Properties

Label 592.2.i.c
Level $592$
Weight $2$
Character orbit 592.i
Analytic conductor $4.727$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [592,2,Mod(417,592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(592, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("592.417");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 592 = 2^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 592.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.72714379966\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 37)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{6} q^{5} + 2 \zeta_{6} q^{7} + ( - 3 \zeta_{6} + 3) q^{9} + 2 q^{11} + 2 \zeta_{6} q^{13} + (3 \zeta_{6} - 3) q^{17} - 6 \zeta_{6} q^{19} + 4 q^{23} + ( - 4 \zeta_{6} + 4) q^{25} + 9 q^{29} + \cdots + ( - 6 \zeta_{6} + 6) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{5} + 2 q^{7} + 3 q^{9} + 4 q^{11} + 2 q^{13} - 3 q^{17} - 6 q^{19} + 8 q^{23} + 4 q^{25} + 18 q^{29} + 20 q^{31} + 2 q^{35} - 11 q^{37} + 9 q^{41} - 4 q^{43} - 6 q^{45} - 12 q^{47} + 3 q^{49}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/592\mathbb{Z}\right)^\times\).

\(n\) \(113\) \(149\) \(223\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
417.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −0.500000 0.866025i 0 1.00000 + 1.73205i 0 1.50000 2.59808i 0
433.1 0 0 0 −0.500000 + 0.866025i 0 1.00000 1.73205i 0 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 592.2.i.c 2
4.b odd 2 1 37.2.c.a 2
12.b even 2 1 333.2.f.a 2
20.d odd 2 1 925.2.e.a 2
20.e even 4 2 925.2.o.a 4
37.c even 3 1 inner 592.2.i.c 2
148.i odd 6 1 37.2.c.a 2
148.i odd 6 1 1369.2.a.d 1
148.j odd 6 1 1369.2.a.b 1
148.l even 12 2 1369.2.b.b 2
444.t even 6 1 333.2.f.a 2
740.w odd 6 1 925.2.e.a 2
740.bg even 12 2 925.2.o.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
37.2.c.a 2 4.b odd 2 1
37.2.c.a 2 148.i odd 6 1
333.2.f.a 2 12.b even 2 1
333.2.f.a 2 444.t even 6 1
592.2.i.c 2 1.a even 1 1 trivial
592.2.i.c 2 37.c even 3 1 inner
925.2.e.a 2 20.d odd 2 1
925.2.e.a 2 740.w odd 6 1
925.2.o.a 4 20.e even 4 2
925.2.o.a 4 740.bg even 12 2
1369.2.a.b 1 148.j odd 6 1
1369.2.a.d 1 148.i odd 6 1
1369.2.b.b 2 148.l even 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{2}^{\mathrm{new}}(592, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$11$ \( (T - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( (T - 9)^{2} \) Copy content Toggle raw display
$31$ \( (T - 10)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 11T + 37 \) Copy content Toggle raw display
$41$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$43$ \( (T + 2)^{2} \) Copy content Toggle raw display
$47$ \( (T + 6)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$59$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$61$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$71$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$73$ \( (T + 10)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$83$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$89$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$97$ \( (T - 7)^{2} \) Copy content Toggle raw display
show more
show less