Properties

Label 59.7.b.c.58.13
Level $59$
Weight $7$
Character 59.58
Analytic conductor $13.573$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [59,7,Mod(58,59)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(59, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("59.58");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 59 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 59.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.5731909336\)
Analytic rank: \(0\)
Dimension: \(26\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 58.13
Character \(\chi\) \(=\) 59.58
Dual form 59.7.b.c.58.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.85246i q^{2} +13.0960 q^{3} +49.1585 q^{4} -100.422 q^{5} -50.4519i q^{6} -365.384 q^{7} -435.939i q^{8} -557.495 q^{9} +386.871i q^{10} +61.8507i q^{11} +643.780 q^{12} -4006.24i q^{13} +1407.63i q^{14} -1315.12 q^{15} +1466.71 q^{16} -670.367 q^{17} +2147.73i q^{18} -4252.09 q^{19} -4936.59 q^{20} -4785.07 q^{21} +238.277 q^{22} -6238.59i q^{23} -5709.06i q^{24} -5540.46 q^{25} -15433.9 q^{26} -16847.9 q^{27} -17961.8 q^{28} -741.535 q^{29} +5066.47i q^{30} +49303.7i q^{31} -33550.5i q^{32} +809.997i q^{33} +2582.56i q^{34} +36692.6 q^{35} -27405.6 q^{36} -58183.7i q^{37} +16381.0i q^{38} -52465.7i q^{39} +43777.8i q^{40} +67462.6 q^{41} +18434.3i q^{42} +40630.5i q^{43} +3040.49i q^{44} +55984.6 q^{45} -24033.9 q^{46} -19917.3i q^{47} +19208.0 q^{48} +15856.6 q^{49} +21344.4i q^{50} -8779.13 q^{51} -196941. i q^{52} +164402. q^{53} +64906.1i q^{54} -6211.16i q^{55} +159285. i q^{56} -55685.4 q^{57} +2856.73i q^{58} +(197780. - 55351.3i) q^{59} -64649.6 q^{60} +101054. i q^{61} +189941. q^{62} +203700. q^{63} -35382.9 q^{64} +402314. i q^{65} +3120.48 q^{66} -120981. i q^{67} -32954.3 q^{68} -81700.6i q^{69} -141357. i q^{70} +43899.5 q^{71} +243034. i q^{72} +49458.8i q^{73} -224150. q^{74} -72557.8 q^{75} -209026. q^{76} -22599.3i q^{77} -202122. q^{78} -658281. q^{79} -147289. q^{80} +185773. q^{81} -259897. i q^{82} -930063. i q^{83} -235227. q^{84} +67319.5 q^{85} +156528. q^{86} -9711.14 q^{87} +26963.1 q^{88} -383075. i q^{89} -215679. i q^{90} +1.46382e6i q^{91} -306680. i q^{92} +645682. i q^{93} -76730.8 q^{94} +427002. q^{95} -439378. i q^{96} +379358. i q^{97} -61087.1i q^{98} -34481.4i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 10 q^{3} - 1090 q^{4} + 142 q^{5} + 406 q^{7} + 5432 q^{9} - 1124 q^{12} + 14982 q^{15} + 12734 q^{16} - 9108 q^{17} + 3850 q^{19} - 46896 q^{20} - 49034 q^{21} + 11238 q^{22} + 18792 q^{25} - 64590 q^{26}+ \cdots - 2396490 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/59\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.85246i 0.481558i −0.970580 0.240779i \(-0.922597\pi\)
0.970580 0.240779i \(-0.0774029\pi\)
\(3\) 13.0960 0.485037 0.242519 0.970147i \(-0.422026\pi\)
0.242519 + 0.970147i \(0.422026\pi\)
\(4\) 49.1585 0.768102
\(5\) −100.422 −0.803375 −0.401687 0.915777i \(-0.631576\pi\)
−0.401687 + 0.915777i \(0.631576\pi\)
\(6\) 50.4519i 0.233573i
\(7\) −365.384 −1.06526 −0.532630 0.846348i \(-0.678796\pi\)
−0.532630 + 0.846348i \(0.678796\pi\)
\(8\) 435.939i 0.851443i
\(9\) −557.495 −0.764739
\(10\) 386.871i 0.386871i
\(11\) 61.8507i 0.0464693i 0.999730 + 0.0232347i \(0.00739649\pi\)
−0.999730 + 0.0232347i \(0.992604\pi\)
\(12\) 643.780 0.372558
\(13\) 4006.24i 1.82350i −0.410742 0.911752i \(-0.634730\pi\)
0.410742 0.911752i \(-0.365270\pi\)
\(14\) 1407.63i 0.512984i
\(15\) −1315.12 −0.389667
\(16\) 1466.71 0.358083
\(17\) −670.367 −0.136448 −0.0682238 0.997670i \(-0.521733\pi\)
−0.0682238 + 0.997670i \(0.521733\pi\)
\(18\) 2147.73i 0.368266i
\(19\) −4252.09 −0.619928 −0.309964 0.950748i \(-0.600317\pi\)
−0.309964 + 0.950748i \(0.600317\pi\)
\(20\) −4936.59 −0.617074
\(21\) −4785.07 −0.516691
\(22\) 238.277 0.0223777
\(23\) 6238.59i 0.512747i −0.966578 0.256373i \(-0.917472\pi\)
0.966578 0.256373i \(-0.0825277\pi\)
\(24\) 5709.06i 0.412982i
\(25\) −5540.46 −0.354589
\(26\) −15433.9 −0.878122
\(27\) −16847.9 −0.855964
\(28\) −17961.8 −0.818229
\(29\) −741.535 −0.0304045 −0.0152022 0.999884i \(-0.504839\pi\)
−0.0152022 + 0.999884i \(0.504839\pi\)
\(30\) 5066.47i 0.187647i
\(31\) 49303.7i 1.65499i 0.561476 + 0.827493i \(0.310234\pi\)
−0.561476 + 0.827493i \(0.689766\pi\)
\(32\) 33550.5i 1.02388i
\(33\) 809.997i 0.0225394i
\(34\) 2582.56i 0.0657074i
\(35\) 36692.6 0.855803
\(36\) −27405.6 −0.587398
\(37\) 58183.7i 1.14867i −0.818620 0.574336i \(-0.805260\pi\)
0.818620 0.574336i \(-0.194740\pi\)
\(38\) 16381.0i 0.298531i
\(39\) 52465.7i 0.884467i
\(40\) 43777.8i 0.684028i
\(41\) 67462.6 0.978840 0.489420 0.872048i \(-0.337208\pi\)
0.489420 + 0.872048i \(0.337208\pi\)
\(42\) 18434.3i 0.248816i
\(43\) 40630.5i 0.511031i 0.966805 + 0.255515i \(0.0822451\pi\)
−0.966805 + 0.255515i \(0.917755\pi\)
\(44\) 3040.49i 0.0356932i
\(45\) 55984.6 0.614372
\(46\) −24033.9 −0.246917
\(47\) 19917.3i 0.191839i −0.995389 0.0959197i \(-0.969421\pi\)
0.995389 0.0959197i \(-0.0305792\pi\)
\(48\) 19208.0 0.173684
\(49\) 15856.6 0.134779
\(50\) 21344.4i 0.170755i
\(51\) −8779.13 −0.0661822
\(52\) 196941.i 1.40064i
\(53\) 164402. 1.10428 0.552142 0.833750i \(-0.313811\pi\)
0.552142 + 0.833750i \(0.313811\pi\)
\(54\) 64906.1i 0.412196i
\(55\) 6211.16i 0.0373323i
\(56\) 159285.i 0.907009i
\(57\) −55685.4 −0.300688
\(58\) 2856.73i 0.0146415i
\(59\) 197780. 55351.3i 0.962998 0.269508i
\(60\) −64649.6 −0.299304
\(61\) 101054.i 0.445208i 0.974909 + 0.222604i \(0.0714558\pi\)
−0.974909 + 0.222604i \(0.928544\pi\)
\(62\) 189941. 0.796972
\(63\) 203700. 0.814646
\(64\) −35382.9 −0.134975
\(65\) 402314.i 1.46496i
\(66\) 3120.48 0.0108540
\(67\) 120981.i 0.402247i −0.979566 0.201124i \(-0.935541\pi\)
0.979566 0.201124i \(-0.0644593\pi\)
\(68\) −32954.3 −0.104806
\(69\) 81700.6i 0.248701i
\(70\) 141357.i 0.412119i
\(71\) 43899.5 0.122655 0.0613274 0.998118i \(-0.480467\pi\)
0.0613274 + 0.998118i \(0.480467\pi\)
\(72\) 243034.i 0.651132i
\(73\) 49458.8i 0.127138i 0.997977 + 0.0635690i \(0.0202483\pi\)
−0.997977 + 0.0635690i \(0.979752\pi\)
\(74\) −224150. −0.553152
\(75\) −72557.8 −0.171989
\(76\) −209026. −0.476168
\(77\) 22599.3i 0.0495019i
\(78\) −202122. −0.425922
\(79\) −658281. −1.33515 −0.667575 0.744542i \(-0.732668\pi\)
−0.667575 + 0.744542i \(0.732668\pi\)
\(80\) −147289. −0.287675
\(81\) 185773. 0.349565
\(82\) 259897.i 0.471368i
\(83\) 930063.i 1.62659i −0.581851 0.813295i \(-0.697671\pi\)
0.581851 0.813295i \(-0.302329\pi\)
\(84\) −235227. −0.396871
\(85\) 67319.5 0.109619
\(86\) 156528. 0.246091
\(87\) −9711.14 −0.0147473
\(88\) 26963.1 0.0395660
\(89\) 383075.i 0.543393i −0.962383 0.271697i \(-0.912415\pi\)
0.962383 0.271697i \(-0.0875847\pi\)
\(90\) 215679.i 0.295856i
\(91\) 1.46382e6i 1.94251i
\(92\) 306680.i 0.393842i
\(93\) 645682.i 0.802730i
\(94\) −76730.8 −0.0923817
\(95\) 427002. 0.498035
\(96\) 439378.i 0.496620i
\(97\) 379358.i 0.415655i 0.978165 + 0.207828i \(0.0666393\pi\)
−0.978165 + 0.207828i \(0.933361\pi\)
\(98\) 61087.1i 0.0649040i
\(99\) 34481.4i 0.0355369i
\(100\) −272361. −0.272361
\(101\) 1.80479e6i 1.75171i −0.482576 0.875854i \(-0.660299\pi\)
0.482576 0.875854i \(-0.339701\pi\)
\(102\) 33821.3i 0.0318705i
\(103\) 715784.i 0.655043i 0.944844 + 0.327522i \(0.106213\pi\)
−0.944844 + 0.327522i \(0.893787\pi\)
\(104\) −1.74647e6 −1.55261
\(105\) 480526. 0.415096
\(106\) 633354.i 0.531776i
\(107\) −863588. −0.704945 −0.352473 0.935822i \(-0.614659\pi\)
−0.352473 + 0.935822i \(0.614659\pi\)
\(108\) −828220. −0.657468
\(109\) 2.03282e6i 1.56971i −0.619681 0.784854i \(-0.712738\pi\)
0.619681 0.784854i \(-0.287262\pi\)
\(110\) −23928.3 −0.0179777
\(111\) 761973.i 0.557148i
\(112\) −535912. −0.381452
\(113\) 2.15310e6i 1.49221i 0.665829 + 0.746104i \(0.268078\pi\)
−0.665829 + 0.746104i \(0.731922\pi\)
\(114\) 214526.i 0.144799i
\(115\) 626491.i 0.411928i
\(116\) −36452.8 −0.0233537
\(117\) 2.23346e6i 1.39450i
\(118\) −213239. 761938.i −0.129784 0.463739i
\(119\) 244942. 0.145352
\(120\) 573314.i 0.331779i
\(121\) 1.76774e6 0.997841
\(122\) 389306. 0.214394
\(123\) 883491. 0.474774
\(124\) 2.42370e6i 1.27120i
\(125\) 2.12547e6 1.08824
\(126\) 784746.i 0.392299i
\(127\) 1.41290e6 0.689764 0.344882 0.938646i \(-0.387919\pi\)
0.344882 + 0.938646i \(0.387919\pi\)
\(128\) 2.01092e6i 0.958883i
\(129\) 532097.i 0.247869i
\(130\) 1.54990e6 0.705461
\(131\) 1.54310e6i 0.686407i 0.939261 + 0.343203i \(0.111512\pi\)
−0.939261 + 0.343203i \(0.888488\pi\)
\(132\) 39818.3i 0.0173125i
\(133\) 1.55365e6 0.660385
\(134\) −466075. −0.193705
\(135\) 1.69190e6 0.687660
\(136\) 292239.i 0.116177i
\(137\) 1.60884e6 0.625678 0.312839 0.949806i \(-0.398720\pi\)
0.312839 + 0.949806i \(0.398720\pi\)
\(138\) −314748. −0.119764
\(139\) −3.53355e6 −1.31573 −0.657865 0.753136i \(-0.728540\pi\)
−0.657865 + 0.753136i \(0.728540\pi\)
\(140\) 1.80375e6 0.657344
\(141\) 260837.i 0.0930492i
\(142\) 169121.i 0.0590653i
\(143\) 247788. 0.0847370
\(144\) −817682. −0.273840
\(145\) 74466.3 0.0244262
\(146\) 190538. 0.0612242
\(147\) 207659. 0.0653729
\(148\) 2.86022e6i 0.882297i
\(149\) 2.56276e6i 0.774729i 0.921927 + 0.387364i \(0.126614\pi\)
−0.921927 + 0.387364i \(0.873386\pi\)
\(150\) 279526.i 0.0828226i
\(151\) 52811.7i 0.0153391i 0.999971 + 0.00766955i \(0.00244132\pi\)
−0.999971 + 0.00766955i \(0.997559\pi\)
\(152\) 1.85365e6i 0.527834i
\(153\) 373726. 0.104347
\(154\) −87062.8 −0.0238380
\(155\) 4.95117e6i 1.32957i
\(156\) 2.57914e6i 0.679361i
\(157\) 4.83449e6i 1.24926i −0.780923 0.624628i \(-0.785251\pi\)
0.780923 0.624628i \(-0.214749\pi\)
\(158\) 2.53600e6i 0.642952i
\(159\) 2.15302e6 0.535619
\(160\) 3.36921e6i 0.822560i
\(161\) 2.27948e6i 0.546209i
\(162\) 715683.i 0.168336i
\(163\) −5.54610e6 −1.28063 −0.640317 0.768111i \(-0.721197\pi\)
−0.640317 + 0.768111i \(0.721197\pi\)
\(164\) 3.31636e6 0.751849
\(165\) 81341.4i 0.0181075i
\(166\) −3.58303e6 −0.783297
\(167\) 566652. 0.121665 0.0608326 0.998148i \(-0.480624\pi\)
0.0608326 + 0.998148i \(0.480624\pi\)
\(168\) 2.08600e6i 0.439933i
\(169\) −1.12231e7 −2.32516
\(170\) 259346.i 0.0527877i
\(171\) 2.37052e6 0.474083
\(172\) 1.99734e6i 0.392524i
\(173\) 5.16399e6i 0.997350i −0.866789 0.498675i \(-0.833820\pi\)
0.866789 0.498675i \(-0.166180\pi\)
\(174\) 37411.8i 0.00710168i
\(175\) 2.02440e6 0.377730
\(176\) 90716.9i 0.0166399i
\(177\) 2.59012e6 724881.i 0.467090 0.130722i
\(178\) −1.47578e6 −0.261675
\(179\) 6.59206e6i 1.14938i −0.818373 0.574688i \(-0.805124\pi\)
0.818373 0.574688i \(-0.194876\pi\)
\(180\) 2.75212e6 0.471900
\(181\) −1.00148e7 −1.68890 −0.844452 0.535631i \(-0.820074\pi\)
−0.844452 + 0.535631i \(0.820074\pi\)
\(182\) 5.63929e6 0.935428
\(183\) 1.32340e6i 0.215943i
\(184\) −2.71964e6 −0.436575
\(185\) 5.84291e6i 0.922814i
\(186\) 2.48746e6 0.386561
\(187\) 41462.7i 0.00634063i
\(188\) 979107.i 0.147352i
\(189\) 6.15597e6 0.911824
\(190\) 1.64501e6i 0.239832i
\(191\) 5.95686e6i 0.854904i 0.904038 + 0.427452i \(0.140589\pi\)
−0.904038 + 0.427452i \(0.859411\pi\)
\(192\) −463374. −0.0654678
\(193\) −9.07562e6 −1.26242 −0.631211 0.775611i \(-0.717442\pi\)
−0.631211 + 0.775611i \(0.717442\pi\)
\(194\) 1.46146e6 0.200162
\(195\) 5.26870e6i 0.710558i
\(196\) 779489. 0.103524
\(197\) −1.05343e7 −1.37787 −0.688933 0.724825i \(-0.741921\pi\)
−0.688933 + 0.724825i \(0.741921\pi\)
\(198\) −132838. −0.0171131
\(199\) −87774.8 −0.0111381 −0.00556904 0.999984i \(-0.501773\pi\)
−0.00556904 + 0.999984i \(0.501773\pi\)
\(200\) 2.41530e6i 0.301913i
\(201\) 1.58437e6i 0.195105i
\(202\) −6.95287e6 −0.843548
\(203\) 270945. 0.0323887
\(204\) −431569. −0.0508347
\(205\) −6.77472e6 −0.786375
\(206\) 2.75753e6 0.315441
\(207\) 3.47798e6i 0.392117i
\(208\) 5.87598e6i 0.652965i
\(209\) 262995.i 0.0288077i
\(210\) 1.85121e6i 0.199893i
\(211\) 1.40276e7i 1.49326i −0.665239 0.746630i \(-0.731670\pi\)
0.665239 0.746630i \(-0.268330\pi\)
\(212\) 8.08178e6 0.848203
\(213\) 574908. 0.0594921
\(214\) 3.32694e6i 0.339472i
\(215\) 4.08019e6i 0.410549i
\(216\) 7.34467e6i 0.728805i
\(217\) 1.80148e7i 1.76299i
\(218\) −7.83135e6 −0.755905
\(219\) 647713.i 0.0616666i
\(220\) 305331.i 0.0286750i
\(221\) 2.68565e6i 0.248813i
\(222\) −2.93547e6 −0.268299
\(223\) 7.40039e6 0.667329 0.333665 0.942692i \(-0.391715\pi\)
0.333665 + 0.942692i \(0.391715\pi\)
\(224\) 1.22588e7i 1.09070i
\(225\) 3.08877e6 0.271168
\(226\) 8.29475e6 0.718585
\(227\) 1.47756e7i 1.26319i 0.775300 + 0.631593i \(0.217599\pi\)
−0.775300 + 0.631593i \(0.782401\pi\)
\(228\) −2.73741e6 −0.230959
\(229\) 8.53576e6i 0.710781i 0.934718 + 0.355390i \(0.115652\pi\)
−0.934718 + 0.355390i \(0.884348\pi\)
\(230\) 2.41353e6 0.198367
\(231\) 295960.i 0.0240103i
\(232\) 323264.i 0.0258877i
\(233\) 1.67507e7i 1.32423i −0.749400 0.662117i \(-0.769658\pi\)
0.749400 0.662117i \(-0.230342\pi\)
\(234\) 8.60430e6 0.671534
\(235\) 2.00013e6i 0.154119i
\(236\) 9.72255e6 2.72099e6i 0.739681 0.207010i
\(237\) −8.62086e6 −0.647598
\(238\) 943629.i 0.0699955i
\(239\) 1.52021e7 1.11355 0.556777 0.830662i \(-0.312038\pi\)
0.556777 + 0.830662i \(0.312038\pi\)
\(240\) −1.92890e6 −0.139533
\(241\) 1.32876e7 0.949280 0.474640 0.880180i \(-0.342578\pi\)
0.474640 + 0.880180i \(0.342578\pi\)
\(242\) 6.81013e6i 0.480518i
\(243\) 1.47150e7 1.02552
\(244\) 4.96766e6i 0.341965i
\(245\) −1.59235e6 −0.108278
\(246\) 3.40362e6i 0.228631i
\(247\) 1.70349e7i 1.13044i
\(248\) 2.14934e7 1.40913
\(249\) 1.21801e7i 0.788957i
\(250\) 8.18831e6i 0.524052i
\(251\) −8.00471e6 −0.506203 −0.253101 0.967440i \(-0.581451\pi\)
−0.253101 + 0.967440i \(0.581451\pi\)
\(252\) 1.00136e7 0.625731
\(253\) 385861. 0.0238270
\(254\) 5.44314e6i 0.332161i
\(255\) 881617. 0.0531691
\(256\) −1.00115e7 −0.596732
\(257\) −2.13967e7 −1.26052 −0.630258 0.776386i \(-0.717051\pi\)
−0.630258 + 0.776386i \(0.717051\pi\)
\(258\) 2.04989e6 0.119363
\(259\) 2.12594e7i 1.22363i
\(260\) 1.97771e7i 1.12524i
\(261\) 413402. 0.0232515
\(262\) 5.94475e6 0.330544
\(263\) 1.61578e7 0.888210 0.444105 0.895975i \(-0.353522\pi\)
0.444105 + 0.895975i \(0.353522\pi\)
\(264\) 353109. 0.0191910
\(265\) −1.65096e7 −0.887153
\(266\) 5.98536e6i 0.318013i
\(267\) 5.01676e6i 0.263566i
\(268\) 5.94725e6i 0.308967i
\(269\) 2.45278e7i 1.26009i 0.776557 + 0.630047i \(0.216964\pi\)
−0.776557 + 0.630047i \(0.783036\pi\)
\(270\) 6.51798e6i 0.331148i
\(271\) 9.86272e6 0.495551 0.247776 0.968817i \(-0.420300\pi\)
0.247776 + 0.968817i \(0.420300\pi\)
\(272\) −983233. −0.0488596
\(273\) 1.91701e7i 0.942187i
\(274\) 6.19799e6i 0.301300i
\(275\) 342681.i 0.0164775i
\(276\) 4.01628e6i 0.191028i
\(277\) −8.09034e6 −0.380651 −0.190326 0.981721i \(-0.560954\pi\)
−0.190326 + 0.981721i \(0.560954\pi\)
\(278\) 1.36129e7i 0.633600i
\(279\) 2.74866e7i 1.26563i
\(280\) 1.59957e7i 0.728668i
\(281\) −1.57261e7 −0.708763 −0.354381 0.935101i \(-0.615308\pi\)
−0.354381 + 0.935101i \(0.615308\pi\)
\(282\) −1.00487e6 −0.0448086
\(283\) 5.75507e6i 0.253917i −0.991908 0.126958i \(-0.959479\pi\)
0.991908 0.126958i \(-0.0405215\pi\)
\(284\) 2.15803e6 0.0942114
\(285\) 5.59203e6 0.241565
\(286\) 954596.i 0.0408058i
\(287\) −2.46498e7 −1.04272
\(288\) 1.87042e7i 0.783002i
\(289\) −2.36882e7 −0.981382
\(290\) 286879.i 0.0117626i
\(291\) 4.96807e6i 0.201608i
\(292\) 2.43132e6i 0.0976549i
\(293\) 3.69070e7 1.46726 0.733628 0.679551i \(-0.237825\pi\)
0.733628 + 0.679551i \(0.237825\pi\)
\(294\) 799997.i 0.0314809i
\(295\) −1.98614e7 + 5.55848e6i −0.773648 + 0.216516i
\(296\) −2.53645e7 −0.978029
\(297\) 1.04206e6i 0.0397761i
\(298\) 9.87295e6 0.373077
\(299\) −2.49933e7 −0.934995
\(300\) −3.56684e6 −0.132105
\(301\) 1.48458e7i 0.544381i
\(302\) 203455. 0.00738666
\(303\) 2.36355e7i 0.849643i
\(304\) −6.23657e6 −0.221986
\(305\) 1.01480e7i 0.357669i
\(306\) 1.43977e6i 0.0502490i
\(307\) 9.50053e6 0.328347 0.164173 0.986432i \(-0.447504\pi\)
0.164173 + 0.986432i \(0.447504\pi\)
\(308\) 1.11095e6i 0.0380225i
\(309\) 9.37391e6i 0.317720i
\(310\) −1.90742e7 −0.640267
\(311\) 5.71200e7 1.89892 0.949461 0.313886i \(-0.101631\pi\)
0.949461 + 0.313886i \(0.101631\pi\)
\(312\) −2.28718e7 −0.753073
\(313\) 8.44025e6i 0.275247i −0.990485 0.137623i \(-0.956054\pi\)
0.990485 0.137623i \(-0.0439464\pi\)
\(314\) −1.86247e7 −0.601589
\(315\) −2.04559e7 −0.654466
\(316\) −3.23602e7 −1.02553
\(317\) 4.24509e6 0.133263 0.0666315 0.997778i \(-0.478775\pi\)
0.0666315 + 0.997778i \(0.478775\pi\)
\(318\) 8.29441e6i 0.257931i
\(319\) 45864.4i 0.00141288i
\(320\) 3.55321e6 0.108435
\(321\) −1.13096e7 −0.341925
\(322\) 8.78162e6 0.263031
\(323\) 2.85046e6 0.0845878
\(324\) 9.13232e6 0.268501
\(325\) 2.21964e7i 0.646595i
\(326\) 2.13662e7i 0.616699i
\(327\) 2.66218e7i 0.761367i
\(328\) 2.94096e7i 0.833427i
\(329\) 7.27748e6i 0.204359i
\(330\) −313365. −0.00871983
\(331\) 2.21198e7 0.609955 0.304977 0.952360i \(-0.401351\pi\)
0.304977 + 0.952360i \(0.401351\pi\)
\(332\) 4.57206e7i 1.24939i
\(333\) 3.24371e7i 0.878434i
\(334\) 2.18300e6i 0.0585889i
\(335\) 1.21491e7i 0.323155i
\(336\) −7.01830e6 −0.185018
\(337\) 2.82265e7i 0.737508i −0.929527 0.368754i \(-0.879784\pi\)
0.929527 0.368754i \(-0.120216\pi\)
\(338\) 4.32366e7i 1.11970i
\(339\) 2.81970e7i 0.723777i
\(340\) 3.30933e6 0.0841983
\(341\) −3.04947e6 −0.0769061
\(342\) 9.13232e6i 0.228298i
\(343\) 3.71933e7 0.921685
\(344\) 1.77124e7 0.435114
\(345\) 8.20452e6i 0.199800i
\(346\) −1.98941e7 −0.480281
\(347\) 6.72750e7i 1.61015i −0.593176 0.805073i \(-0.702126\pi\)
0.593176 0.805073i \(-0.297874\pi\)
\(348\) −477386. −0.0113274
\(349\) 4.28546e7i 1.00814i −0.863663 0.504070i \(-0.831835\pi\)
0.863663 0.504070i \(-0.168165\pi\)
\(350\) 7.79891e6i 0.181899i
\(351\) 6.74968e7i 1.56085i
\(352\) 2.07512e6 0.0475791
\(353\) 2.65945e7i 0.604599i −0.953213 0.302300i \(-0.902246\pi\)
0.953213 0.302300i \(-0.0977543\pi\)
\(354\) −2.79258e6 9.97835e6i −0.0629500 0.224931i
\(355\) −4.40847e6 −0.0985377
\(356\) 1.88314e7i 0.417381i
\(357\) 3.20776e6 0.0705013
\(358\) −2.53957e7 −0.553491
\(359\) 1.72238e7 0.372259 0.186130 0.982525i \(-0.440406\pi\)
0.186130 + 0.982525i \(0.440406\pi\)
\(360\) 2.44059e7i 0.523103i
\(361\) −2.89656e7 −0.615689
\(362\) 3.85815e7i 0.813305i
\(363\) 2.31503e7 0.483990
\(364\) 7.19590e7i 1.49204i
\(365\) 4.96674e6i 0.102139i
\(366\) 5.09835e6 0.103989
\(367\) 9.01317e7i 1.82339i 0.410868 + 0.911695i \(0.365226\pi\)
−0.410868 + 0.911695i \(0.634774\pi\)
\(368\) 9.15019e6i 0.183606i
\(369\) −3.76101e7 −0.748557
\(370\) 2.25096e7 0.444388
\(371\) −6.00701e7 −1.17635
\(372\) 3.17408e7i 0.616579i
\(373\) 1.01073e7 0.194764 0.0973821 0.995247i \(-0.468953\pi\)
0.0973821 + 0.995247i \(0.468953\pi\)
\(374\) −159733. −0.00305338
\(375\) 2.78352e7 0.527838
\(376\) −8.68274e6 −0.163340
\(377\) 2.97076e6i 0.0554427i
\(378\) 2.37156e7i 0.439096i
\(379\) 1.03143e7 0.189462 0.0947309 0.995503i \(-0.469801\pi\)
0.0947309 + 0.995503i \(0.469801\pi\)
\(380\) 2.09908e7 0.382541
\(381\) 1.85033e7 0.334561
\(382\) 2.29486e7 0.411686
\(383\) 7.40568e7 1.31816 0.659081 0.752072i \(-0.270946\pi\)
0.659081 + 0.752072i \(0.270946\pi\)
\(384\) 2.63351e7i 0.465094i
\(385\) 2.26946e6i 0.0397686i
\(386\) 3.49635e7i 0.607929i
\(387\) 2.26513e7i 0.390805i
\(388\) 1.86487e7i 0.319266i
\(389\) 3.85680e7 0.655207 0.327603 0.944815i \(-0.393759\pi\)
0.327603 + 0.944815i \(0.393759\pi\)
\(390\) 2.02975e7 0.342175
\(391\) 4.18215e6i 0.0699631i
\(392\) 6.91253e6i 0.114757i
\(393\) 2.02085e7i 0.332933i
\(394\) 4.05830e7i 0.663522i
\(395\) 6.61058e7 1.07263
\(396\) 1.69506e6i 0.0272960i
\(397\) 4.94217e7i 0.789852i −0.918713 0.394926i \(-0.870770\pi\)
0.918713 0.394926i \(-0.129230\pi\)
\(398\) 338149.i 0.00536363i
\(399\) 2.03466e7 0.320311
\(400\) −8.12623e6 −0.126972
\(401\) 6.59077e7i 1.02212i −0.859544 0.511061i \(-0.829252\pi\)
0.859544 0.511061i \(-0.170748\pi\)
\(402\) −6.10372e6 −0.0939543
\(403\) 1.97522e8 3.01787
\(404\) 8.87206e7i 1.34549i
\(405\) −1.86557e7 −0.280831
\(406\) 1.04381e6i 0.0155970i
\(407\) 3.59870e6 0.0533780
\(408\) 3.82717e6i 0.0563504i
\(409\) 7.62298e7i 1.11418i 0.830453 + 0.557089i \(0.188082\pi\)
−0.830453 + 0.557089i \(0.811918\pi\)
\(410\) 2.60994e7i 0.378685i
\(411\) 2.10693e7 0.303477
\(412\) 3.51869e7i 0.503140i
\(413\) −7.22655e7 + 2.02245e7i −1.02584 + 0.287096i
\(414\) 1.33988e7 0.188827
\(415\) 9.33987e7i 1.30676i
\(416\) −1.34411e8 −1.86705
\(417\) −4.62754e7 −0.638178
\(418\) −1.01318e6 −0.0138726
\(419\) 1.12782e8i 1.53320i 0.642127 + 0.766598i \(0.278052\pi\)
−0.642127 + 0.766598i \(0.721948\pi\)
\(420\) 2.36219e7 0.318836
\(421\) 1.34931e8i 1.80828i −0.427235 0.904140i \(-0.640512\pi\)
0.427235 0.904140i \(-0.359488\pi\)
\(422\) −5.40408e7 −0.719091
\(423\) 1.11038e7i 0.146707i
\(424\) 7.16694e7i 0.940235i
\(425\) 3.71414e6 0.0483829
\(426\) 2.21481e6i 0.0286489i
\(427\) 3.69235e7i 0.474263i
\(428\) −4.24527e7 −0.541470
\(429\) 3.24504e6 0.0411006
\(430\) −1.57188e7 −0.197703
\(431\) 9.09928e7i 1.13652i −0.822851 0.568258i \(-0.807618\pi\)
0.822851 0.568258i \(-0.192382\pi\)
\(432\) −2.47110e7 −0.306506
\(433\) −6.71992e7 −0.827753 −0.413876 0.910333i \(-0.635825\pi\)
−0.413876 + 0.910333i \(0.635825\pi\)
\(434\) −6.94013e7 −0.848982
\(435\) 975211. 0.0118476
\(436\) 9.99303e7i 1.20570i
\(437\) 2.65270e7i 0.317866i
\(438\) 2.49529e6 0.0296960
\(439\) 5.45084e7 0.644273 0.322136 0.946693i \(-0.395599\pi\)
0.322136 + 0.946693i \(0.395599\pi\)
\(440\) −2.70769e6 −0.0317863
\(441\) −8.83999e6 −0.103071
\(442\) 1.03464e7 0.119818
\(443\) 4.88666e7i 0.562083i −0.959696 0.281042i \(-0.909320\pi\)
0.959696 0.281042i \(-0.0906799\pi\)
\(444\) 3.74575e7i 0.427947i
\(445\) 3.84691e7i 0.436548i
\(446\) 2.85097e7i 0.321358i
\(447\) 3.35620e7i 0.375772i
\(448\) 1.29283e7 0.143783
\(449\) −7.09118e7 −0.783392 −0.391696 0.920095i \(-0.628112\pi\)
−0.391696 + 0.920095i \(0.628112\pi\)
\(450\) 1.18994e7i 0.130583i
\(451\) 4.17261e6i 0.0454861i
\(452\) 1.05843e8i 1.14617i
\(453\) 691623.i 0.00744003i
\(454\) 5.69224e7 0.608297
\(455\) 1.46999e8i 1.56056i
\(456\) 2.42754e7i 0.256019i
\(457\) 4.96671e7i 0.520380i 0.965557 + 0.260190i \(0.0837852\pi\)
−0.965557 + 0.260190i \(0.916215\pi\)
\(458\) 3.28837e7 0.342282
\(459\) 1.12943e7 0.116794
\(460\) 3.07974e7i 0.316403i
\(461\) −8.74372e6 −0.0892469 −0.0446235 0.999004i \(-0.514209\pi\)
−0.0446235 + 0.999004i \(0.514209\pi\)
\(462\) −1.14018e6 −0.0115623
\(463\) 1.83059e6i 0.0184437i −0.999957 0.00922183i \(-0.997065\pi\)
0.999957 0.00922183i \(-0.00293544\pi\)
\(464\) −1.08761e6 −0.0108873
\(465\) 6.48405e7i 0.644893i
\(466\) −6.45314e7 −0.637695
\(467\) 1.14057e8i 1.11988i 0.828532 + 0.559942i \(0.189177\pi\)
−0.828532 + 0.559942i \(0.810823\pi\)
\(468\) 1.09793e8i 1.07112i
\(469\) 4.42046e7i 0.428498i
\(470\) 7.70544e6 0.0742171
\(471\) 6.33124e7i 0.605935i
\(472\) −2.41298e7 8.62198e7i −0.229471 0.819938i
\(473\) −2.51303e6 −0.0237473
\(474\) 3.32115e7i 0.311856i
\(475\) 2.35585e7 0.219820
\(476\) 1.20410e7 0.111645
\(477\) −9.16535e7 −0.844489
\(478\) 5.85657e7i 0.536240i
\(479\) −1.20850e8 −1.09961 −0.549806 0.835293i \(-0.685298\pi\)
−0.549806 + 0.835293i \(0.685298\pi\)
\(480\) 4.41231e7i 0.398972i
\(481\) −2.33097e8 −2.09461
\(482\) 5.11898e7i 0.457133i
\(483\) 2.98521e7i 0.264932i
\(484\) 8.68993e7 0.766443
\(485\) 3.80958e7i 0.333927i
\(486\) 5.66891e7i 0.493845i
\(487\) 2.47607e7 0.214376 0.107188 0.994239i \(-0.465815\pi\)
0.107188 + 0.994239i \(0.465815\pi\)
\(488\) 4.40533e7 0.379070
\(489\) −7.26318e7 −0.621155
\(490\) 6.13448e6i 0.0521422i
\(491\) −1.03559e8 −0.874873 −0.437436 0.899249i \(-0.644113\pi\)
−0.437436 + 0.899249i \(0.644113\pi\)
\(492\) 4.34311e7 0.364675
\(493\) 497101. 0.00414862
\(494\) 6.56262e7 0.544373
\(495\) 3.46269e6i 0.0285495i
\(496\) 7.23141e7i 0.592623i
\(497\) −1.60402e7 −0.130659
\(498\) −4.69234e7 −0.379928
\(499\) −1.56611e7 −0.126043 −0.0630217 0.998012i \(-0.520074\pi\)
−0.0630217 + 0.998012i \(0.520074\pi\)
\(500\) 1.04485e8 0.835881
\(501\) 7.42087e6 0.0590122
\(502\) 3.08378e7i 0.243766i
\(503\) 1.00136e8i 0.786839i 0.919359 + 0.393419i \(0.128708\pi\)
−0.919359 + 0.393419i \(0.871292\pi\)
\(504\) 8.88007e7i 0.693625i
\(505\) 1.81240e8i 1.40728i
\(506\) 1.48652e6i 0.0114741i
\(507\) −1.46978e8 −1.12779
\(508\) 6.94561e7 0.529809
\(509\) 8.35577e6i 0.0633626i −0.999498 0.0316813i \(-0.989914\pi\)
0.999498 0.0316813i \(-0.0100862\pi\)
\(510\) 3.39639e6i 0.0256040i
\(511\) 1.80715e7i 0.135435i
\(512\) 9.01301e7i 0.671522i
\(513\) 7.16389e7 0.530636
\(514\) 8.24301e7i 0.607011i
\(515\) 7.18803e7i 0.526245i
\(516\) 2.61571e7i 0.190389i
\(517\) 1.23190e6 0.00891465
\(518\) 8.19010e7 0.589251
\(519\) 6.76277e7i 0.483752i
\(520\) 1.75384e8 1.24733
\(521\) −1.01557e8 −0.718120 −0.359060 0.933314i \(-0.616903\pi\)
−0.359060 + 0.933314i \(0.616903\pi\)
\(522\) 1.59261e6i 0.0111969i
\(523\) 1.66508e8 1.16394 0.581970 0.813210i \(-0.302282\pi\)
0.581970 + 0.813210i \(0.302282\pi\)
\(524\) 7.58568e7i 0.527230i
\(525\) 2.65115e7 0.183213
\(526\) 6.22474e7i 0.427724i
\(527\) 3.30516e7i 0.225819i
\(528\) 1.18803e6i 0.00807096i
\(529\) 1.09116e8 0.737091
\(530\) 6.36026e7i 0.427216i
\(531\) −1.10261e8 + 3.08581e7i −0.736442 + 0.206103i
\(532\) 7.63750e7 0.507243
\(533\) 2.70271e8i 1.78492i
\(534\) −1.93269e7 −0.126922
\(535\) 8.67231e7 0.566335
\(536\) −5.27404e7 −0.342491
\(537\) 8.63296e7i 0.557490i
\(538\) 9.44926e7 0.606808
\(539\) 980744.i 0.00626310i
\(540\) 8.31714e7 0.528193
\(541\) 1.87749e8i 1.18573i 0.805301 + 0.592866i \(0.202004\pi\)
−0.805301 + 0.592866i \(0.797996\pi\)
\(542\) 3.79957e7i 0.238637i
\(543\) −1.31153e8 −0.819182
\(544\) 2.24912e7i 0.139706i
\(545\) 2.04139e8i 1.26106i
\(546\) 7.38522e7 0.453718
\(547\) −9.98669e6 −0.0610182 −0.0305091 0.999534i \(-0.509713\pi\)
−0.0305091 + 0.999534i \(0.509713\pi\)
\(548\) 7.90881e7 0.480584
\(549\) 5.63370e7i 0.340468i
\(550\) −1.32017e6 −0.00793488
\(551\) 3.15307e6 0.0188486
\(552\) −3.56165e7 −0.211755
\(553\) 2.40526e8 1.42228
\(554\) 3.11677e7i 0.183306i
\(555\) 7.65188e7i 0.447599i
\(556\) −1.73704e8 −1.01062
\(557\) 2.02606e8 1.17243 0.586214 0.810156i \(-0.300618\pi\)
0.586214 + 0.810156i \(0.300618\pi\)
\(558\) −1.05891e8 −0.609475
\(559\) 1.62775e8 0.931866
\(560\) 5.38173e7 0.306448
\(561\) 542995.i 0.00307544i
\(562\) 6.05840e7i 0.341310i
\(563\) 1.46234e8i 0.819454i 0.912208 + 0.409727i \(0.134376\pi\)
−0.912208 + 0.409727i \(0.865624\pi\)
\(564\) 1.28224e7i 0.0714713i
\(565\) 2.16219e8i 1.19880i
\(566\) −2.21712e7 −0.122276
\(567\) −6.78785e7 −0.372377
\(568\) 1.91375e7i 0.104434i
\(569\) 2.76599e8i 1.50146i −0.660608 0.750731i \(-0.729701\pi\)
0.660608 0.750731i \(-0.270299\pi\)
\(570\) 2.15431e7i 0.116328i
\(571\) 6.30200e7i 0.338509i −0.985572 0.169255i \(-0.945864\pi\)
0.985572 0.169255i \(-0.0541360\pi\)
\(572\) 1.21809e7 0.0650867
\(573\) 7.80111e7i 0.414660i
\(574\) 9.49624e7i 0.502130i
\(575\) 3.45646e7i 0.181814i
\(576\) 1.97258e7 0.103221
\(577\) 1.74799e8 0.909935 0.454968 0.890508i \(-0.349651\pi\)
0.454968 + 0.890508i \(0.349651\pi\)
\(578\) 9.12578e7i 0.472592i
\(579\) −1.18854e8 −0.612321
\(580\) 3.66065e6 0.0187618
\(581\) 3.39830e8i 1.73274i
\(582\) 1.91393e7 0.0970861
\(583\) 1.01684e7i 0.0513153i
\(584\) 2.15610e7 0.108251
\(585\) 2.24288e8i 1.12031i
\(586\) 1.42183e8i 0.706569i
\(587\) 2.17853e8i 1.07708i −0.842599 0.538541i \(-0.818976\pi\)
0.842599 0.538541i \(-0.181024\pi\)
\(588\) 1.02082e7 0.0502131
\(589\) 2.09644e8i 1.02597i
\(590\) 2.14138e7 + 7.65152e7i 0.104265 + 0.372556i
\(591\) −1.37957e8 −0.668317
\(592\) 8.53384e7i 0.411320i
\(593\) 7.86680e7 0.377254 0.188627 0.982049i \(-0.439596\pi\)
0.188627 + 0.982049i \(0.439596\pi\)
\(594\) −4.01448e6 −0.0191545
\(595\) −2.45975e7 −0.116772
\(596\) 1.25982e8i 0.595071i
\(597\) −1.14950e6 −0.00540239
\(598\) 9.62856e7i 0.450254i
\(599\) −2.90673e8 −1.35246 −0.676230 0.736691i \(-0.736387\pi\)
−0.676230 + 0.736691i \(0.736387\pi\)
\(600\) 3.16308e7i 0.146439i
\(601\) 1.60588e8i 0.739757i 0.929080 + 0.369879i \(0.120601\pi\)
−0.929080 + 0.369879i \(0.879399\pi\)
\(602\) −5.71927e7 −0.262151
\(603\) 6.74463e7i 0.307614i
\(604\) 2.59615e6i 0.0117820i
\(605\) −1.77519e8 −0.801640
\(606\) −9.10548e7 −0.409152
\(607\) 2.16250e8 0.966917 0.483459 0.875367i \(-0.339380\pi\)
0.483459 + 0.875367i \(0.339380\pi\)
\(608\) 1.42660e8i 0.634733i
\(609\) 3.54830e6 0.0157097
\(610\) −3.90948e7 −0.172238
\(611\) −7.97935e7 −0.349820
\(612\) 1.83718e7 0.0801490
\(613\) 2.74279e8i 1.19072i 0.803458 + 0.595362i \(0.202991\pi\)
−0.803458 + 0.595362i \(0.797009\pi\)
\(614\) 3.66004e7i 0.158118i
\(615\) −8.87218e7 −0.381421
\(616\) −9.85190e6 −0.0421481
\(617\) 2.96247e7 0.126124 0.0630621 0.998010i \(-0.479913\pi\)
0.0630621 + 0.998010i \(0.479913\pi\)
\(618\) 3.61126e7 0.153001
\(619\) −8.18362e7 −0.345043 −0.172522 0.985006i \(-0.555191\pi\)
−0.172522 + 0.985006i \(0.555191\pi\)
\(620\) 2.43392e8i 1.02125i
\(621\) 1.05107e8i 0.438893i
\(622\) 2.20053e8i 0.914440i
\(623\) 1.39970e8i 0.578855i
\(624\) 7.69518e7i 0.316712i
\(625\) −1.26874e8 −0.519677
\(626\) −3.25158e7 −0.132547
\(627\) 3.44418e6i 0.0139728i
\(628\) 2.37656e8i 0.959556i
\(629\) 3.90044e7i 0.156734i
\(630\) 7.88056e7i 0.315163i
\(631\) 8.79839e6 0.0350199 0.0175100 0.999847i \(-0.494426\pi\)
0.0175100 + 0.999847i \(0.494426\pi\)
\(632\) 2.86971e8i 1.13681i
\(633\) 1.83705e8i 0.724287i
\(634\) 1.63541e7i 0.0641738i
\(635\) −1.41886e8 −0.554138
\(636\) 1.05839e8 0.411410
\(637\) 6.35255e7i 0.245770i
\(638\) −176691. −0.000680381
\(639\) −2.44737e7 −0.0937989
\(640\) 2.01941e8i 0.770342i
\(641\) 1.15671e8 0.439186 0.219593 0.975592i \(-0.429527\pi\)
0.219593 + 0.975592i \(0.429527\pi\)
\(642\) 4.35696e7i 0.164656i
\(643\) 4.96348e8 1.86704 0.933519 0.358528i \(-0.116721\pi\)
0.933519 + 0.358528i \(0.116721\pi\)
\(644\) 1.12056e8i 0.419544i
\(645\) 5.34342e7i 0.199132i
\(646\) 1.09813e7i 0.0407339i
\(647\) −2.68052e8 −0.989706 −0.494853 0.868977i \(-0.664778\pi\)
−0.494853 + 0.868977i \(0.664778\pi\)
\(648\) 8.09857e7i 0.297634i
\(649\) 3.42352e6 + 1.22328e7i 0.0125239 + 0.0447499i
\(650\) 8.55107e7 0.311373
\(651\) 2.35922e8i 0.855116i
\(652\) −2.72638e8 −0.983658
\(653\) 9.83343e7 0.353155 0.176578 0.984287i \(-0.443497\pi\)
0.176578 + 0.984287i \(0.443497\pi\)
\(654\) −1.02559e8 −0.366642
\(655\) 1.54961e8i 0.551442i
\(656\) 9.89480e7 0.350506
\(657\) 2.75730e7i 0.0972273i
\(658\) 2.80362e7 0.0984106
\(659\) 1.27306e8i 0.444828i −0.974952 0.222414i \(-0.928606\pi\)
0.974952 0.222414i \(-0.0713936\pi\)
\(660\) 3.99862e6i 0.0139084i
\(661\) −4.05361e8 −1.40358 −0.701790 0.712384i \(-0.747616\pi\)
−0.701790 + 0.712384i \(0.747616\pi\)
\(662\) 8.52158e7i 0.293729i
\(663\) 3.51713e7i 0.120683i
\(664\) −4.05451e8 −1.38495
\(665\) −1.56020e8 −0.530536
\(666\) 1.24963e8 0.423017
\(667\) 4.62613e6i 0.0155898i
\(668\) 2.78558e7 0.0934514
\(669\) 9.69156e7 0.323680
\(670\) 4.68041e7 0.155618
\(671\) −6.25025e6 −0.0206885
\(672\) 1.60542e8i 0.529030i
\(673\) 3.25005e8i 1.06622i 0.846047 + 0.533108i \(0.178976\pi\)
−0.846047 + 0.533108i \(0.821024\pi\)
\(674\) −1.08741e8 −0.355153
\(675\) 9.33453e7 0.303516
\(676\) −5.51712e8 −1.78596
\(677\) −4.44051e8 −1.43109 −0.715544 0.698567i \(-0.753821\pi\)
−0.715544 + 0.698567i \(0.753821\pi\)
\(678\) 1.08628e8 0.348540
\(679\) 1.38611e8i 0.442781i
\(680\) 2.93472e7i 0.0933340i
\(681\) 1.93501e8i 0.612693i
\(682\) 1.17480e7i 0.0370347i
\(683\) 2.66562e8i 0.836636i −0.908301 0.418318i \(-0.862620\pi\)
0.908301 0.418318i \(-0.137380\pi\)
\(684\) 1.16531e8 0.364144
\(685\) −1.61562e8 −0.502654
\(686\) 1.43286e8i 0.443845i
\(687\) 1.11784e8i 0.344755i
\(688\) 5.95931e7i 0.182991i
\(689\) 6.58635e8i 2.01366i
\(690\) 3.16076e7 0.0962154
\(691\) 4.07668e8i 1.23558i −0.786341 0.617792i \(-0.788027\pi\)
0.786341 0.617792i \(-0.211973\pi\)
\(692\) 2.53854e8i 0.766066i
\(693\) 1.25990e7i 0.0378561i
\(694\) −2.59174e8 −0.775378
\(695\) 3.54846e8 1.05702
\(696\) 4.23347e6i 0.0125565i
\(697\) −4.52248e7 −0.133560
\(698\) −1.65096e8 −0.485478
\(699\) 2.19367e8i 0.642303i
\(700\) 9.95163e7 0.290135
\(701\) 3.70097e8i 1.07439i 0.843459 + 0.537194i \(0.180516\pi\)
−0.843459 + 0.537194i \(0.819484\pi\)
\(702\) 2.60029e8 0.751641
\(703\) 2.47402e8i 0.712094i
\(704\) 2.18845e6i 0.00627219i
\(705\) 2.61938e7i 0.0747534i
\(706\) −1.02454e8 −0.291149
\(707\) 6.59440e8i 1.86602i
\(708\) 1.27327e8 3.56341e7i 0.358773 0.100407i
\(709\) 1.09757e8 0.307960 0.153980 0.988074i \(-0.450791\pi\)
0.153980 + 0.988074i \(0.450791\pi\)
\(710\) 1.69834e7i 0.0474516i
\(711\) 3.66988e8 1.02104
\(712\) −1.66997e8 −0.462668
\(713\) 3.07586e8 0.848589
\(714\) 1.23578e7i 0.0339504i
\(715\) −2.48834e7 −0.0680755
\(716\) 3.24056e8i 0.882838i
\(717\) 1.99087e8 0.540115
\(718\) 6.63540e7i 0.179264i
\(719\) 5.43118e8i 1.46119i 0.682810 + 0.730596i \(0.260758\pi\)
−0.682810 + 0.730596i \(0.739242\pi\)
\(720\) 8.21131e7 0.219996
\(721\) 2.61536e8i 0.697792i
\(722\) 1.11589e8i 0.296490i
\(723\) 1.74014e8 0.460436
\(724\) −4.92311e8 −1.29725
\(725\) 4.10844e6 0.0107811
\(726\) 8.91855e7i 0.233069i
\(727\) 7.19307e8 1.87202 0.936011 0.351971i \(-0.114489\pi\)
0.936011 + 0.351971i \(0.114489\pi\)
\(728\) 6.38134e8 1.65393
\(729\) 5.72797e7 0.147849
\(730\) −1.91342e7 −0.0491860
\(731\) 2.72374e7i 0.0697289i
\(732\) 6.50565e7i 0.165866i
\(733\) 4.44144e8 1.12775 0.563874 0.825861i \(-0.309310\pi\)
0.563874 + 0.825861i \(0.309310\pi\)
\(734\) 3.47229e8 0.878068
\(735\) −2.08535e7 −0.0525190
\(736\) −2.09308e8 −0.524992
\(737\) 7.48277e6 0.0186922
\(738\) 1.44891e8i 0.360474i
\(739\) 7.57423e7i 0.187675i 0.995588 + 0.0938373i \(0.0299133\pi\)
−0.995588 + 0.0938373i \(0.970087\pi\)
\(740\) 2.87229e8i 0.708815i
\(741\) 2.23089e8i 0.548306i
\(742\) 2.31418e8i 0.566480i
\(743\) 3.64938e7 0.0889719 0.0444860 0.999010i \(-0.485835\pi\)
0.0444860 + 0.999010i \(0.485835\pi\)
\(744\) 2.81478e8 0.683479
\(745\) 2.57357e8i 0.622397i
\(746\) 3.89380e7i 0.0937902i
\(747\) 5.18505e8i 1.24392i
\(748\) 2.03824e6i 0.00487025i
\(749\) 3.15541e8 0.750950
\(750\) 1.07234e8i 0.254185i
\(751\) 1.82821e7i 0.0431625i 0.999767 + 0.0215813i \(0.00687007\pi\)
−0.999767 + 0.0215813i \(0.993130\pi\)
\(752\) 2.92129e7i 0.0686944i
\(753\) −1.04830e8 −0.245527
\(754\) 1.14448e7 0.0266988
\(755\) 5.30345e6i 0.0123230i
\(756\) 3.02619e8 0.700374
\(757\) −7.22256e8 −1.66496 −0.832480 0.554056i \(-0.813079\pi\)
−0.832480 + 0.554056i \(0.813079\pi\)
\(758\) 3.97354e7i 0.0912368i
\(759\) 5.05324e6 0.0115570
\(760\) 1.86147e8i 0.424048i
\(761\) 6.07648e8 1.37879 0.689394 0.724386i \(-0.257877\pi\)
0.689394 + 0.724386i \(0.257877\pi\)
\(762\) 7.12834e7i 0.161110i
\(763\) 7.42760e8i 1.67215i
\(764\) 2.92831e8i 0.656654i
\(765\) −3.75303e7 −0.0838296
\(766\) 2.85301e8i 0.634771i
\(767\) −2.21751e8 7.92352e8i −0.491449 1.75603i
\(768\) −1.31111e8 −0.289437
\(769\) 3.21651e7i 0.0707305i 0.999374 + 0.0353652i \(0.0112595\pi\)
−0.999374 + 0.0353652i \(0.988741\pi\)
\(770\) 8.74301e6 0.0191509
\(771\) −2.80212e8 −0.611397
\(772\) −4.46144e8 −0.969669
\(773\) 4.64920e8i 1.00656i 0.864123 + 0.503280i \(0.167874\pi\)
−0.864123 + 0.503280i \(0.832126\pi\)
\(774\) −8.72633e7 −0.188195
\(775\) 2.73165e8i 0.586840i
\(776\) 1.65377e8 0.353907
\(777\) 2.78413e8i 0.593508i
\(778\) 1.48582e8i 0.315520i
\(779\) −2.86857e8 −0.606811
\(780\) 2.59002e8i 0.545781i
\(781\) 2.71521e6i 0.00569968i
\(782\) 1.61116e7 0.0336913
\(783\) 1.24933e7 0.0260251
\(784\) 2.32571e7 0.0482621
\(785\) 4.85488e8i 1.00362i
\(786\) 7.78525e7 0.160326
\(787\) 2.36271e8 0.484714 0.242357 0.970187i \(-0.422079\pi\)
0.242357 + 0.970187i \(0.422079\pi\)
\(788\) −5.17851e8 −1.05834
\(789\) 2.11603e8 0.430815
\(790\) 2.54670e8i 0.516532i
\(791\) 7.86710e8i 1.58959i
\(792\) −1.50318e7 −0.0302577
\(793\) 4.04846e8 0.811839
\(794\) −1.90395e8 −0.380359
\(795\) −2.16210e8 −0.430302
\(796\) −4.31488e6 −0.00855519
\(797\) 7.76241e8i 1.53328i −0.642077 0.766640i \(-0.721927\pi\)
0.642077 0.766640i \(-0.278073\pi\)
\(798\) 7.83843e7i 0.154248i
\(799\) 1.33519e7i 0.0261760i
\(800\) 1.85885e8i 0.363057i
\(801\) 2.13562e8i 0.415554i
\(802\) −2.53907e8 −0.492211
\(803\) −3.05906e6 −0.00590801
\(804\) 7.78853e7i 0.149860i
\(805\) 2.28910e8i 0.438810i
\(806\) 7.60947e8i 1.45328i
\(807\) 3.21217e8i 0.611192i
\(808\) −7.86777e8 −1.49148
\(809\) 4.85806e8i 0.917524i 0.888559 + 0.458762i \(0.151707\pi\)
−0.888559 + 0.458762i \(0.848293\pi\)
\(810\) 7.18702e7i 0.135236i
\(811\) 3.65498e8i 0.685208i 0.939480 + 0.342604i \(0.111309\pi\)
−0.939480 + 0.342604i \(0.888691\pi\)
\(812\) 1.33193e7 0.0248778
\(813\) 1.29162e8 0.240361
\(814\) 1.38639e7i 0.0257046i
\(815\) 5.56950e8 1.02883
\(816\) −1.28764e7 −0.0236987
\(817\) 1.72765e8i 0.316802i
\(818\) 2.93672e8 0.536541
\(819\) 8.16069e8i 1.48551i
\(820\) −3.33035e8 −0.604017
\(821\) 8.63585e7i 0.156054i 0.996951 + 0.0780271i \(0.0248621\pi\)
−0.996951 + 0.0780271i \(0.975138\pi\)
\(822\) 8.11689e7i 0.146142i
\(823\) 9.30819e8i 1.66981i 0.550397 + 0.834903i \(0.314476\pi\)
−0.550397 + 0.834903i \(0.685524\pi\)
\(824\) 3.12038e8 0.557732
\(825\) 4.48775e6i 0.00799221i
\(826\) 7.79142e7 + 2.78400e8i 0.138254 + 0.494003i
\(827\) −6.55263e8 −1.15851 −0.579254 0.815147i \(-0.696656\pi\)
−0.579254 + 0.815147i \(0.696656\pi\)
\(828\) 1.70972e8i 0.301186i
\(829\) 6.10083e8 1.07084 0.535421 0.844585i \(-0.320153\pi\)
0.535421 + 0.844585i \(0.320153\pi\)
\(830\) 3.59815e8 0.629281
\(831\) −1.05951e8 −0.184630
\(832\) 1.41752e8i 0.246127i
\(833\) −1.06298e7 −0.0183903
\(834\) 1.78274e8i 0.307320i
\(835\) −5.69042e7 −0.0977428
\(836\) 1.29284e7i 0.0221272i
\(837\) 8.30666e8i 1.41661i
\(838\) 4.34488e8 0.738322
\(839\) 1.08243e9i 1.83280i 0.400266 + 0.916399i \(0.368918\pi\)
−0.400266 + 0.916399i \(0.631082\pi\)
\(840\) 2.09480e8i 0.353431i
\(841\) −5.94273e8 −0.999076
\(842\) −5.19817e8 −0.870792
\(843\) −2.05948e8 −0.343776
\(844\) 6.89576e8i 1.14698i
\(845\) 1.12705e9 1.86798
\(846\) 4.27770e7 0.0706479
\(847\) −6.45903e8 −1.06296
\(848\) 2.41130e8 0.395425
\(849\) 7.53684e7i 0.123159i
\(850\) 1.43086e7i 0.0232991i
\(851\) −3.62984e8 −0.588978
\(852\) 2.82616e7 0.0456960
\(853\) 2.71040e8 0.436702 0.218351 0.975870i \(-0.429932\pi\)
0.218351 + 0.975870i \(0.429932\pi\)
\(854\) −1.42246e8 −0.228385
\(855\) −2.38052e8 −0.380866
\(856\) 3.76472e8i 0.600221i
\(857\) 1.12202e8i 0.178262i −0.996020 0.0891309i \(-0.971591\pi\)
0.996020 0.0891309i \(-0.0284090\pi\)
\(858\) 1.25014e7i 0.0197923i
\(859\) 1.23565e9i 1.94947i −0.223368 0.974734i \(-0.571705\pi\)
0.223368 0.974734i \(-0.428295\pi\)
\(860\) 2.00576e8i 0.315344i
\(861\) −3.22814e8 −0.505758
\(862\) −3.50546e8 −0.547298
\(863\) 1.21090e9i 1.88398i −0.335645 0.941988i \(-0.608954\pi\)
0.335645 0.941988i \(-0.391046\pi\)
\(864\) 5.65257e8i 0.876405i
\(865\) 5.18578e8i 0.801245i
\(866\) 2.58882e8i 0.398611i
\(867\) −3.10220e8 −0.476007
\(868\) 8.85581e8i 1.35416i
\(869\) 4.07152e7i 0.0620436i
\(870\) 3.75696e6i 0.00570531i
\(871\) −4.84679e8 −0.733499
\(872\) −8.86185e8 −1.33652
\(873\) 2.11490e8i 0.317868i
\(874\) 1.02194e8 0.153071
\(875\) −7.76615e8 −1.15926
\(876\) 3.18406e7i 0.0473663i
\(877\) 1.01315e9 1.50202 0.751010 0.660291i \(-0.229567\pi\)
0.751010 + 0.660291i \(0.229567\pi\)
\(878\) 2.09991e8i 0.310255i
\(879\) 4.83334e8 0.711674
\(880\) 9.10996e6i 0.0133681i
\(881\) 3.47745e7i 0.0508550i −0.999677 0.0254275i \(-0.991905\pi\)
0.999677 0.0254275i \(-0.00809469\pi\)
\(882\) 3.40557e7i 0.0496346i
\(883\) −6.87142e8 −0.998078 −0.499039 0.866580i \(-0.666314\pi\)
−0.499039 + 0.866580i \(0.666314\pi\)
\(884\) 1.32023e8i 0.191114i
\(885\) −2.60105e8 + 7.27939e7i −0.375248 + 0.105018i
\(886\) −1.88257e8 −0.270676
\(887\) 7.79510e7i 0.111699i 0.998439 + 0.0558497i \(0.0177868\pi\)
−0.998439 + 0.0558497i \(0.982213\pi\)
\(888\) −3.32174e8 −0.474380
\(889\) −5.16251e8 −0.734778
\(890\) 1.48201e8 0.210223
\(891\) 1.14902e7i 0.0162440i
\(892\) 3.63793e8 0.512577
\(893\) 8.46902e7i 0.118927i
\(894\) 1.29296e8 0.180956
\(895\) 6.61987e8i 0.923379i
\(896\) 7.34760e8i 1.02146i
\(897\) −3.27312e8 −0.453507
\(898\) 2.73185e8i 0.377249i
\(899\) 3.65604e7i 0.0503190i
\(900\) 1.51840e8 0.208285
\(901\) −1.10210e8 −0.150677
\(902\) 1.60748e7 0.0219042
\(903\) 1.94420e8i 0.264045i
\(904\) 9.38622e8 1.27053
\(905\) 1.00570e9 1.35682
\(906\) 2.66445e6 0.00358280
\(907\) −1.30550e9 −1.74967 −0.874835 0.484422i \(-0.839030\pi\)
−0.874835 + 0.484422i \(0.839030\pi\)
\(908\) 7.26347e8i 0.970256i
\(909\) 1.00616e9i 1.33960i
\(910\) −5.66308e8 −0.751500
\(911\) −3.16348e8 −0.418418 −0.209209 0.977871i \(-0.567089\pi\)
−0.209209 + 0.977871i \(0.567089\pi\)
\(912\) −8.16742e7 −0.107671
\(913\) 5.75251e7 0.0755866
\(914\) 1.91341e8 0.250593
\(915\) 1.32898e8i 0.173483i
\(916\) 4.19605e8i 0.545952i
\(917\) 5.63826e8i 0.731202i
\(918\) 4.35109e7i 0.0562432i
\(919\) 3.91774e8i 0.504765i −0.967628 0.252382i \(-0.918786\pi\)
0.967628 0.252382i \(-0.0812140\pi\)
\(920\) 2.73112e8 0.350733
\(921\) 1.24419e8 0.159260
\(922\) 3.36848e7i 0.0429776i
\(923\) 1.75872e8i 0.223661i
\(924\) 1.45490e7i 0.0184423i
\(925\) 3.22364e8i 0.407307i
\(926\) −7.05226e6 −0.00888168
\(927\) 3.99046e8i 0.500937i
\(928\) 2.48789e7i 0.0311306i
\(929\) 1.07348e8i 0.133889i 0.997757 + 0.0669446i \(0.0213251\pi\)
−0.997757 + 0.0669446i \(0.978675\pi\)
\(930\) −2.49796e8 −0.310553
\(931\) −6.74238e7 −0.0835535
\(932\) 8.23439e8i 1.01715i
\(933\) 7.48044e8 0.921048
\(934\) 4.39402e8 0.539289
\(935\) 4.16376e6i 0.00509390i
\(936\) 9.73650e8 1.18734
\(937\) 2.50556e8i 0.304569i 0.988337 + 0.152285i \(0.0486631\pi\)
−0.988337 + 0.152285i \(0.951337\pi\)
\(938\) 1.70297e8 0.206347
\(939\) 1.10534e8i 0.133505i
\(940\) 9.83237e7i 0.118379i
\(941\) 5.17515e8i 0.621090i 0.950559 + 0.310545i \(0.100511\pi\)
−0.950559 + 0.310545i \(0.899489\pi\)
\(942\) −2.43909e8 −0.291793
\(943\) 4.20872e8i 0.501897i
\(944\) 2.90085e8 8.11842e7i 0.344833 0.0965063i
\(945\) −6.18194e8 −0.732537
\(946\) 9.68134e6i 0.0114357i
\(947\) 1.46435e9 1.72423 0.862113 0.506716i \(-0.169141\pi\)
0.862113 + 0.506716i \(0.169141\pi\)
\(948\) −4.23789e8 −0.497421
\(949\) 1.98144e8 0.231836
\(950\) 9.07583e7i 0.105856i
\(951\) 5.55938e7 0.0646375
\(952\) 1.06780e8i 0.123759i
\(953\) −1.33904e9 −1.54709 −0.773543 0.633743i \(-0.781518\pi\)
−0.773543 + 0.633743i \(0.781518\pi\)
\(954\) 3.53092e8i 0.406670i
\(955\) 5.98199e8i 0.686808i
\(956\) 7.47315e8 0.855323
\(957\) 600641.i 0.000685297i
\(958\) 4.65569e8i 0.529526i
\(959\) −5.87844e8 −0.666509
\(960\) 4.65329e7 0.0525952
\(961\) −1.54335e9 −1.73898
\(962\) 8.97999e8i 1.00867i
\(963\) 4.81446e8 0.539099
\(964\) 6.53197e8 0.729144
\(965\) 9.11390e8 1.01420
\(966\) 1.15004e8 0.127580
\(967\) 1.06877e9i 1.18196i −0.806685 0.590982i \(-0.798741\pi\)
0.806685 0.590982i \(-0.201259\pi\)
\(968\) 7.70625e8i 0.849605i
\(969\) 3.73296e7 0.0410282
\(970\) −1.46763e8 −0.160805
\(971\) 3.47954e6 0.00380070 0.00190035 0.999998i \(-0.499395\pi\)
0.00190035 + 0.999998i \(0.499395\pi\)
\(972\) 7.23369e8 0.787701
\(973\) 1.29110e9 1.40160
\(974\) 9.53896e7i 0.103234i
\(975\) 2.90684e8i 0.313622i
\(976\) 1.48216e8i 0.159422i
\(977\) 7.50772e8i 0.805053i 0.915408 + 0.402526i \(0.131868\pi\)
−0.915408 + 0.402526i \(0.868132\pi\)
\(978\) 2.79811e8i 0.299122i
\(979\) 2.36935e7 0.0252511
\(980\) −7.82777e7 −0.0831687
\(981\) 1.13329e9i 1.20042i
\(982\) 3.98959e8i 0.421302i
\(983\) 2.01448e8i 0.212082i 0.994362 + 0.106041i \(0.0338174\pi\)
−0.994362 + 0.106041i \(0.966183\pi\)
\(984\) 3.85148e8i 0.404243i
\(985\) 1.05787e9 1.10694
\(986\) 1.91506e6i 0.00199780i
\(987\) 9.53059e7i 0.0991216i
\(988\) 8.37409e8i 0.868294i
\(989\) 2.53477e8 0.262029
\(990\) 1.33399e7 0.0137482
\(991\) 2.03555e8i 0.209151i −0.994517 0.104575i \(-0.966652\pi\)
0.994517 0.104575i \(-0.0333484\pi\)
\(992\) 1.65417e9 1.69451
\(993\) 2.89681e8 0.295851
\(994\) 6.17942e7i 0.0629200i
\(995\) 8.81450e6 0.00894806
\(996\) 5.98757e8i 0.606000i
\(997\) 9.82929e8 0.991829 0.495915 0.868371i \(-0.334833\pi\)
0.495915 + 0.868371i \(0.334833\pi\)
\(998\) 6.03337e7i 0.0606972i
\(999\) 9.80275e8i 0.983222i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 59.7.b.c.58.13 26
59.58 odd 2 inner 59.7.b.c.58.14 yes 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
59.7.b.c.58.13 26 1.1 even 1 trivial
59.7.b.c.58.14 yes 26 59.58 odd 2 inner