Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [592,2,Mod(51,592)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(592, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([6, 9, 11]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("592.51");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 592 = 2^{4} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 592.bl (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.72714379966\) |
Analytic rank: | \(0\) |
Dimension: | \(296\) |
Relative dimension: | \(74\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
51.1 | −1.41384 | − | 0.0324319i | 0.129674 | − | 0.483951i | 1.99790 | + | 0.0917070i | 0.327392 | − | 0.189020i | −0.199034 | + | 0.680024i | −0.635574 | − | 1.10085i | −2.82173 | − | 0.194455i | 2.38068 | + | 1.37449i | −0.469011 | + | 0.256627i |
51.2 | −1.41352 | + | 0.0443189i | 0.0273586 | − | 0.102104i | 1.99607 | − | 0.125291i | 3.43045 | − | 1.98057i | −0.0341468 | + | 0.145538i | −1.61675 | − | 2.80030i | −2.81593 | + | 0.265565i | 2.58840 | + | 1.49441i | −4.76123 | + | 2.95161i |
51.3 | −1.40679 | − | 0.144693i | −0.552822 | + | 2.06316i | 1.95813 | + | 0.407105i | 2.54336 | − | 1.46841i | 1.07623 | − | 2.82245i | 2.37518 | + | 4.11393i | −2.69577 | − | 0.856039i | −1.35294 | − | 0.781122i | −3.79044 | + | 1.69774i |
51.4 | −1.40654 | + | 0.147133i | 0.286836 | − | 1.07049i | 1.95670 | − | 0.413898i | −3.56489 | + | 2.05819i | −0.245942 | + | 1.54788i | −0.00191601 | − | 0.00331863i | −2.69128 | + | 0.870060i | 1.53441 | + | 0.885891i | 4.71132 | − | 3.41944i |
51.5 | −1.40488 | − | 0.162222i | 0.663867 | − | 2.47758i | 1.94737 | + | 0.455803i | −1.07939 | + | 0.623185i | −1.33457 | + | 3.37301i | 2.26443 | + | 3.92211i | −2.66188 | − | 0.956254i | −3.09963 | − | 1.78957i | 1.61750 | − | 0.700399i |
51.6 | −1.36124 | − | 0.383429i | −0.655391 | + | 2.44595i | 1.70596 | + | 1.04388i | 1.22682 | − | 0.708307i | 1.82999 | − | 3.07824i | −0.990259 | − | 1.71518i | −1.92198 | − | 2.07509i | −2.95506 | − | 1.70611i | −1.94159 | + | 0.493779i |
51.7 | −1.34319 | + | 0.442540i | 0.751509 | − | 2.80467i | 1.60832 | − | 1.18883i | 1.61400 | − | 0.931844i | 0.231760 | + | 4.09978i | 0.0928006 | + | 0.160735i | −1.63417 | + | 2.30857i | −4.70333 | − | 2.71547i | −1.75553 | + | 1.96590i |
51.8 | −1.33188 | + | 0.475498i | −0.430251 | + | 1.60572i | 1.54780 | − | 1.26661i | −0.303976 | + | 0.175501i | −0.190474 | − | 2.34320i | −0.209310 | − | 0.362536i | −1.45922 | + | 2.42295i | 0.204864 | + | 0.118278i | 0.321409 | − | 0.378286i |
51.9 | −1.28384 | + | 0.593089i | −0.109465 | + | 0.408530i | 1.29649 | − | 1.52286i | 0.0413160 | − | 0.0238538i | −0.101758 | − | 0.589409i | 2.08451 | + | 3.61047i | −0.761296 | + | 2.72405i | 2.44316 | + | 1.41056i | −0.0388957 | + | 0.0551285i |
51.10 | −1.28137 | − | 0.598400i | 0.767320 | − | 2.86368i | 1.28384 | + | 1.53355i | −1.94098 | + | 1.12063i | −2.69685 | + | 3.21028i | −2.06845 | − | 3.58266i | −0.727398 | − | 2.73329i | −5.01379 | − | 2.89471i | 3.15771 | − | 0.274458i |
51.11 | −1.27069 | − | 0.620773i | 0.166554 | − | 0.621587i | 1.22928 | + | 1.57761i | 1.08801 | − | 0.628166i | −0.597501 | + | 0.686449i | 0.442359 | + | 0.766189i | −0.582689 | − | 2.76776i | 2.23945 | + | 1.29295i | −1.77247 | + | 0.122790i |
51.12 | −1.26991 | − | 0.622361i | −0.455855 | + | 1.70127i | 1.22533 | + | 1.58068i | −2.61123 | + | 1.50759i | 1.63770 | − | 1.87675i | −1.95644 | − | 3.38866i | −0.572305 | − | 2.76992i | −0.0884496 | − | 0.0510664i | 4.25429 | − | 0.289378i |
51.13 | −1.25418 | + | 0.653476i | −0.811153 | + | 3.02726i | 1.14594 | − | 1.63915i | −0.241412 | + | 0.139379i | −0.960912 | − | 4.32681i | −1.65877 | − | 2.87307i | −0.366065 | + | 2.80464i | −5.90829 | − | 3.41115i | 0.211693 | − | 0.332563i |
51.14 | −1.22537 | − | 0.706025i | −0.0976689 | + | 0.364505i | 1.00306 | + | 1.73028i | −1.29645 | + | 0.748507i | 0.377030 | − | 0.377697i | 1.29798 | + | 2.24817i | −0.00749447 | − | 2.82842i | 2.47475 | + | 1.42880i | 2.11710 | − | 0.00186989i |
51.15 | −1.16062 | − | 0.808054i | 0.679548 | − | 2.53611i | 0.694098 | + | 1.87569i | 2.93382 | − | 1.69384i | −2.83801 | + | 2.39436i | 0.314679 | + | 0.545040i | 0.710074 | − | 2.73784i | −3.37199 | − | 1.94682i | −4.77378 | − | 0.404771i |
51.16 | −1.11179 | + | 0.874033i | 0.260643 | − | 0.972734i | 0.472134 | − | 1.94347i | 2.77715 | − | 1.60339i | 0.560422 | + | 1.30928i | 0.627049 | + | 1.08608i | 1.17375 | + | 2.57339i | 1.71980 | + | 0.992927i | −1.68618 | + | 4.20995i |
51.17 | −1.04406 | + | 0.953911i | −0.521820 | + | 1.94746i | 0.180107 | − | 1.99187i | −3.57739 | + | 2.06541i | −1.31289 | − | 2.53103i | 1.63731 | + | 2.83590i | 1.71203 | + | 2.25143i | −0.922225 | − | 0.532447i | 1.76478 | − | 5.56891i |
51.18 | −1.03842 | + | 0.960039i | −0.0380764 | + | 0.142103i | 0.156652 | − | 1.99386i | −1.99008 | + | 1.14897i | −0.0968850 | − | 0.184118i | −2.39045 | − | 4.14038i | 1.75151 | + | 2.22086i | 2.57933 | + | 1.48918i | 0.963487 | − | 3.10367i |
51.19 | −0.936454 | + | 1.05974i | 0.510515 | − | 1.90527i | −0.246107 | − | 1.98480i | −1.97858 | + | 1.14233i | 1.54102 | + | 2.32521i | 0.307813 | + | 0.533148i | 2.33384 | + | 1.59787i | −0.771351 | − | 0.445339i | 0.642271 | − | 3.16653i |
51.20 | −0.927755 | − | 1.06737i | −0.469723 | + | 1.75303i | −0.278541 | + | 1.98051i | −2.20934 | + | 1.27556i | 2.30691 | − | 1.12502i | 1.57589 | + | 2.72952i | 2.37235 | − | 1.54012i | −0.254397 | − | 0.146876i | 3.41122 | + | 1.17477i |
See next 80 embeddings (of 296 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
592.bl | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 592.2.bl.a | yes | 296 |
16.f | odd | 4 | 1 | 592.2.bf.a | ✓ | 296 | |
37.g | odd | 12 | 1 | 592.2.bf.a | ✓ | 296 | |
592.bl | even | 12 | 1 | inner | 592.2.bl.a | yes | 296 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
592.2.bf.a | ✓ | 296 | 16.f | odd | 4 | 1 | |
592.2.bf.a | ✓ | 296 | 37.g | odd | 12 | 1 | |
592.2.bl.a | yes | 296 | 1.a | even | 1 | 1 | trivial |
592.2.bl.a | yes | 296 | 592.bl | even | 12 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(592, [\chi])\).