.0389903
\(771\) −7.56159e8 −1.64987
\(772\) −2.54009e8 −0.552074
\(773\) 1.27276e7i 0.0275556i −0.999905 0.0137778i \(-0.995614\pi\)
0.999905 0.0137778i \(-0.00438574\pi\)
\(774\) −2.47994e8 −0.534833
\(775\) 2.28433e8i 0.490744i
\(776\) −5.18289e8 −1.10914
\(777\) 6.25516e8i 1.33345i
\(778\) 4.16819e8i 0.885134i
\(779\) 3.74790e8 0.792822
\(780\) 3.51727e7i 0.0741176i
\(781\) 6.46551e8i 1.35722i
\(782\) 2.93703e8 0.614170
\(783\) −2.31701e7 −0.0482661
\(784\) −2.69511e7 −0.0559278
\(785\) 5.30902e7i 0.109750i
\(786\) 6.12015e8 1.26036
\(787\) 6.84602e7 0.140447 0.0702237 0.997531i \(-0.477629\pi\)
0.0702237 + 0.997531i \(0.477629\pi\)
\(788\) 3.33366e8 0.681308
\(789\) 4.84907e8 0.987250
\(790\) 4.05897e6i 0.00823255i
\(791\) 2.66092e8i 0.537652i
\(792\) −6.23192e8 −1.25443
\(793\) 4.42140e8 0.886625
\(794\) 1.86948e8 0.373474
\(795\) −2.18043e7 −0.0433952
\(796\) −2.46495e8 −0.488729
\(797\) 8.47660e7i 0.167435i 0.996490 + 0.0837176i \(0.0266794\pi\)
−0.996490 + 0.0837176i \(0.973321\pi\)
\(798\) 4.70046e8i 0.924979i
\(799\) 3.89837e8i 0.764263i
\(800\) 5.21344e8i 1.01825i
\(801\) 3.03551e8i 0.590655i
\(802\) −4.29094e8 −0.831821
\(803\) −4.32972e8 −0.836205
\(804\) 8.55192e8i 1.64549i
\(805\) 3.10653e7i 0.0595508i
\(806\) 1.66294e8i 0.317593i
\(807\) 7.78501e8i 1.48128i
\(808\) 6.32084e8 1.19823
\(809\) 3.26264e8i 0.616204i 0.951353 + 0.308102i \(0.0996937\pi\)
−0.951353 + 0.308102i \(0.900306\pi\)
\(810\) 2.44256e7i 0.0459612i
\(811\) 1.97613e8i 0.370470i 0.982694 + 0.185235i \(0.0593047\pi\)
−0.982694 + 0.185235i \(0.940695\pi\)
\(812\) −9.84458e7 −0.183878
\(813\) 1.29185e8 0.240403
\(814\) 6.60358e8i 1.22435i
\(815\) 5.56565e7 0.102812
\(816\) 6.06623e7 0.111647
\(817\) 9.64766e8i 1.76911i
\(818\) −2.71379e8 −0.495812
\(819\) 3.60336e8i 0.655928i
\(820\) −1.19505e7 −0.0216742
\(821\) 1.06086e9i 1.91702i −0.285053 0.958512i \(-0.592011\pi\)
0.285053 0.958512i \(-0.407989\pi\)
\(822\) 9.99141e7i 0.179892i
\(823\) 7.67460e8i 1.37675i −0.725353 0.688377i \(-0.758324\pi\)
0.725353 0.688377i \(-0.241676\pi\)
\(824\) −2.21186e8 −0.395345
\(825\) 1.09107e9i 1.94308i
\(826\) −2.97896e7 2.10210e8i −0.0528596 0.373004i
\(827\) −5.91248e8 −1.04533 −0.522665 0.852538i \(-0.675062\pi\)
−0.522665 + 0.852538i \(0.675062\pi\)
\(828\) 4.32494e8i 0.761884i
\(829\) −3.99549e8 −0.701304 −0.350652 0.936506i \(-0.614040\pi\)
−0.350652 + 0.936506i \(0.614040\pi\)
\(830\) −846390. −0.00148025
\(831\) −6.56389e8 −1.14382
\(832\) 3.18449e8i 0.552929i
\(833\) 2.82455e8 0.488669
\(834\) 6.61052e8i 1.13956i
\(835\) 6.05358e7 0.103981
\(836\) 9.64081e8i 1.65004i
\(837\) 3.24020e7i 0.0552580i
\(838\) −4.37942e8 −0.744192
\(839\) 3.30724e8i 0.559989i 0.960002 + 0.279995i \(0.0903327\pi\)
−0.960002 + 0.279995i \(0.909667\pi\)
\(840\) 3.76900e7i 0.0635900i
\(841\) −4.84343e8 −0.814264
\(842\) 1.55439e8 0.260390
\(843\) −1.47728e8 −0.246593
\(844\) 2.89873e8i 0.482149i
\(845\) −9.71021e6 −0.0160938
\(846\) 2.95476e8 0.487990
\(847\) −3.88250e8 −0.638941
\(848\) 2.49967e7 0.0409916
\(849\) 1.33799e8i 0.218640i
\(850\) 2.98792e8i 0.486533i
\(851\) −1.15246e9 −1.86998
\(852\) 5.44392e8 0.880224
\(853\) −9.43491e8 −1.52016 −0.760082 0.649827i \(-0.774841\pi\)
−0.760082 + 0.649827i \(0.774841\pi\)
\(854\) −1.88405e8 −0.302495
\(855\) −7.47271e7 −0.119558
\(856\) 7.05129e8i 1.12421i
\(857\) 2.57279e8i 0.408753i 0.978892 + 0.204377i \(0.0655167\pi\)
−0.978892 + 0.204377i \(0.934483\pi\)
\(858\) 7.94272e8i 1.25750i
\(859\) 2.58079e8i 0.407168i −0.979058 0.203584i \(-0.934741\pi\)
0.979058 0.203584i \(-0.0652590\pi\)
\(860\) 3.07623e7i 0.0483641i
\(861\) 2.55628e8 0.400496
\(862\) −7.40484e8 −1.15610
\(863\) 3.72841e8i 0.580085i 0.957014 + 0.290043i \(0.0936695\pi\)
−0.957014 + 0.290043i \(0.906331\pi\)
\(864\) 7.39495e7i 0.114655i
\(865\) 1.47856e7i 0.0228450i
\(866\) 5.70448e8i 0.878339i
\(867\) 2.67085e8 0.409819
\(868\) 1.37671e8i 0.210514i
\(869\) 1.78079e8i 0.271364i
\(870\) 1.68199e7i 0.0255426i
\(871\) −1.31274e9 −1.98666
\(872\) 1.03354e9 1.55876
\(873\) 7.00880e8i 1.05342i
\(874\) 8.66021e8 1.29716
\(875\) −6.33782e7 −0.0946054
\(876\) 3.64560e8i 0.542321i
\(877\) 1.71955e7 0.0254927 0.0127463 0.999919i \(-0.495943\pi\)
0.0127463 + 0.999919i \(0.495943\pi\)
\(878\) 2.00827e8i 0.296714i
\(879\) 1.59954e8 0.235520
\(880\) 6.77370e6i 0.00993981i
\(881\) 6.96642e7i 0.101878i −0.998702 0.0509392i \(-0.983779\pi\)
0.998702 0.0509392i \(-0.0162215\pi\)
\(882\) 2.14086e8i 0.312020i
\(883\) −1.25832e8 −0.182771 −0.0913857 0.995816i \(-0.529130\pi\)
−0.0913857 + 0.995816i \(0.529130\pi\)
\(884\) 4.22589e8i 0.611733i
\(885\) −6.97769e7 + 9.88832e6i −0.100666 + 0.0142657i
\(886\) 4.18597e7 0.0601859
\(887\) 3.09682e8i 0.443757i 0.975074 + 0.221879i \(0.0712188\pi\)
−0.975074 + 0.221879i \(0.928781\pi\)
\(888\) 1.39823e9 1.99682
\(889\) 2.74704e8 0.390985
\(890\) −1.93810e7 −0.0274920
\(891\) 1.07162e9i 1.51499i
\(892\) −5.53229e8 −0.779489
\(893\) 1.14948e9i 1.61417i
\(894\) −5.24366e8 −0.733875
\(895\) 4.08045e7i 0.0569165i
\(896\) 3.40225e8i 0.472980i
\(897\) −1.38617e9 −1.92061
\(898\) 1.65350e8i 0.228336i
\(899\) 1.54499e8i 0.212641i
\(900\) −4.39988e8 −0.603550
\(901\) −2.61973e8 −0.358164
\(902\) 2.69866e8 0.367730
\(903\) 6.58024e8i 0.893672i
\(904\) −5.94799e8 −0.805128
\(905\) −5.12825e7 −0.0691869
\(906\) −4.29421e8 −0.577429
\(907\) 5.23269e8 0.701299 0.350650 0.936507i \(-0.385961\pi\)
0.350650 + 0.936507i \(0.385961\pi\)
\(908\) 4.76703e8i 0.636781i
\(909\) 8.54764e8i 1.13803i
\(910\) 2.30066e7 0.0305301
\(911\) 1.50080e9 1.98504 0.992518 0.122101i \(-0.0389631\pi\)
0.992518 + 0.122101i \(0.0389631\pi\)
\(912\) 1.78870e8 0.235805
\(913\) −3.71335e7 −0.0487926
\(914\) −6.60994e8 −0.865683
\(915\) 6.25389e7i 0.0816369i
\(916\) 4.55216e8i 0.592285i
\(917\) 7.77753e8i 1.00863i
\(918\) 4.23820e7i 0.0547839i
\(919\) 1.62510e8i 0.209379i 0.994505 + 0.104689i \(0.0333848\pi\)
−0.994505 + 0.104689i \(0.966615\pi\)
\(920\) −6.94407e7 −0.0891766
\(921\) −7.25675e8 −0.928888
\(922\) 6.98491e8i 0.891185i
\(923\) 8.35655e8i 1.06273i
\(924\) 6.57557e8i 0.833523i
\(925\) 1.17243e9i 1.48136i
\(926\) 3.07454e8 0.387211
\(927\) 2.99109e8i 0.375483i
\(928\) 3.52607e8i 0.441212i
\(929\) 9.65223e8i 1.20387i 0.798544 + 0.601936i \(0.205604\pi\)
−0.798544 + 0.601936i \(0.794396\pi\)
\(930\) −2.35216e7 −0.0292427
\(931\) 8.32855e8 1.03210
\(932\) 3.28121e7i 0.0405309i
\(933\) 2.07256e9 2.55189
\(934\) 4.94071e7 0.0606385
\(935\) 7.09904e7i 0.0868490i
\(936\) 8.05465e8 0.982243
\(937\) 2.42385e8i 0.294637i −0.989089 0.147319i \(-0.952936\pi\)
0.989089 0.147319i \(-0.0470643\pi\)
\(938\) 5.59385e8 0.677801
\(939\) 1.91856e9i 2.31728i
\(940\) 3.66522e7i 0.0441282i
\(941\) 1.01059e9i 1.21285i 0.795140 + 0.606426i \(0.207397\pi\)
−0.795140 + 0.606426i \(0.792603\pi\)
\(942\) 1.00945e9 1.20763
\(943\) 4.70973e8i 0.561643i
\(944\) 7.99929e7 1.13361e7i 0.0950901 0.0134755i
\(945\) 4.48278e6 0.00531193
\(946\) 6.94676e8i 0.820557i
\(947\) −6.71519e8 −0.790694 −0.395347 0.918532i \(-0.629376\pi\)
−0.395347 + 0.918532i \(0.629376\pi\)
\(948\) −1.49941e8 −0.175993
\(949\) 5.59608e8 0.654765
\(950\) 8.81027e8i 1.02759i
\(951\) 1.07959e9 1.25521
\(952\) 4.52835e8i 0.524842i
\(953\) −1.42930e9 −1.65137 −0.825685 0.564132i \(-0.809211\pi\)
−0.825685 + 0.564132i \(0.809211\pi\)
\(954\) 1.98562e8i 0.228692i
\(955\) 1.40561e7i 0.0161382i
\(956\) 3.78582e7 0.0433298
\(957\) 7.37937e8i 0.841944i
\(958\) 3.10457e8i 0.353106i
\(959\) 1.26972e8 0.143963
\(960\) 4.50433e7 0.0509115
\(961\) 6.71446e8 0.756555
\(962\) 8.53501e8i 0.958691i
\(963\) 9.53542e8 1.06773
\(964\) −1.39853e8 −0.156113
\(965\) −5.51512e7 −0.0613724
\(966\) 5.90674e8 0.655265
\(967\) 1.38084e9i 1.52709i −0.645754 0.763545i \(-0.723457\pi\)
0.645754 0.763545i \(-0.276543\pi\)
\(968\) 8.67861e8i 0.956806i
\(969\) −1.87462e9 −2.06035
\(970\) −4.47496e7 −0.0490313
\(971\) −6.60316e8 −0.721263 −0.360632 0.932708i \(-0.617439\pi\)
−0.360632 + 0.932708i \(0.617439\pi\)
\(972\) 8.34402e8 0.908608
\(973\) 8.40070e8 0.911962
\(974\) 3.10658e8i 0.336206i
\(975\) 1.41019e9i 1.52147i
\(976\) 7.16951e7i 0.0771152i
\(977\) 7.87607e8i 0.844551i −0.906468 0.422275i \(-0.861232\pi\)
0.906468 0.422275i \(-0.138768\pi\)
\(978\) 1.05825e9i 1.13128i
\(979\) −8.50301e8 −0.906201
\(980\) −2.65562e7 −0.0282155
\(981\) 1.39766e9i 1.48045i
\(982\) 2.76567e8i 0.292056i
\(983\) 8.93293e8i 0.940445i 0.882548 + 0.470222i \(0.155826\pi\)
−0.882548 + 0.470222i \(0.844174\pi\)
\(984\) 5.71409e8i 0.599738i
\(985\) 7.23815e7 0.0757389
\(986\) 2.02086e8i 0.210817i
\(987\) 7.84012e8i 0.815401i
\(988\) 1.24606e9i 1.29201i
\(989\) −1.21235e9 −1.25326
\(990\) −5.38070e7 −0.0554540
\(991\) 1.08986e9i 1.11982i −0.828553 0.559910i \(-0.810836\pi\)
0.828553 0.559910i \(-0.189164\pi\)
\(992\) 4.93100e8 0.505126
\(993\) −3.23879e8 −0.330776
\(994\) 3.56089e8i 0.362577i
\(995\) −5.35196e7 −0.0543305
\(996\) 3.12662e7i 0.0316445i
\(997\) 1.56208e9 1.57622 0.788112 0.615532i \(-0.211059\pi\)
0.788112 + 0.615532i \(0.211059\pi\)
\(998\) 3.94460e8i 0.396837i
\(999\) 1.66302e8i 0.166802i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 59.7.b.c.58.12 26
59.58 odd 2 inner 59.7.b.c.58.15 yes 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
59.7.b.c.58.12 26 1.1 even 1 trivial
59.7.b.c.58.15 yes 26 59.58 odd 2 inner