Properties

Label 59.7.b.c.58.9
Level $59$
Weight $7$
Character 59.58
Analytic conductor $13.573$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [59,7,Mod(58,59)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(59, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("59.58");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 59 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 59.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.5731909336\)
Analytic rank: \(0\)
Dimension: \(26\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 58.9
Character \(\chi\) \(=\) 59.58
Dual form 59.7.b.c.58.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.19418i q^{2} +44.5169 q^{3} +12.2438 q^{4} +52.8479 q^{5} -320.263i q^{6} -372.902 q^{7} -548.511i q^{8} +1252.76 q^{9} -380.197i q^{10} -2143.87i q^{11} +545.055 q^{12} +2575.41i q^{13} +2682.72i q^{14} +2352.63 q^{15} -3162.49 q^{16} +6451.40 q^{17} -9012.55i q^{18} +8212.43 q^{19} +647.058 q^{20} -16600.4 q^{21} -15423.4 q^{22} -282.064i q^{23} -24418.0i q^{24} -12832.1 q^{25} +18528.0 q^{26} +23316.0 q^{27} -4565.72 q^{28} -20472.9 q^{29} -16925.2i q^{30} +26070.3i q^{31} -12353.2i q^{32} -95438.4i q^{33} -46412.6i q^{34} -19707.1 q^{35} +15338.5 q^{36} +39772.6i q^{37} -59081.7i q^{38} +114649. i q^{39} -28987.7i q^{40} +35582.4 q^{41} +119426. i q^{42} +125517. i q^{43} -26249.0i q^{44} +66205.5 q^{45} -2029.22 q^{46} +125680. i q^{47} -140784. q^{48} +21406.6 q^{49} +92316.4i q^{50} +287197. q^{51} +31532.8i q^{52} -263897. q^{53} -167740. i q^{54} -113299. i q^{55} +204541. i q^{56} +365592. q^{57} +147285. i q^{58} +(-16121.5 - 204745. i) q^{59} +28805.0 q^{60} -2078.21i q^{61} +187554. q^{62} -467155. q^{63} -291271. q^{64} +136105. i q^{65} -686601. q^{66} +86383.7i q^{67} +78989.5 q^{68} -12556.6i q^{69} +141776. i q^{70} +313286. q^{71} -687151. i q^{72} -322759. i q^{73} +286131. q^{74} -571246. q^{75} +100551. q^{76} +799452. i q^{77} +824808. q^{78} +295321. q^{79} -167131. q^{80} +124698. q^{81} -255986. i q^{82} +892234. i q^{83} -203252. q^{84} +340943. q^{85} +902993. q^{86} -911389. q^{87} -1.17594e6 q^{88} -953067. i q^{89} -476295. i q^{90} -960375. i q^{91} -3453.52i q^{92} +1.16057e6i q^{93} +904168. q^{94} +434010. q^{95} -549927. i q^{96} +562716. i q^{97} -154003. i q^{98} -2.68574e6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 10 q^{3} - 1090 q^{4} + 142 q^{5} + 406 q^{7} + 5432 q^{9} - 1124 q^{12} + 14982 q^{15} + 12734 q^{16} - 9108 q^{17} + 3850 q^{19} - 46896 q^{20} - 49034 q^{21} + 11238 q^{22} + 18792 q^{25} - 64590 q^{26}+ \cdots - 2396490 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/59\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.19418i 0.899272i −0.893212 0.449636i \(-0.851554\pi\)
0.893212 0.449636i \(-0.148446\pi\)
\(3\) 44.5169 1.64877 0.824387 0.566026i \(-0.191520\pi\)
0.824387 + 0.566026i \(0.191520\pi\)
\(4\) 12.2438 0.191309
\(5\) 52.8479 0.422783 0.211392 0.977401i \(-0.432200\pi\)
0.211392 + 0.977401i \(0.432200\pi\)
\(6\) 320.263i 1.48270i
\(7\) −372.902 −1.08718 −0.543588 0.839352i \(-0.682935\pi\)
−0.543588 + 0.839352i \(0.682935\pi\)
\(8\) 548.511i 1.07131i
\(9\) 1252.76 1.71846
\(10\) 380.197i 0.380197i
\(11\) 2143.87i 1.61072i −0.592786 0.805360i \(-0.701972\pi\)
0.592786 0.805360i \(-0.298028\pi\)
\(12\) 545.055 0.315425
\(13\) 2575.41i 1.17224i 0.810224 + 0.586120i \(0.199345\pi\)
−0.810224 + 0.586120i \(0.800655\pi\)
\(14\) 2682.72i 0.977668i
\(15\) 2352.63 0.697074
\(16\) −3162.49 −0.772092
\(17\) 6451.40 1.31313 0.656565 0.754270i \(-0.272009\pi\)
0.656565 + 0.754270i \(0.272009\pi\)
\(18\) 9012.55i 1.54536i
\(19\) 8212.43 1.19732 0.598661 0.801003i \(-0.295700\pi\)
0.598661 + 0.801003i \(0.295700\pi\)
\(20\) 647.058 0.0808822
\(21\) −16600.4 −1.79251
\(22\) −15423.4 −1.44848
\(23\) 282.064i 0.0231827i −0.999933 0.0115913i \(-0.996310\pi\)
0.999933 0.0115913i \(-0.00368972\pi\)
\(24\) 24418.0i 1.76635i
\(25\) −12832.1 −0.821254
\(26\) 18528.0 1.05416
\(27\) 23316.0 1.18458
\(28\) −4565.72 −0.207987
\(29\) −20472.9 −0.839430 −0.419715 0.907656i \(-0.637870\pi\)
−0.419715 + 0.907656i \(0.637870\pi\)
\(30\) 16925.2i 0.626860i
\(31\) 26070.3i 0.875106i 0.899193 + 0.437553i \(0.144155\pi\)
−0.899193 + 0.437553i \(0.855845\pi\)
\(32\) 12353.2i 0.376990i
\(33\) 95438.4i 2.65571i
\(34\) 46412.6i 1.18086i
\(35\) −19707.1 −0.459640
\(36\) 15338.5 0.328757
\(37\) 39772.6i 0.785198i 0.919710 + 0.392599i \(0.128424\pi\)
−0.919710 + 0.392599i \(0.871576\pi\)
\(38\) 59081.7i 1.07672i
\(39\) 114649.i 1.93276i
\(40\) 28987.7i 0.452932i
\(41\) 35582.4 0.516278 0.258139 0.966108i \(-0.416891\pi\)
0.258139 + 0.966108i \(0.416891\pi\)
\(42\) 119426.i 1.61195i
\(43\) 125517.i 1.57869i 0.613948 + 0.789347i \(0.289581\pi\)
−0.613948 + 0.789347i \(0.710419\pi\)
\(44\) 26249.0i 0.308145i
\(45\) 66205.5 0.726535
\(46\) −2029.22 −0.0208475
\(47\) 125680.i 1.21053i 0.796025 + 0.605263i \(0.206932\pi\)
−0.796025 + 0.605263i \(0.793068\pi\)
\(48\) −140784. −1.27301
\(49\) 21406.6 0.181953
\(50\) 92316.4i 0.738531i
\(51\) 287197. 2.16505
\(52\) 31532.8i 0.224260i
\(53\) −263897. −1.77258 −0.886292 0.463126i \(-0.846728\pi\)
−0.886292 + 0.463126i \(0.846728\pi\)
\(54\) 167740.i 1.06526i
\(55\) 113299.i 0.680985i
\(56\) 204541.i 1.16470i
\(57\) 365592. 1.97411
\(58\) 147285.i 0.754876i
\(59\) −16121.5 204745.i −0.0784966 0.996914i
\(60\) 28805.0 0.133357
\(61\) 2078.21i 0.00915587i −0.999990 0.00457794i \(-0.998543\pi\)
0.999990 0.00457794i \(-0.00145721\pi\)
\(62\) 187554. 0.786958
\(63\) −467155. −1.86827
\(64\) −291271. −1.11111
\(65\) 136105.i 0.495603i
\(66\) −686601. −2.38821
\(67\) 86383.7i 0.287215i 0.989635 + 0.143608i \(0.0458703\pi\)
−0.989635 + 0.143608i \(0.954130\pi\)
\(68\) 78989.5 0.251213
\(69\) 12556.6i 0.0382230i
\(70\) 141776.i 0.413342i
\(71\) 313286. 0.875319 0.437660 0.899141i \(-0.355808\pi\)
0.437660 + 0.899141i \(0.355808\pi\)
\(72\) 687151.i 1.84100i
\(73\) 322759.i 0.829678i −0.909895 0.414839i \(-0.863838\pi\)
0.909895 0.414839i \(-0.136162\pi\)
\(74\) 286131. 0.706107
\(75\) −571246. −1.35406
\(76\) 100551. 0.229058
\(77\) 799452.i 1.75114i
\(78\) 824808. 1.73808
\(79\) 295321. 0.598981 0.299490 0.954099i \(-0.403183\pi\)
0.299490 + 0.954099i \(0.403183\pi\)
\(80\) −167131. −0.326427
\(81\) 124698. 0.234641
\(82\) 255986.i 0.464275i
\(83\) 892234.i 1.56043i 0.625511 + 0.780215i \(0.284890\pi\)
−0.625511 + 0.780215i \(0.715110\pi\)
\(84\) −203252. −0.342923
\(85\) 340943. 0.555169
\(86\) 902993. 1.41968
\(87\) −911389. −1.38403
\(88\) −1.17594e6 −1.72558
\(89\) 953067.i 1.35193i −0.736935 0.675964i \(-0.763727\pi\)
0.736935 0.675964i \(-0.236273\pi\)
\(90\) 476295.i 0.653353i
\(91\) 960375.i 1.27443i
\(92\) 3453.52i 0.00443505i
\(93\) 1.16057e6i 1.44285i
\(94\) 904168. 1.08859
\(95\) 434010. 0.506208
\(96\) 549927.i 0.621572i
\(97\) 562716.i 0.616558i 0.951296 + 0.308279i \(0.0997530\pi\)
−0.951296 + 0.308279i \(0.900247\pi\)
\(98\) 154003.i 0.163625i
\(99\) 2.68574e6i 2.76796i
\(100\) −157113. −0.157113
\(101\) 839770.i 0.815073i 0.913189 + 0.407536i \(0.133612\pi\)
−0.913189 + 0.407536i \(0.866388\pi\)
\(102\) 2.06614e6i 1.94697i
\(103\) 1.16383e6i 1.06507i −0.846407 0.532536i \(-0.821239\pi\)
0.846407 0.532536i \(-0.178761\pi\)
\(104\) 1.41264e6 1.25583
\(105\) −877298. −0.757843
\(106\) 1.89852e6i 1.59404i
\(107\) 1.21993e6 0.995825 0.497912 0.867227i \(-0.334100\pi\)
0.497912 + 0.867227i \(0.334100\pi\)
\(108\) 285476. 0.226620
\(109\) 598890.i 0.462453i 0.972900 + 0.231226i \(0.0742738\pi\)
−0.972900 + 0.231226i \(0.925726\pi\)
\(110\) −815093. −0.612391
\(111\) 1.77055e6i 1.29461i
\(112\) 1.17930e6 0.839400
\(113\) 1.13583e6i 0.787184i −0.919285 0.393592i \(-0.871232\pi\)
0.919285 0.393592i \(-0.128768\pi\)
\(114\) 2.63014e6i 1.77527i
\(115\) 14906.5i 0.00980124i
\(116\) −250665. −0.160590
\(117\) 3.22636e6i 2.01445i
\(118\) −1.47297e6 + 115981.i −0.896498 + 0.0705898i
\(119\) −2.40574e6 −1.42760
\(120\) 1.29044e6i 0.746784i
\(121\) −2.82461e6 −1.59442
\(122\) −14951.0 −0.00823362
\(123\) 1.58402e6 0.851227
\(124\) 319199.i 0.167416i
\(125\) −1.50390e6 −0.769996
\(126\) 3.36080e6i 1.68008i
\(127\) −772958. −0.377350 −0.188675 0.982040i \(-0.560419\pi\)
−0.188675 + 0.982040i \(0.560419\pi\)
\(128\) 1.30485e6i 0.622199i
\(129\) 5.58764e6i 2.60291i
\(130\) 979164. 0.445682
\(131\) 1.86313e6i 0.828759i 0.910104 + 0.414380i \(0.136001\pi\)
−0.910104 + 0.414380i \(0.863999\pi\)
\(132\) 1.16853e6i 0.508062i
\(133\) −3.06243e6 −1.30170
\(134\) 621460. 0.258285
\(135\) 1.23220e6 0.500819
\(136\) 3.53867e6i 1.40677i
\(137\) 3.13776e6 1.22027 0.610137 0.792296i \(-0.291114\pi\)
0.610137 + 0.792296i \(0.291114\pi\)
\(138\) −90334.4 −0.0343729
\(139\) 1.49256e6 0.555761 0.277881 0.960616i \(-0.410368\pi\)
0.277881 + 0.960616i \(0.410368\pi\)
\(140\) −241289. −0.0879333
\(141\) 5.59491e6i 1.99589i
\(142\) 2.25384e6i 0.787150i
\(143\) 5.52134e6 1.88815
\(144\) −3.96183e6 −1.32681
\(145\) −1.08195e6 −0.354897
\(146\) −2.32199e6 −0.746107
\(147\) 952954. 0.299999
\(148\) 486967.i 0.150215i
\(149\) 2.30008e6i 0.695320i 0.937621 + 0.347660i \(0.113024\pi\)
−0.937621 + 0.347660i \(0.886976\pi\)
\(150\) 4.10964e6i 1.21767i
\(151\) 5.58036e6i 1.62081i −0.585872 0.810403i \(-0.699248\pi\)
0.585872 0.810403i \(-0.300752\pi\)
\(152\) 4.50461e6i 1.28270i
\(153\) 8.08204e6 2.25656
\(154\) 5.75140e6 1.57475
\(155\) 1.37776e6i 0.369980i
\(156\) 1.40374e6i 0.369754i
\(157\) 5.27078e6i 1.36200i −0.732285 0.680998i \(-0.761546\pi\)
0.732285 0.680998i \(-0.238454\pi\)
\(158\) 2.12459e6i 0.538647i
\(159\) −1.17479e7 −2.92259
\(160\) 652842.i 0.159385i
\(161\) 105182.i 0.0252037i
\(162\) 897100.i 0.211007i
\(163\) −6.98284e6 −1.61239 −0.806194 0.591651i \(-0.798476\pi\)
−0.806194 + 0.591651i \(0.798476\pi\)
\(164\) 435663. 0.0987687
\(165\) 5.04372e6i 1.12279i
\(166\) 6.41889e6 1.40325
\(167\) −2.76029e6 −0.592660 −0.296330 0.955086i \(-0.595763\pi\)
−0.296330 + 0.955086i \(0.595763\pi\)
\(168\) 9.10552e6i 1.92034i
\(169\) −1.80593e6 −0.374146
\(170\) 2.45281e6i 0.499248i
\(171\) 1.02882e7 2.05755
\(172\) 1.53680e6i 0.302018i
\(173\) 8.49343e6i 1.64038i −0.572090 0.820191i \(-0.693867\pi\)
0.572090 0.820191i \(-0.306133\pi\)
\(174\) 6.55669e6i 1.24462i
\(175\) 4.78511e6 0.892848
\(176\) 6.77996e6i 1.24362i
\(177\) −717682. 9.11463e6i −0.129423 1.64369i
\(178\) −6.85654e6 −1.21575
\(179\) 1.47515e6i 0.257204i −0.991696 0.128602i \(-0.958951\pi\)
0.991696 0.128602i \(-0.0410490\pi\)
\(180\) 810606. 0.138993
\(181\) 4.19936e6 0.708187 0.354093 0.935210i \(-0.384790\pi\)
0.354093 + 0.935210i \(0.384790\pi\)
\(182\) −6.90911e6 −1.14606
\(183\) 92515.5i 0.0150960i
\(184\) −154715. −0.0248359
\(185\) 2.10190e6i 0.331968i
\(186\) 8.34934e6 1.29752
\(187\) 1.38310e7i 2.11508i
\(188\) 1.53880e6i 0.231585i
\(189\) −8.69458e6 −1.28784
\(190\) 3.12234e6i 0.455219i
\(191\) 6.17029e6i 0.885535i 0.896637 + 0.442767i \(0.146003\pi\)
−0.896637 + 0.442767i \(0.853997\pi\)
\(192\) −1.29665e7 −1.83197
\(193\) 1.11963e7 1.55741 0.778707 0.627388i \(-0.215876\pi\)
0.778707 + 0.627388i \(0.215876\pi\)
\(194\) 4.04828e6 0.554454
\(195\) 6.05898e6i 0.817138i
\(196\) 262097. 0.0348092
\(197\) −1.18163e6 −0.154555 −0.0772774 0.997010i \(-0.524623\pi\)
−0.0772774 + 0.997010i \(0.524623\pi\)
\(198\) −1.93217e7 −2.48915
\(199\) −9.77688e6 −1.24063 −0.620313 0.784354i \(-0.712995\pi\)
−0.620313 + 0.784354i \(0.712995\pi\)
\(200\) 7.03855e6i 0.879819i
\(201\) 3.84553e6i 0.473553i
\(202\) 6.04146e6 0.732972
\(203\) 7.63436e6 0.912609
\(204\) 3.51637e6 0.414194
\(205\) 1.88046e6 0.218274
\(206\) −8.37283e6 −0.957791
\(207\) 353357.i 0.0398385i
\(208\) 8.14471e6i 0.905077i
\(209\) 1.76064e7i 1.92855i
\(210\) 6.31144e6i 0.681507i
\(211\) 7.34804e6i 0.782212i −0.920346 0.391106i \(-0.872093\pi\)
0.920346 0.391106i \(-0.127907\pi\)
\(212\) −3.23110e6 −0.339111
\(213\) 1.39465e7 1.44320
\(214\) 8.77638e6i 0.895518i
\(215\) 6.63332e6i 0.667445i
\(216\) 1.27891e7i 1.26905i
\(217\) 9.72164e6i 0.951394i
\(218\) 4.30852e6 0.415871
\(219\) 1.43682e7i 1.36795i
\(220\) 1.38721e6i 0.130279i
\(221\) 1.66150e7i 1.53930i
\(222\) 1.27377e7 1.16421
\(223\) 1.18507e7 1.06864 0.534318 0.845284i \(-0.320569\pi\)
0.534318 + 0.845284i \(0.320569\pi\)
\(224\) 4.60654e6i 0.409855i
\(225\) −1.60755e7 −1.41129
\(226\) −8.17134e6 −0.707893
\(227\) 750175.i 0.0641335i 0.999486 + 0.0320668i \(0.0102089\pi\)
−0.999486 + 0.0320668i \(0.989791\pi\)
\(228\) 4.47623e6 0.377666
\(229\) 1.38502e7i 1.15332i −0.816984 0.576660i \(-0.804356\pi\)
0.816984 0.576660i \(-0.195644\pi\)
\(230\) −107240. −0.00881399
\(231\) 3.55891e7i 2.88723i
\(232\) 1.12296e7i 0.899291i
\(233\) 5.27802e6i 0.417257i −0.977995 0.208628i \(-0.933100\pi\)
0.977995 0.208628i \(-0.0668999\pi\)
\(234\) 2.32110e7 1.81154
\(235\) 6.64195e6i 0.511790i
\(236\) −197389. 2.50686e6i −0.0150171 0.190719i
\(237\) 1.31468e7 0.987584
\(238\) 1.73073e7i 1.28380i
\(239\) −7.29198e6 −0.534136 −0.267068 0.963678i \(-0.586055\pi\)
−0.267068 + 0.963678i \(0.586055\pi\)
\(240\) −7.44015e6 −0.538205
\(241\) −8.13367e6 −0.581080 −0.290540 0.956863i \(-0.593835\pi\)
−0.290540 + 0.956863i \(0.593835\pi\)
\(242\) 2.03207e7i 1.43382i
\(243\) −1.14462e7 −0.797706
\(244\) 25445.1i 0.00175160i
\(245\) 1.13129e6 0.0769266
\(246\) 1.13957e7i 0.765485i
\(247\) 2.11504e7i 1.40355i
\(248\) 1.42998e7 0.937511
\(249\) 3.97195e7i 2.57280i
\(250\) 1.08193e7i 0.692436i
\(251\) −1.58703e7 −1.00361 −0.501804 0.864981i \(-0.667330\pi\)
−0.501804 + 0.864981i \(0.667330\pi\)
\(252\) −5.71974e6 −0.357416
\(253\) −604707. −0.0373408
\(254\) 5.56080e6i 0.339341i
\(255\) 1.51777e7 0.915349
\(256\) −9.25401e6 −0.551582
\(257\) −2.92740e6 −0.172458 −0.0862289 0.996275i \(-0.527482\pi\)
−0.0862289 + 0.996275i \(0.527482\pi\)
\(258\) 4.01985e7 2.34073
\(259\) 1.48313e7i 0.853648i
\(260\) 1.66644e6i 0.0948134i
\(261\) −2.56475e7 −1.44253
\(262\) 1.34037e7 0.745281
\(263\) −2.71004e6 −0.148973 −0.0744866 0.997222i \(-0.523732\pi\)
−0.0744866 + 0.997222i \(0.523732\pi\)
\(264\) −5.23491e7 −2.84510
\(265\) −1.39464e7 −0.749419
\(266\) 2.20317e7i 1.17058i
\(267\) 4.24276e7i 2.22903i
\(268\) 1.05766e6i 0.0549468i
\(269\) 2.40580e7i 1.23596i −0.786196 0.617978i \(-0.787952\pi\)
0.786196 0.617978i \(-0.212048\pi\)
\(270\) 8.86469e6i 0.450373i
\(271\) 2.69790e7 1.35556 0.677778 0.735266i \(-0.262943\pi\)
0.677778 + 0.735266i \(0.262943\pi\)
\(272\) −2.04025e7 −1.01386
\(273\) 4.27529e7i 2.10125i
\(274\) 2.25736e7i 1.09736i
\(275\) 2.75103e7i 1.32281i
\(276\) 153740.i 0.00731240i
\(277\) 5.77138e6 0.271544 0.135772 0.990740i \(-0.456648\pi\)
0.135772 + 0.990740i \(0.456648\pi\)
\(278\) 1.07378e7i 0.499781i
\(279\) 3.26597e7i 1.50383i
\(280\) 1.08096e7i 0.492418i
\(281\) −4.19786e7 −1.89195 −0.945974 0.324242i \(-0.894891\pi\)
−0.945974 + 0.324242i \(0.894891\pi\)
\(282\) 4.02508e7 1.79485
\(283\) 3.17844e7i 1.40234i 0.712992 + 0.701172i \(0.247339\pi\)
−0.712992 + 0.701172i \(0.752661\pi\)
\(284\) 3.83581e6 0.167456
\(285\) 1.93208e7 0.834622
\(286\) 3.97215e7i 1.69796i
\(287\) −1.32687e7 −0.561286
\(288\) 1.54756e7i 0.647842i
\(289\) 1.74830e7 0.724308
\(290\) 7.78373e6i 0.319149i
\(291\) 2.50504e7i 1.01657i
\(292\) 3.95179e6i 0.158725i
\(293\) −984166. −0.0391260 −0.0195630 0.999809i \(-0.506227\pi\)
−0.0195630 + 0.999809i \(0.506227\pi\)
\(294\) 6.85572e6i 0.269781i
\(295\) −851990. 1.08204e7i −0.0331870 0.421479i
\(296\) 2.18157e7 0.841191
\(297\) 4.99865e7i 1.90802i
\(298\) 1.65472e7 0.625282
\(299\) 726430. 0.0271756
\(300\) −6.99420e6 −0.259045
\(301\) 4.68055e7i 1.71632i
\(302\) −4.01461e7 −1.45755
\(303\) 3.73840e7i 1.34387i
\(304\) −2.59717e7 −0.924442
\(305\) 109829.i 0.00387095i
\(306\) 5.81436e7i 2.02926i
\(307\) −1.83381e7 −0.633780 −0.316890 0.948462i \(-0.602639\pi\)
−0.316890 + 0.948462i \(0.602639\pi\)
\(308\) 9.78831e6i 0.335008i
\(309\) 5.18103e7i 1.75607i
\(310\) 9.91185e6 0.332713
\(311\) −2.87727e7 −0.956531 −0.478265 0.878215i \(-0.658734\pi\)
−0.478265 + 0.878215i \(0.658734\pi\)
\(312\) 6.28865e7 2.07059
\(313\) 8.75157e6i 0.285399i −0.989766 0.142700i \(-0.954422\pi\)
0.989766 0.142700i \(-0.0455783\pi\)
\(314\) −3.79190e7 −1.22481
\(315\) −2.46881e7 −0.789872
\(316\) 3.61584e6 0.114590
\(317\) 4.02075e7 1.26220 0.631102 0.775700i \(-0.282603\pi\)
0.631102 + 0.775700i \(0.282603\pi\)
\(318\) 8.45164e7i 2.62821i
\(319\) 4.38911e7i 1.35209i
\(320\) −1.53930e7 −0.469758
\(321\) 5.43075e7 1.64189
\(322\) 756698. 0.0226649
\(323\) 5.29817e7 1.57224
\(324\) 1.52677e6 0.0448890
\(325\) 3.30479e7i 0.962707i
\(326\) 5.02358e7i 1.44998i
\(327\) 2.66607e7i 0.762481i
\(328\) 1.95174e7i 0.553095i
\(329\) 4.68664e7i 1.31606i
\(330\) −3.62854e7 −1.00970
\(331\) −2.54741e7 −0.702449 −0.351224 0.936291i \(-0.614235\pi\)
−0.351224 + 0.936291i \(0.614235\pi\)
\(332\) 1.09243e7i 0.298524i
\(333\) 4.98254e7i 1.34933i
\(334\) 1.98580e7i 0.532963i
\(335\) 4.56520e6i 0.121430i
\(336\) 5.24987e7 1.38398
\(337\) 1.95808e7i 0.511612i 0.966728 + 0.255806i \(0.0823408\pi\)
−0.966728 + 0.255806i \(0.917659\pi\)
\(338\) 1.29922e7i 0.336460i
\(339\) 5.05635e7i 1.29789i
\(340\) 4.17443e6 0.106209
\(341\) 5.58912e7 1.40955
\(342\) 7.40150e7i 1.85030i
\(343\) 3.58890e7 0.889362
\(344\) 6.88476e7 1.69127
\(345\) 663590.i 0.0161600i
\(346\) −6.11033e7 −1.47515
\(347\) 1.45453e7i 0.348124i −0.984735 0.174062i \(-0.944311\pi\)
0.984735 0.174062i \(-0.0556893\pi\)
\(348\) −1.11588e7 −0.264778
\(349\) 2.05319e7i 0.483006i 0.970400 + 0.241503i \(0.0776404\pi\)
−0.970400 + 0.241503i \(0.922360\pi\)
\(350\) 3.44249e7i 0.802914i
\(351\) 6.00483e7i 1.38861i
\(352\) −2.64837e7 −0.607226
\(353\) 2.23794e6i 0.0508772i 0.999676 + 0.0254386i \(0.00809824\pi\)
−0.999676 + 0.0254386i \(0.991902\pi\)
\(354\) −6.55723e7 + 5.16313e6i −1.47812 + 0.116387i
\(355\) 1.65565e7 0.370070
\(356\) 1.16691e7i 0.258636i
\(357\) −1.07096e8 −2.35380
\(358\) −1.06125e7 −0.231296
\(359\) 2.98632e7 0.645437 0.322718 0.946495i \(-0.395403\pi\)
0.322718 + 0.946495i \(0.395403\pi\)
\(360\) 3.63145e7i 0.778346i
\(361\) 2.03981e7 0.433579
\(362\) 3.02110e7i 0.636853i
\(363\) −1.25743e8 −2.62884
\(364\) 1.17586e7i 0.243810i
\(365\) 1.70571e7i 0.350774i
\(366\) −665573. −0.0135754
\(367\) 3.63988e7i 0.736359i 0.929755 + 0.368179i \(0.120019\pi\)
−0.929755 + 0.368179i \(0.879981\pi\)
\(368\) 892023.i 0.0178991i
\(369\) 4.45761e7 0.887203
\(370\) 1.51214e7 0.298530
\(371\) 9.84076e7 1.92711
\(372\) 1.42097e7i 0.276031i
\(373\) −4.10541e7 −0.791098 −0.395549 0.918445i \(-0.629446\pi\)
−0.395549 + 0.918445i \(0.629446\pi\)
\(374\) −9.95024e7 −1.90204
\(375\) −6.69489e7 −1.26955
\(376\) 6.89372e7 1.29685
\(377\) 5.27260e7i 0.984013i
\(378\) 6.25504e7i 1.15812i
\(379\) −4.32229e7 −0.793956 −0.396978 0.917828i \(-0.629941\pi\)
−0.396978 + 0.917828i \(0.629941\pi\)
\(380\) 5.31392e6 0.0968421
\(381\) −3.44097e7 −0.622166
\(382\) 4.43902e7 0.796337
\(383\) 9.83708e7 1.75093 0.875467 0.483278i \(-0.160554\pi\)
0.875467 + 0.483278i \(0.160554\pi\)
\(384\) 5.80878e7i 1.02587i
\(385\) 4.22493e7i 0.740351i
\(386\) 8.05485e7i 1.40054i
\(387\) 1.57242e8i 2.71292i
\(388\) 6.88977e6i 0.117953i
\(389\) −4.97440e7 −0.845069 −0.422534 0.906347i \(-0.638859\pi\)
−0.422534 + 0.906347i \(0.638859\pi\)
\(390\) 4.35894e7 0.734830
\(391\) 1.81971e6i 0.0304418i
\(392\) 1.17417e7i 0.194928i
\(393\) 8.29407e7i 1.36644i
\(394\) 8.50085e6i 0.138987i
\(395\) 1.56071e7 0.253239
\(396\) 3.28836e7i 0.529535i
\(397\) 4.07638e7i 0.651483i −0.945459 0.325742i \(-0.894386\pi\)
0.945459 0.325742i \(-0.105614\pi\)
\(398\) 7.03366e7i 1.11566i
\(399\) −1.36330e8 −2.14621
\(400\) 4.05814e7 0.634084
\(401\) 7.92566e7i 1.22914i 0.788862 + 0.614571i \(0.210671\pi\)
−0.788862 + 0.614571i \(0.789329\pi\)
\(402\) 2.76655e7 0.425853
\(403\) −6.71417e7 −1.02583
\(404\) 1.02820e7i 0.155931i
\(405\) 6.59003e6 0.0992024
\(406\) 5.49230e7i 0.820684i
\(407\) 8.52672e7 1.26473
\(408\) 1.57531e8i 2.31945i
\(409\) 4.53606e7i 0.662993i 0.943456 + 0.331497i \(0.107554\pi\)
−0.943456 + 0.331497i \(0.892446\pi\)
\(410\) 1.35283e7i 0.196288i
\(411\) 1.39683e8 2.01196
\(412\) 1.42497e7i 0.203758i
\(413\) 6.01175e6 + 7.63498e7i 0.0853396 + 1.08382i
\(414\) −2.54211e6 −0.0358256
\(415\) 4.71527e7i 0.659724i
\(416\) 3.18146e7 0.441923
\(417\) 6.64443e7 0.916325
\(418\) −1.26663e8 −1.73429
\(419\) 5.00796e7i 0.680799i 0.940281 + 0.340399i \(0.110562\pi\)
−0.940281 + 0.340399i \(0.889438\pi\)
\(420\) −1.07414e7 −0.144982
\(421\) 1.17905e8i 1.58010i −0.613043 0.790049i \(-0.710055\pi\)
0.613043 0.790049i \(-0.289945\pi\)
\(422\) −5.28632e7 −0.703422
\(423\) 1.57447e8i 2.08024i
\(424\) 1.44751e8i 1.89899i
\(425\) −8.27850e7 −1.07841
\(426\) 1.00334e8i 1.29783i
\(427\) 774967.i 0.00995405i
\(428\) 1.49365e7 0.190510
\(429\) 2.45793e8 3.11313
\(430\) 4.77213e7 0.600215
\(431\) 1.12512e8i 1.40529i −0.711541 0.702645i \(-0.752002\pi\)
0.711541 0.702645i \(-0.247998\pi\)
\(432\) −7.37366e7 −0.914602
\(433\) −5.56087e7 −0.684982 −0.342491 0.939521i \(-0.611271\pi\)
−0.342491 + 0.939521i \(0.611271\pi\)
\(434\) −6.99393e7 −0.855563
\(435\) −4.81650e7 −0.585145
\(436\) 7.33267e6i 0.0884714i
\(437\) 2.31643e6i 0.0277571i
\(438\) −1.03368e8 −1.23016
\(439\) 3.84071e7 0.453960 0.226980 0.973899i \(-0.427115\pi\)
0.226980 + 0.973899i \(0.427115\pi\)
\(440\) −6.21458e7 −0.729547
\(441\) 2.68172e7 0.312678
\(442\) 1.19531e8 1.38425
\(443\) 1.36815e8i 1.57371i −0.617140 0.786853i \(-0.711709\pi\)
0.617140 0.786853i \(-0.288291\pi\)
\(444\) 2.16783e7i 0.247671i
\(445\) 5.03676e7i 0.571573i
\(446\) 8.52561e7i 0.960995i
\(447\) 1.02393e8i 1.14643i
\(448\) 1.08615e8 1.20797
\(449\) −7.83838e7 −0.865939 −0.432969 0.901409i \(-0.642534\pi\)
−0.432969 + 0.901409i \(0.642534\pi\)
\(450\) 1.15650e8i 1.26914i
\(451\) 7.62840e7i 0.831579i
\(452\) 1.39068e7i 0.150595i
\(453\) 2.48420e8i 2.67235i
\(454\) 5.39690e6 0.0576735
\(455\) 5.07538e7i 0.538808i
\(456\) 2.00531e8i 2.11489i
\(457\) 3.20033e7i 0.335309i 0.985846 + 0.167655i \(0.0536194\pi\)
−0.985846 + 0.167655i \(0.946381\pi\)
\(458\) −9.96410e7 −1.03715
\(459\) 1.50421e8 1.55550
\(460\) 182511.i 0.00187507i
\(461\) 7.84507e7 0.800745 0.400373 0.916352i \(-0.368881\pi\)
0.400373 + 0.916352i \(0.368881\pi\)
\(462\) 2.56035e8 2.59641
\(463\) 1.77167e8i 1.78500i 0.451045 + 0.892501i \(0.351051\pi\)
−0.451045 + 0.892501i \(0.648949\pi\)
\(464\) 6.47452e7 0.648117
\(465\) 6.13336e7i 0.610014i
\(466\) −3.79710e7 −0.375227
\(467\) 1.65563e8i 1.62560i −0.582543 0.812800i \(-0.697942\pi\)
0.582543 0.812800i \(-0.302058\pi\)
\(468\) 3.95029e7i 0.385382i
\(469\) 3.22126e7i 0.312253i
\(470\) 4.77834e7 0.460239
\(471\) 2.34639e8i 2.24563i
\(472\) −1.12305e8 + 8.84285e6i −1.06801 + 0.0840943i
\(473\) 2.69092e8 2.54283
\(474\) 9.45803e7i 0.888108i
\(475\) −1.05383e8 −0.983306
\(476\) −2.94553e7 −0.273113
\(477\) −3.30599e8 −3.04611
\(478\) 5.24598e7i 0.480334i
\(479\) −3.25732e7 −0.296384 −0.148192 0.988959i \(-0.547345\pi\)
−0.148192 + 0.988959i \(0.547345\pi\)
\(480\) 2.90625e7i 0.262790i
\(481\) −1.02431e8 −0.920440
\(482\) 5.85151e7i 0.522549i
\(483\) 4.68238e6i 0.0415551i
\(484\) −3.45839e7 −0.305026
\(485\) 2.97383e7i 0.260670i
\(486\) 8.23461e7i 0.717355i
\(487\) −1.98742e8 −1.72069 −0.860344 0.509714i \(-0.829751\pi\)
−0.860344 + 0.509714i \(0.829751\pi\)
\(488\) −1.13992e6 −0.00980879
\(489\) −3.10855e8 −2.65846
\(490\) 8.13872e6i 0.0691779i
\(491\) −8.63955e7 −0.729872 −0.364936 0.931033i \(-0.618909\pi\)
−0.364936 + 0.931033i \(0.618909\pi\)
\(492\) 1.93944e7 0.162847
\(493\) −1.32079e8 −1.10228
\(494\) 1.52160e8 1.26217
\(495\) 1.41936e8i 1.17025i
\(496\) 8.24469e7i 0.675662i
\(497\) −1.16825e8 −0.951626
\(498\) 2.85749e8 2.31365
\(499\) 2.26160e8 1.82018 0.910089 0.414413i \(-0.136013\pi\)
0.910089 + 0.414413i \(0.136013\pi\)
\(500\) −1.84134e7 −0.147307
\(501\) −1.22880e8 −0.977163
\(502\) 1.14174e8i 0.902517i
\(503\) 6.92678e7i 0.544287i 0.962257 + 0.272143i \(0.0877325\pi\)
−0.962257 + 0.272143i \(0.912268\pi\)
\(504\) 2.56240e8i 2.00150i
\(505\) 4.43801e7i 0.344599i
\(506\) 4.35037e6i 0.0335795i
\(507\) −8.03946e7 −0.616883
\(508\) −9.46392e6 −0.0721905
\(509\) 9.84616e7i 0.746644i 0.927702 + 0.373322i \(0.121781\pi\)
−0.927702 + 0.373322i \(0.878219\pi\)
\(510\) 1.09191e8i 0.823148i
\(511\) 1.20357e8i 0.902007i
\(512\) 1.50085e8i 1.11822i
\(513\) 1.91481e8 1.41832
\(514\) 2.10602e7i 0.155087i
\(515\) 6.15062e7i 0.450295i
\(516\) 6.84138e7i 0.497960i
\(517\) 2.69442e8 1.94982
\(518\) −1.06699e8 −0.767663
\(519\) 3.78101e8i 2.70462i
\(520\) 7.46552e7 0.530946
\(521\) 9.36915e7 0.662502 0.331251 0.943543i \(-0.392529\pi\)
0.331251 + 0.943543i \(0.392529\pi\)
\(522\) 1.84513e8i 1.29722i
\(523\) −1.55315e8 −1.08569 −0.542846 0.839832i \(-0.682653\pi\)
−0.542846 + 0.839832i \(0.682653\pi\)
\(524\) 2.28117e7i 0.158549i
\(525\) 2.13018e8 1.47211
\(526\) 1.94965e7i 0.133967i
\(527\) 1.68190e8i 1.14913i
\(528\) 3.01823e8i 2.05046i
\(529\) 1.47956e8 0.999463
\(530\) 1.00333e8i 0.673932i
\(531\) −2.01964e7 2.56496e8i −0.134893 1.71316i
\(532\) −3.74957e7 −0.249027
\(533\) 9.16393e7i 0.605202i
\(534\) −3.05232e8 −2.00450
\(535\) 6.44707e7 0.421018
\(536\) 4.73824e7 0.307697
\(537\) 6.56692e7i 0.424072i
\(538\) −1.73078e8 −1.11146
\(539\) 4.58928e7i 0.293075i
\(540\) 1.50868e7 0.0958112
\(541\) 2.63293e8i 1.66283i 0.555651 + 0.831416i \(0.312469\pi\)
−0.555651 + 0.831416i \(0.687531\pi\)
\(542\) 1.94092e8i 1.21902i
\(543\) 1.86943e8 1.16764
\(544\) 7.96956e7i 0.495037i
\(545\) 3.16501e7i 0.195517i
\(546\) −3.07572e8 −1.88960
\(547\) 2.27028e8 1.38713 0.693567 0.720392i \(-0.256038\pi\)
0.693567 + 0.720392i \(0.256038\pi\)
\(548\) 3.84180e7 0.233450
\(549\) 2.60349e6i 0.0157340i
\(550\) 1.97914e8 1.18957
\(551\) −1.68132e8 −1.00507
\(552\) −6.88744e6 −0.0409487
\(553\) −1.10126e8 −0.651198
\(554\) 4.15204e7i 0.244192i
\(555\) 9.35701e7i 0.547341i
\(556\) 1.82746e7 0.106322
\(557\) 4.30150e6 0.0248917 0.0124459 0.999923i \(-0.496038\pi\)
0.0124459 + 0.999923i \(0.496038\pi\)
\(558\) 2.34960e8 1.35236
\(559\) −3.23258e8 −1.85061
\(560\) 6.23234e7 0.354884
\(561\) 6.15712e8i 3.48730i
\(562\) 3.02002e8i 1.70138i
\(563\) 1.61271e7i 0.0903714i 0.998979 + 0.0451857i \(0.0143880\pi\)
−0.998979 + 0.0451857i \(0.985612\pi\)
\(564\) 6.85028e7i 0.381831i
\(565\) 6.00260e7i 0.332808i
\(566\) 2.28663e8 1.26109
\(567\) −4.65001e7 −0.255097
\(568\) 1.71841e8i 0.937739i
\(569\) 2.91576e8i 1.58276i −0.611325 0.791379i \(-0.709363\pi\)
0.611325 0.791379i \(-0.290637\pi\)
\(570\) 1.38997e8i 0.750553i
\(571\) 2.35358e8i 1.26421i 0.774881 + 0.632107i \(0.217810\pi\)
−0.774881 + 0.632107i \(0.782190\pi\)
\(572\) 6.76021e7 0.361220
\(573\) 2.74682e8i 1.46005i
\(574\) 9.54577e7i 0.504749i
\(575\) 3.61947e6i 0.0190389i
\(576\) −3.64891e8 −1.90939
\(577\) 2.06502e8 1.07497 0.537486 0.843273i \(-0.319374\pi\)
0.537486 + 0.843273i \(0.319374\pi\)
\(578\) 1.25776e8i 0.651350i
\(579\) 4.98427e8 2.56783
\(580\) −1.32471e7 −0.0678950
\(581\) 3.32715e8i 1.69646i
\(582\) 1.80217e8 0.914169
\(583\) 5.65760e8i 2.85514i
\(584\) −1.77037e8 −0.888844
\(585\) 1.70506e8i 0.851674i
\(586\) 7.08027e6i 0.0351849i
\(587\) 1.27556e7i 0.0630649i 0.999503 + 0.0315324i \(0.0100387\pi\)
−0.999503 + 0.0315324i \(0.989961\pi\)
\(588\) 1.16678e7 0.0573925
\(589\) 2.14100e8i 1.04778i
\(590\) −7.78436e7 + 6.12937e6i −0.379024 + 0.0298442i
\(591\) −5.26025e7 −0.254826
\(592\) 1.25780e8i 0.606245i
\(593\) 1.44245e8 0.691729 0.345864 0.938285i \(-0.387586\pi\)
0.345864 + 0.938285i \(0.387586\pi\)
\(594\) −3.59612e8 −1.71583
\(595\) −1.27138e8 −0.603567
\(596\) 2.81617e7i 0.133021i
\(597\) −4.35237e8 −2.04551
\(598\) 5.22606e6i 0.0244383i
\(599\) 4.87986e7 0.227053 0.113526 0.993535i \(-0.463785\pi\)
0.113526 + 0.993535i \(0.463785\pi\)
\(600\) 3.13335e8i 1.45062i
\(601\) 5.77810e7i 0.266172i 0.991105 + 0.133086i \(0.0424886\pi\)
−0.991105 + 0.133086i \(0.957511\pi\)
\(602\) −3.36728e8 −1.54344
\(603\) 1.08218e8i 0.493567i
\(604\) 6.83247e7i 0.310075i
\(605\) −1.49275e8 −0.674093
\(606\) 2.68947e8 1.20851
\(607\) 1.45131e8 0.648924 0.324462 0.945899i \(-0.394817\pi\)
0.324462 + 0.945899i \(0.394817\pi\)
\(608\) 1.01450e8i 0.451379i
\(609\) 3.39858e8 1.50469
\(610\) −790129. −0.00348104
\(611\) −3.23679e8 −1.41903
\(612\) 9.89546e7 0.431700
\(613\) 1.86591e8i 0.810046i −0.914306 0.405023i \(-0.867264\pi\)
0.914306 0.405023i \(-0.132736\pi\)
\(614\) 1.31927e8i 0.569941i
\(615\) 8.37121e7 0.359884
\(616\) 4.38508e8 1.87601
\(617\) −2.66448e8 −1.13438 −0.567188 0.823589i \(-0.691969\pi\)
−0.567188 + 0.823589i \(0.691969\pi\)
\(618\) −3.72733e8 −1.57918
\(619\) 3.38540e8 1.42738 0.713688 0.700464i \(-0.247023\pi\)
0.713688 + 0.700464i \(0.247023\pi\)
\(620\) 1.68690e7i 0.0707805i
\(621\) 6.57660e6i 0.0274616i
\(622\) 2.06996e8i 0.860182i
\(623\) 3.55400e8i 1.46978i
\(624\) 3.62577e8i 1.49227i
\(625\) 1.21024e8 0.495713
\(626\) −6.29603e7 −0.256652
\(627\) 7.83781e8i 3.17974i
\(628\) 6.45343e7i 0.260562i
\(629\) 2.56589e8i 1.03107i
\(630\) 1.77611e8i 0.710310i
\(631\) −4.83502e8 −1.92447 −0.962233 0.272226i \(-0.912240\pi\)
−0.962233 + 0.272226i \(0.912240\pi\)
\(632\) 1.61987e8i 0.641695i
\(633\) 3.27112e8i 1.28969i
\(634\) 2.89260e8i 1.13507i
\(635\) −4.08492e7 −0.159537
\(636\) −1.43838e8 −0.559118
\(637\) 5.51307e7i 0.213292i
\(638\) 3.15760e8 1.21589
\(639\) 3.92471e8 1.50420
\(640\) 6.89584e7i 0.263055i
\(641\) −2.27407e8 −0.863436 −0.431718 0.902009i \(-0.642092\pi\)
−0.431718 + 0.902009i \(0.642092\pi\)
\(642\) 3.90698e8i 1.47651i
\(643\) −4.67470e7 −0.175841 −0.0879206 0.996127i \(-0.528022\pi\)
−0.0879206 + 0.996127i \(0.528022\pi\)
\(644\) 1.28782e6i 0.00482168i
\(645\) 2.95295e8i 1.10047i
\(646\) 3.81160e8i 1.41387i
\(647\) 8.05596e7 0.297444 0.148722 0.988879i \(-0.452484\pi\)
0.148722 + 0.988879i \(0.452484\pi\)
\(648\) 6.83983e7i 0.251374i
\(649\) −4.38947e8 + 3.45625e7i −1.60575 + 0.126436i
\(650\) −2.37753e8 −0.865736
\(651\) 4.32778e8i 1.56863i
\(652\) −8.54964e7 −0.308464
\(653\) −1.27620e7 −0.0458331 −0.0229165 0.999737i \(-0.507295\pi\)
−0.0229165 + 0.999737i \(0.507295\pi\)
\(654\) 1.91802e8 0.685678
\(655\) 9.84623e7i 0.350386i
\(656\) −1.12529e8 −0.398614
\(657\) 4.04338e8i 1.42577i
\(658\) −3.37166e8 −1.18349
\(659\) 1.06999e7i 0.0373872i −0.999825 0.0186936i \(-0.994049\pi\)
0.999825 0.0186936i \(-0.00595071\pi\)
\(660\) 6.17542e7i 0.214800i
\(661\) 2.52333e8 0.873713 0.436857 0.899531i \(-0.356092\pi\)
0.436857 + 0.899531i \(0.356092\pi\)
\(662\) 1.83265e8i 0.631693i
\(663\) 7.39649e8i 2.53796i
\(664\) 4.89400e8 1.67171
\(665\) −1.61843e8 −0.550337
\(666\) 3.58453e8 1.21342
\(667\) 5.77465e6i 0.0194602i
\(668\) −3.37964e7 −0.113381
\(669\) 5.27557e8 1.76194
\(670\) 3.28428e7 0.109198
\(671\) −4.45541e6 −0.0147475
\(672\) 2.05069e8i 0.675759i
\(673\) 2.13094e8i 0.699080i −0.936921 0.349540i \(-0.886338\pi\)
0.936921 0.349540i \(-0.113662\pi\)
\(674\) 1.40868e8 0.460078
\(675\) −2.99193e8 −0.972839
\(676\) −2.21114e7 −0.0715776
\(677\) 5.03604e8 1.62302 0.811509 0.584341i \(-0.198647\pi\)
0.811509 + 0.584341i \(0.198647\pi\)
\(678\) −3.63763e8 −1.16716
\(679\) 2.09838e8i 0.670307i
\(680\) 1.87011e8i 0.594759i
\(681\) 3.33955e7i 0.105742i
\(682\) 4.02091e8i 1.26757i
\(683\) 5.88779e8i 1.84795i 0.382453 + 0.923975i \(0.375079\pi\)
−0.382453 + 0.923975i \(0.624921\pi\)
\(684\) 1.25966e8 0.393627
\(685\) 1.65824e8 0.515912
\(686\) 2.58192e8i 0.799779i
\(687\) 6.16569e8i 1.90157i
\(688\) 3.96947e8i 1.21890i
\(689\) 6.79643e8i 2.07789i
\(690\) −4.77399e6 −0.0145323
\(691\) 5.06413e8i 1.53487i −0.641128 0.767434i \(-0.721533\pi\)
0.641128 0.767434i \(-0.278467\pi\)
\(692\) 1.03992e8i 0.313820i
\(693\) 1.00152e9i 3.00926i
\(694\) −1.04641e8 −0.313058
\(695\) 7.88788e7 0.234967
\(696\) 4.99907e8i 1.48273i
\(697\) 2.29556e8 0.677940
\(698\) 1.47710e8 0.434354
\(699\) 2.34961e8i 0.687962i
\(700\) 5.85878e7 0.170810
\(701\) 1.28590e8i 0.373296i −0.982427 0.186648i \(-0.940238\pi\)
0.982427 0.186648i \(-0.0597624\pi\)
\(702\) 4.31999e8 1.24874
\(703\) 3.26630e8i 0.940134i
\(704\) 6.24446e8i 1.78969i
\(705\) 2.95679e8i 0.843827i
\(706\) 1.61001e7 0.0457525
\(707\) 3.13152e8i 0.886128i
\(708\) −8.78713e6 1.11597e8i −0.0247598 0.314452i
\(709\) −4.30633e8 −1.20828 −0.604142 0.796877i \(-0.706484\pi\)
−0.604142 + 0.796877i \(0.706484\pi\)
\(710\) 1.19111e8i 0.332794i
\(711\) 3.69965e8 1.02932
\(712\) −5.22768e8 −1.44834
\(713\) 7.35347e6 0.0202873
\(714\) 7.70468e8i 2.11670i
\(715\) 2.91791e8 0.798278
\(716\) 1.80614e7i 0.0492054i
\(717\) −3.24616e8 −0.880670
\(718\) 2.14842e8i 0.580423i
\(719\) 1.53429e8i 0.412781i 0.978470 + 0.206390i \(0.0661717\pi\)
−0.978470 + 0.206390i \(0.933828\pi\)
\(720\) −2.09374e8 −0.560952
\(721\) 4.33995e8i 1.15792i
\(722\) 1.46748e8i 0.389906i
\(723\) −3.62086e8 −0.958070
\(724\) 5.14161e7 0.135482
\(725\) 2.62710e8 0.689386
\(726\) 9.04617e8i 2.36404i
\(727\) 2.46836e8 0.642399 0.321199 0.947012i \(-0.395914\pi\)
0.321199 + 0.947012i \(0.395914\pi\)
\(728\) −5.26777e8 −1.36531
\(729\) −6.00455e8 −1.54988
\(730\) −1.22712e8 −0.315441
\(731\) 8.09762e8i 2.07303i
\(732\) 1.13274e6i 0.00288799i
\(733\) 5.18307e7 0.131606 0.0658029 0.997833i \(-0.479039\pi\)
0.0658029 + 0.997833i \(0.479039\pi\)
\(734\) 2.61860e8 0.662187
\(735\) 5.03616e7 0.126835
\(736\) −3.48439e6 −0.00873964
\(737\) 1.85195e8 0.462623
\(738\) 3.20688e8i 0.797837i
\(739\) 2.77948e8i 0.688700i −0.938841 0.344350i \(-0.888099\pi\)
0.938841 0.344350i \(-0.111901\pi\)
\(740\) 2.57352e7i 0.0635085i
\(741\) 9.41550e8i 2.31414i
\(742\) 7.07962e8i 1.73300i
\(743\) −6.69603e8 −1.63249 −0.816246 0.577704i \(-0.803949\pi\)
−0.816246 + 0.577704i \(0.803949\pi\)
\(744\) 6.36585e8 1.54574
\(745\) 1.21555e8i 0.293970i
\(746\) 2.95351e8i 0.711413i
\(747\) 1.11775e9i 2.68154i
\(748\) 1.69343e8i 0.404634i
\(749\) −4.54913e8 −1.08264
\(750\) 4.81643e8i 1.14167i
\(751\) 5.70436e8i 1.34675i 0.739301 + 0.673375i \(0.235156\pi\)
−0.739301 + 0.673375i \(0.764844\pi\)
\(752\) 3.97463e8i 0.934638i
\(753\) −7.06497e8 −1.65472
\(754\) −3.79321e8 −0.884896
\(755\) 2.94910e8i 0.685250i
\(756\) −1.06454e8 −0.246376
\(757\) −7.71740e8 −1.77903 −0.889515 0.456907i \(-0.848957\pi\)
−0.889515 + 0.456907i \(0.848957\pi\)
\(758\) 3.10953e8i 0.713983i
\(759\) −2.69197e7 −0.0615665
\(760\) 2.38059e8i 0.542306i
\(761\) 8.58889e8 1.94887 0.974435 0.224668i \(-0.0721298\pi\)
0.974435 + 0.224668i \(0.0721298\pi\)
\(762\) 2.47550e8i 0.559496i
\(763\) 2.23327e8i 0.502768i
\(764\) 7.55477e7i 0.169411i
\(765\) 4.27119e8 0.954035
\(766\) 7.07697e8i 1.57457i
\(767\) 5.27303e8 4.15196e7i 1.16862 0.0920168i
\(768\) −4.11960e8 −0.909435
\(769\) 4.22927e8i 0.930007i −0.885309 0.465003i \(-0.846053\pi\)
0.885309 0.465003i \(-0.153947\pi\)
\(770\) 3.03949e8 0.665777
\(771\) −1.30319e8 −0.284344
\(772\) 1.37085e8 0.297947
\(773\) 6.35429e8i 1.37572i −0.725845 0.687858i \(-0.758551\pi\)
0.725845 0.687858i \(-0.241449\pi\)
\(774\) 1.13123e9 2.43965
\(775\) 3.34536e8i 0.718684i
\(776\) 3.08656e8 0.660526
\(777\) 6.60243e8i 1.40747i
\(778\) 3.57867e8i 0.759947i
\(779\) 2.92218e8 0.618151
\(780\) 7.41848e7i 0.156326i
\(781\) 6.71645e8i 1.40989i
\(782\) −1.30913e7 −0.0273755
\(783\) −4.77346e8 −0.994369
\(784\) −6.76980e7 −0.140484
\(785\) 2.78550e8i 0.575829i
\(786\) 5.96690e8 1.22880
\(787\) 1.49996e7 0.0307720 0.0153860 0.999882i \(-0.495102\pi\)
0.0153860 + 0.999882i \(0.495102\pi\)
\(788\) −1.44676e7 −0.0295677
\(789\) −1.20643e8 −0.245623
\(790\) 1.12280e8i 0.227731i
\(791\) 4.23551e8i 0.855808i
\(792\) −1.47316e9 −2.96534
\(793\) 5.35224e6 0.0107329
\(794\) −2.93262e8 −0.585861
\(795\) −6.20851e8 −1.23562
\(796\) −1.19706e8 −0.237343
\(797\) 7.55224e8i 1.49177i 0.666077 + 0.745883i \(0.267972\pi\)
−0.666077 + 0.745883i \(0.732028\pi\)
\(798\) 9.80781e8i 1.93003i
\(799\) 8.10816e8i 1.58958i
\(800\) 1.58518e8i 0.309605i
\(801\) 1.19396e9i 2.32323i
\(802\) 5.70186e8 1.10533
\(803\) −6.91952e8 −1.33638
\(804\) 4.70839e7i 0.0905949i
\(805\) 5.55864e6i 0.0106557i
\(806\) 4.83029e8i 0.922504i
\(807\) 1.07099e9i 2.03781i
\(808\) 4.60624e8 0.873197
\(809\) 3.52224e8i 0.665233i −0.943062 0.332616i \(-0.892069\pi\)
0.943062 0.332616i \(-0.107931\pi\)
\(810\) 4.74099e7i 0.0892100i
\(811\) 1.85193e8i 0.347186i 0.984817 + 0.173593i \(0.0555377\pi\)
−0.984817 + 0.173593i \(0.944462\pi\)
\(812\) 9.34734e7 0.174590
\(813\) 1.20102e9 2.23501
\(814\) 6.13428e8i 1.13734i
\(815\) −3.69029e8 −0.681691
\(816\) −9.08256e8 −1.67162
\(817\) 1.03080e9i 1.89020i
\(818\) 3.26332e8 0.596211
\(819\) 1.20312e9i 2.19006i
\(820\) 2.30239e7 0.0417577
\(821\) 4.19768e8i 0.758542i −0.925286 0.379271i \(-0.876175\pi\)
0.925286 0.379271i \(-0.123825\pi\)
\(822\) 1.00491e9i 1.80930i
\(823\) 6.55987e8i 1.17678i 0.808577 + 0.588391i \(0.200238\pi\)
−0.808577 + 0.588391i \(0.799762\pi\)
\(824\) −6.38376e8 −1.14102
\(825\) 1.22468e9i 2.18102i
\(826\) 5.49274e8 4.32496e7i 0.974651 0.0767436i
\(827\) 1.01039e9 1.78637 0.893183 0.449694i \(-0.148467\pi\)
0.893183 + 0.449694i \(0.148467\pi\)
\(828\) 4.32642e6i 0.00762145i
\(829\) 2.10445e8 0.369382 0.184691 0.982797i \(-0.440872\pi\)
0.184691 + 0.982797i \(0.440872\pi\)
\(830\) 3.39225e8 0.593271
\(831\) 2.56924e8 0.447715
\(832\) 7.50141e8i 1.30249i
\(833\) 1.38102e8 0.238927
\(834\) 4.78012e8i 0.824026i
\(835\) −1.45876e8 −0.250567
\(836\) 2.15568e8i 0.368949i
\(837\) 6.07855e8i 1.03663i
\(838\) 3.60282e8 0.612223
\(839\) 2.95771e8i 0.500807i −0.968142 0.250404i \(-0.919437\pi\)
0.968142 0.250404i \(-0.0805633\pi\)
\(840\) 4.81208e8i 0.811886i
\(841\) −1.75685e8 −0.295357
\(842\) −8.48226e8 −1.42094
\(843\) −1.86876e9 −3.11940
\(844\) 8.99678e7i 0.149644i
\(845\) −9.54398e7 −0.158183
\(846\) 1.13270e9 1.87070
\(847\) 1.05330e9 1.73341
\(848\) 8.34571e8 1.36860
\(849\) 1.41494e9i 2.31215i
\(850\) 5.95571e8i 0.969787i
\(851\) 1.12184e7 0.0182030
\(852\) 1.70758e8 0.276098
\(853\) −1.92543e8 −0.310228 −0.155114 0.987897i \(-0.549574\pi\)
−0.155114 + 0.987897i \(0.549574\pi\)
\(854\) 5.57525e6 0.00895140
\(855\) 5.43708e8 0.869897
\(856\) 6.69145e8i 1.06684i
\(857\) 5.93331e8i 0.942659i 0.881957 + 0.471329i \(0.156226\pi\)
−0.881957 + 0.471329i \(0.843774\pi\)
\(858\) 1.76828e9i 2.79956i
\(859\) 1.32685e8i 0.209335i −0.994507 0.104667i \(-0.966622\pi\)
0.994507 0.104667i \(-0.0333778\pi\)
\(860\) 8.12169e7i 0.127688i
\(861\) −5.90683e8 −0.925433
\(862\) −8.09429e8 −1.26374
\(863\) 3.00677e8i 0.467809i −0.972260 0.233904i \(-0.924850\pi\)
0.972260 0.233904i \(-0.0751503\pi\)
\(864\) 2.88028e8i 0.446574i
\(865\) 4.48860e8i 0.693526i
\(866\) 4.00059e8i 0.615985i
\(867\) 7.78291e8 1.19422
\(868\) 1.19030e8i 0.182010i
\(869\) 6.33129e8i 0.964790i
\(870\) 3.46507e8i 0.526205i
\(871\) −2.22473e8 −0.336685
\(872\) 3.28498e8 0.495431
\(873\) 7.04946e8i 1.05953i
\(874\) −1.66648e7 −0.0249612
\(875\) 5.60806e8 0.837121
\(876\) 1.75921e8i 0.261702i
\(877\) 1.10676e8 0.164080 0.0820399 0.996629i \(-0.473857\pi\)
0.0820399 + 0.996629i \(0.473857\pi\)
\(878\) 2.76308e8i 0.408234i
\(879\) −4.38121e7 −0.0645100
\(880\) 3.58307e8i 0.525783i
\(881\) 4.54991e8i 0.665388i 0.943035 + 0.332694i \(0.107958\pi\)
−0.943035 + 0.332694i \(0.892042\pi\)
\(882\) 1.92928e8i 0.281183i
\(883\) 1.74482e8 0.253436 0.126718 0.991939i \(-0.459556\pi\)
0.126718 + 0.991939i \(0.459556\pi\)
\(884\) 2.03431e8i 0.294482i
\(885\) −3.79280e7 4.81689e8i −0.0547179 0.694923i
\(886\) −9.84274e8 −1.41519
\(887\) 5.35324e8i 0.767089i 0.923522 + 0.383545i \(0.125297\pi\)
−0.923522 + 0.383545i \(0.874703\pi\)
\(888\) 9.71169e8 1.38693
\(889\) 2.88237e8 0.410246
\(890\) −3.62354e8 −0.513999
\(891\) 2.67336e8i 0.377941i
\(892\) 1.45097e8 0.204440
\(893\) 1.03214e9i 1.44939i
\(894\) 7.36631e8 1.03095
\(895\) 7.79587e7i 0.108742i
\(896\) 4.86579e8i 0.676441i
\(897\) 3.23384e7 0.0448065
\(898\) 5.63907e8i 0.778715i
\(899\) 5.33733e8i 0.734590i
\(900\) −1.96825e8 −0.269993
\(901\) −1.70251e9 −2.32763
\(902\) −5.48801e8 −0.747817
\(903\) 2.08364e9i 2.82982i
\(904\) −6.23013e8 −0.843320
\(905\) 2.21928e8 0.299409
\(906\) −1.78718e9 −2.40317
\(907\) −1.83370e8 −0.245757 −0.122878 0.992422i \(-0.539213\pi\)
−0.122878 + 0.992422i \(0.539213\pi\)
\(908\) 9.18498e6i 0.0122693i
\(909\) 1.05203e9i 1.40067i
\(910\) −3.65132e8 −0.484536
\(911\) −6.63478e8 −0.877549 −0.438774 0.898597i \(-0.644587\pi\)
−0.438774 + 0.898597i \(0.644587\pi\)
\(912\) −1.15618e9 −1.52420
\(913\) 1.91283e9 2.51342
\(914\) 2.30237e8 0.301535
\(915\) 4.88925e6i 0.00638232i
\(916\) 1.69579e8i 0.220641i
\(917\) 6.94763e8i 0.901008i
\(918\) 1.08216e9i 1.39882i
\(919\) 9.75020e8i 1.25622i −0.778123 0.628112i \(-0.783828\pi\)
0.778123 0.628112i \(-0.216172\pi\)
\(920\) −8.17637e6 −0.0105002
\(921\) −8.16354e8 −1.04496
\(922\) 5.64389e8i 0.720088i
\(923\) 8.06841e8i 1.02608i
\(924\) 4.35745e8i 0.552353i
\(925\) 5.10366e8i 0.644847i
\(926\) 1.27457e9 1.60520
\(927\) 1.45800e9i 1.83028i
\(928\) 2.52906e8i 0.316457i
\(929\) 1.98118e8i 0.247102i −0.992338 0.123551i \(-0.960572\pi\)
0.992338 0.123551i \(-0.0394283\pi\)
\(930\) 4.41245e8 0.548568
\(931\) 1.75800e8 0.217856
\(932\) 6.46229e7i 0.0798250i
\(933\) −1.28087e9 −1.57710
\(934\) −1.19109e9 −1.46186
\(935\) 7.30937e8i 0.894222i
\(936\) 1.76970e9 2.15810
\(937\) 7.24622e8i 0.880831i 0.897794 + 0.440415i \(0.145169\pi\)
−0.897794 + 0.440415i \(0.854831\pi\)
\(938\) −2.31743e8 −0.280801
\(939\) 3.89593e8i 0.470559i
\(940\) 8.13225e7i 0.0979101i
\(941\) 7.46437e8i 0.895827i 0.894077 + 0.447913i \(0.147833\pi\)
−0.894077 + 0.447913i \(0.852167\pi\)
\(942\) −1.68804e9 −2.01943
\(943\) 1.00365e7i 0.0119687i
\(944\) 5.09842e7 + 6.47505e8i 0.0606066 + 0.769710i
\(945\) −4.59490e8 −0.544479
\(946\) 1.93590e9i 2.28670i
\(947\) 1.36406e9 1.60614 0.803068 0.595887i \(-0.203200\pi\)
0.803068 + 0.595887i \(0.203200\pi\)
\(948\) 1.60966e8 0.188934
\(949\) 8.31237e8 0.972582
\(950\) 7.58142e8i 0.884260i
\(951\) 1.78992e9 2.08109
\(952\) 1.31957e9i 1.52941i
\(953\) 5.55368e8 0.641656 0.320828 0.947137i \(-0.396039\pi\)
0.320828 + 0.947137i \(0.396039\pi\)
\(954\) 2.37839e9i 2.73929i
\(955\) 3.26087e8i 0.374389i
\(956\) −8.92813e7 −0.102185
\(957\) 1.95390e9i 2.22929i
\(958\) 2.34338e8i 0.266530i
\(959\) −1.17007e9 −1.32665
\(960\) −6.85251e8 −0.774526
\(961\) 2.07845e8 0.234190
\(962\) 7.36906e8i 0.827726i
\(963\) 1.52827e9 1.71128
\(964\) −9.95869e7 −0.111166
\(965\) 5.91703e8 0.658449
\(966\) 3.36858e7 0.0373694
\(967\) 5.81264e8i 0.642826i −0.946939 0.321413i \(-0.895842\pi\)
0.946939 0.321413i \(-0.104158\pi\)
\(968\) 1.54933e9i 1.70812i
\(969\) 2.35858e9 2.59227
\(970\) 2.13943e8 0.234414
\(971\) −1.01856e7 −0.0111257 −0.00556287 0.999985i \(-0.501771\pi\)
−0.00556287 + 0.999985i \(0.501771\pi\)
\(972\) −1.40145e8 −0.152608
\(973\) −5.56579e8 −0.604211
\(974\) 1.42978e9i 1.54737i
\(975\) 1.47119e9i 1.58729i
\(976\) 6.57231e6i 0.00706917i
\(977\) 2.07791e8i 0.222814i −0.993775 0.111407i \(-0.964464\pi\)
0.993775 0.111407i \(-0.0355358\pi\)
\(978\) 2.23634e9i 2.39068i
\(979\) −2.04325e9 −2.17758
\(980\) 1.38513e7 0.0147167
\(981\) 7.50263e8i 0.794706i
\(982\) 6.21545e8i 0.656354i
\(983\) 5.64843e8i 0.594658i −0.954775 0.297329i \(-0.903904\pi\)
0.954775 0.297329i \(-0.0960958\pi\)
\(984\) 8.68853e8i 0.911929i
\(985\) −6.24466e7 −0.0653432
\(986\) 9.50198e8i 0.991250i
\(987\) 2.08635e9i 2.16988i
\(988\) 2.58961e8i 0.268511i
\(989\) 3.54038e7 0.0365983
\(990\) −1.02111e9 −1.05237
\(991\) 6.24542e8i 0.641713i 0.947128 + 0.320856i \(0.103971\pi\)
−0.947128 + 0.320856i \(0.896029\pi\)
\(992\) 3.22052e8 0.329906
\(993\) −1.13403e9 −1.15818
\(994\) 8.40460e8i 0.855771i
\(995\) −5.16688e8 −0.524516
\(996\) 4.86317e8i 0.492199i
\(997\) 2.74791e8 0.277279 0.138640 0.990343i \(-0.455727\pi\)
0.138640 + 0.990343i \(0.455727\pi\)
\(998\) 1.62703e9i 1.63684i
\(999\) 9.27339e8i 0.930127i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 59.7.b.c.58.9 26
59.58 odd 2 inner 59.7.b.c.58.18 yes 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
59.7.b.c.58.9 26 1.1 even 1 trivial
59.7.b.c.58.18 yes 26 59.58 odd 2 inner